1
|
Wang X, Niu J, Hadi MK, Guo D, Zhang Y, Yu M, Zhou Q, Ran F. Dual-Site Biomacromolecule Doped Poly(3, 4-Ethylenedioxythiophene) for Bosting Both Anticoagulant and Electrochemical Performances. Adv Healthc Mater 2025; 14:e2401134. [PMID: 38772529 DOI: 10.1002/adhm.202401134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Indexed: 05/23/2024]
Abstract
Poly(3, 4-ethylenedioxythiophene) (PEDOT) as a new generation of intelligent conductive polymers, is attracting much attention in the field of tissue engineering. However, its water dispersibility, conductivity, and biocompatibility are incompatible, which limit its further development. In this work, biocompatible electrode material of PEDOT doped with sodium sulfonated alginate (SS) which contains two functional groups of sulfonic acid and carboxylic acid per repeat unit of the macromolecule. The as dual-site doping strategy simultaneously boosts anticoagulant and electrochemical performances, for example, good hydrophilicity (water contact angle of 59.40°), well dispersibility (dispersion solution unstratified in 30 days), high conductivity (4.45 S m-1), and enhanced anticoagulant property (extended activated partial thrombin time value of 59.0 s), forming an adjustable PEDOT: biomacromolecule interface; this fills the technical gap of implantable bioelectronics in terms of coagulation and thrombosis risk. At the same time, the assembled all-in-one supercapacitor with anticoagulant properties is prepared by PEDOT: sodium sulfonated alginate as electrode material and sodium alginate hydrogel as electrolyte layer. The dual-site doping strategy provides a new opinion for the design and optimization of functional conductive polymers and its applications in implantable energy storage fields.
Collapse
Affiliation(s)
- Xiangya Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Jianzhou Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Mohammed Kamal Hadi
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Dongli Guo
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Yuxia Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Qi Zhou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| |
Collapse
|
2
|
Wang X, Yu M, Kamal Hadi M, Niu J, Zhang Y, Zhou Q, Ran F. An anticoagulant supercapacitor for implantable applications. Nat Commun 2024; 15:10497. [PMID: 39627183 PMCID: PMC11615336 DOI: 10.1038/s41467-024-54862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
With the rapid advancement of implantable electronic medical devices, implantable supercapacitors have emerged as popular energy storage devices. However, supercapacitors inevitably come into direct contact with blood when implanted, potentially causing adverse clinical reactions such as coagulation and thrombosis, impairing the performance of implanted energy storage devices, and posing a serious threat to human health. Therefore, this work aims to design an anticoagulant supercapacitor by heparin doped poly(3, 4-ethylenedioxythiophene) (PEDOT) for possible applications in implantable bioelectronics. Heparin (Hep), the as-known anticoagulant macromolecule acts as the counterion for PEDOT doping to enhance its conductivity, and the bioelectrode material PEDOT: Hep with anticoagulant activity is synthesized via chemical oxidation polymerization. Concurrently, the anticoagulant supercapacitor is constructed through in-situ polymerization, where PEDOT: Hep and bacterial cellulose as electrode material and electrolyte layer, respectively. Owing to the incorporation of heparin, the supercapacitor exhibits high hemocompatibility with hemolysis rate <5 %, good anticoagulant performance with coagulation time of 63.4 s, reasonable cycle stability with capacitance retention rate of 76.24 % after 20, 000 cycles, and supplies power for implanted heart rate sensors in female mice. This work provides a platform for implantable electronics to achieve anticoagulant activity in vivo.
Collapse
Affiliation(s)
- Xiangya Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Mohammed Kamal Hadi
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Jianzhou Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Yuxia Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Qi Zhou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
3
|
Lu F, Yao J, Ji Y, Shi D, Zhang P, Zhang S. Mixed solvent-assisted synthesis of high mass loading amorphous NiCo-MOF as a promising electrode material for supercapacitors. Dalton Trans 2023; 52:13395-13404. [PMID: 37691555 DOI: 10.1039/d3dt02354k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The pursuit of high mass loading metal-organic framework (MOF) materials via a simple method is crucial to achieve high-performance supercapacitors. Herein, an amorphous NiCo-MOF material with a high mass loading of up to 10.3 mg cm-2 was successfully prepared using a mixed solvent system of ethanol and water. In addition, by adjusting the volume ratio of ethanol to water, amorphous NiCo-MOFs with three different morphologies including nanospheres, nanopores, and ultra-thick plates were obtained. It was found that the different solvent systems not only affected the growth rate of MOFs, but also controlled their nucleation rate by changing the coordination environment of the metal ions, and thus achieved morphology and mass loading regulation, thereby influencing their energy storage behavior. Notably, the optimum NiCo-MOF exhibited the superior specific capacitance of up to 9.7 F cm-2 (941.8 F g-1) at a current density of 5 mA cm-2 and high-rate capability of 71.1% even at 20 mA cm-2. Moreover, the corresponding assembled solid-state supercapacitor exhibited an excellent energy density of 0.65 mW h cm-2 at a power density of 2 mW cm-2 and capacity retention of 84.7% after 8000 cycles at 30 mA cm-2. Overall, this work proposes a feasible and effective strategy to achieve high mass loading NiCo-MOFs, impacting their ultimate electrochemical performance, which can possibly be further extended to other MOFs with superior capacitance.
Collapse
Affiliation(s)
- Faxue Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Junnan Yao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Yajun Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Dong Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Pengcheng Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Shixiong Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| |
Collapse
|
4
|
Teymoory P, Zhao J, Shen C. How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications? MICROMACHINES 2023; 14:1249. [PMID: 37374834 DOI: 10.3390/mi14061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Future wearable electronics and smart textiles face a major challenge in the development of energy storage devices that are high-performing while still being flexible, lightweight, and safe. Fiber supercapacitors are one of the most promising energy storage technologies for such applications due to their excellent electrochemical characteristics and mechanical flexibility. Over the past decade, researchers have put in tremendous effort and made significant progress on fiber supercapacitors. It is now the time to assess the outcomes to ensure that this kind of energy storage device will be practical for future wearable electronics and smart textiles. While the materials, fabrication methods, and energy storage performance of fiber supercapacitors have been summarized and evaluated in many previous publications, this review paper focuses on two practical questions: Are the reported devices providing sufficient energy and power densities to wearable electronics? Are the reported devices flexible and durable enough to be integrated into smart textiles? To answer the first question, we not only review the electrochemical performance of the reported fiber supercapacitors but also compare them to the power needs of a variety of commercial electronics. To answer the second question, we review the general approaches to assess the flexibility of wearable textiles and suggest standard methods to evaluate the mechanical flexibility and stability of fiber supercapacitors for future studies. Lastly, this article summarizes the challenges for the practical application of fiber supercapacitors and proposes possible solutions.
Collapse
Affiliation(s)
- Parya Teymoory
- Mechanical Engineering Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Jingzhou Zhao
- Mechanical Engineering Department, Western New England University, Springfield, MA 01119, USA
| | - Caiwei Shen
- Mechanical Engineering Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| |
Collapse
|
5
|
Liu KK, Guan ZJ, Ke M, Fang Y. Bridging the Gap between Charge Storage Site and Transportation Pathway in Molecular-Cage-Based Flexible Electrodes. ACS CENTRAL SCIENCE 2023; 9:805-815. [PMID: 37122452 PMCID: PMC10141610 DOI: 10.1021/acscentsci.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 05/03/2023]
Abstract
Porous materials have been widely applied for supercapacitors; however, the relationship between the electrochemical behaviors and the spatial structures has rarely been discussed before. Herein, we report a series of porous coordination cage (PCC) flexible supercapacitors with tunable three-dimensional (3D) cavities and redox centers. PCCs exhibit excellent capacitor performances with a superior molecular capacitance of 2510 F mmol-1, high areal capacitances of 250 mF cm-2, and unique cycle stability. The electrochemical behavior of PCCs is dictated by the size, type, and open-close state of the cavities. Both the charge binding site and the charge transportation pathway are unambiguously elucidated for PCC supercapacitors. These findings provide central theoretical support for the "structure-property relationship" for designing powerful electrode materials for flexible energy storage devices.
Collapse
Affiliation(s)
- Kang-Kai Liu
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
| | - Zong-Jie Guan
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
| | - Mengting Ke
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
| | - Yu Fang
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
- Innovation
Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan
University, Quanzhou, Fujian 362801, People’s Republic of China
- Email
for Y.F.:
| |
Collapse
|
6
|
Humayun H, Begum B, Bilal S, Shah AUHA, Röse P. Polyindole Embedded Nickel/Zinc Oxide Nanocomposites for High-Performance Energy Storage Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:618. [PMID: 36770578 PMCID: PMC9921157 DOI: 10.3390/nano13030618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Conducting polymers integrated with metal oxides create opportunities for hybrid capacitive electrodes. In this work, we report a one-pot oxidative polymerization for the synthesis of integrated conductive polyindole/nickel oxide (PIn/NiO), polyindole/zinc oxide (PIn/ZnO), and polyindole/nickel oxide/zinc oxide (PNZ). The polymers were analyzed thoroughly for their composition and physical as well as chemical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermogravimetric analysis (TGA). The PIn and its composites were processed into electrodes, and their use in symmetrical supercapacitors in two- and three-electrode setups was evaluated by cyclic voltammetry (CV), galvanostatic discharge (GCD), and electrochemical impedance spectroscopy (EIS). The best electrochemical charge storage capability was found for the ternary PNZ composite. The high performance directly correlates with its uniformly shaped nanofibrous structure and high crystallinity. For instance, the symmetrical supercapacitor fabricated with PNZ hybrid electrodes shows a high specific capacitance of 310.9 F g-1 at 0.5 A g-1 with an energy density of 42.1 Wh kg-1, a power density of 13.2 kW kg-1, and a good cycling stability of 78.5% after 5000 cycles. This report presents new electrode materials for advanced supercapacitor technology based on these results.
Collapse
Affiliation(s)
- Huriya Humayun
- National Centre of Excellence in Physical Chemistry 1, University of Peshawar, Peshawar 25120, Pakistan
| | - Bushra Begum
- National Centre of Excellence in Physical Chemistry 1, University of Peshawar, Peshawar 25120, Pakistan
| | - Salma Bilal
- National Centre of Excellence in Physical Chemistry 1, University of Peshawar, Peshawar 25120, Pakistan
| | | | - Philipp Röse
- Institute for Applied Materials—Electrochemical Technologies, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Zou J, Zou J, Zhong W, Liu Q, Huang X, Gao Y, Lu L, Liu S. PEDOT coating boosted NiCo-LDH nanocage on CC enable high-rate and durable pseudocapacitance reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Yan Y, Lin X, Xiao H, Li X. Nonconductive two-dimensional metal−organic frameworks for high-performance electrochemical energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Lin X, Lai S, Fang G, Li X. Nickel(II) Cluster-Based Pillar-Layered Metal-Organic Frameworks for High-Performance Supercapacitors. Inorg Chem 2022; 61:17278-17288. [PMID: 36264004 DOI: 10.1021/acs.inorgchem.2c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most metal-organic frameworks (MOFs) cannot be used as electrode materials for supercapacitors because of their high costs, poor stabilities in aqueous solutions, inferior intrinsic electrocatalytic activities, and poor conductivities. Herein, the application of two nickel(II) cluster-based pillar-layered MOFs, Ni-mba-Na ([Ni8(mba)6(Cl)2Na(OH-)3]n, H2mba is 2-mercaptobenzoic acid) and Ni-mba-K ([Ni8(mba)6(Cl)2K(OH-)3]n), as electrode materials are reported. They differ from conductive MOFs because they are insulators with small specific surface areas (<10 m2 g-1), and H2mba is an inexpensive raw material. The conductivities of Ni-mba-Na and Ni-mba-K at 30 °C were 4.002 × 10-10 and >10-11 S cm-1, respectively. They showed excellent supercapacitor performance and stabilities and high inherent densities and specific capacitances. The specific powers of their asymmetric supercapacitors could reach up to 16,000 W kg-1; the specific energies of Ni-mba-Na and Ni-mba-K were 16.9 and 21.8 Wh kg-1, respectively. Design recommendations for these MOFs are provided based on their structure and performance differences. This paper shows a novel application of nonconductive MOFs in the energy storage field and design of high-performance electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Xihao Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Shilian Lai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Guoyong Fang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Xinhua Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| |
Collapse
|
10
|
Gong J, Luo W, Zhao Y, Wang J, Wang S, Hu C, Yang J, Dai Y. Surface Engineering of Ni wires and Rapid Growth Strategy of Ni-MOF Synergistically Contribute to High-Performance Fiber-Shaped Aqueous Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204346. [PMID: 36055773 DOI: 10.1002/smll.202204346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The fiber-shaped aqueous battery (FSAB) has the advantages of flexibility, portability and safety making it promising for energy storage applications. In particular, FSABs based on metal wire current collectors with good electrical conductivity can provide excellent energy storage properties. However, the low adhesion caused by the smooth surface of the metal wire and the unavailability of many electrochemically active materials for use in FSAB is holding back their development. Herein, a substrate is effectively constructed for the strongly applicable growth of the active material via a Ni wire etching strategy. In addition, core-shell structured nanorod arrays consisting of NiCo2 O4 and Ni-metal-organic frameworks (MOFs) are constructed, where Ni-MOF can be obtained rapidly via β-Ni(OH)2 intermediates. The NCO/NM-15 electrode obtained by structural regulation exhibits high capacity and outstanding cycling stability. De calculations further demonstrate that the formation of NiCo2 O4 and Ni-MOF heterostructures results in a significant increase in the Fermi level leading to more active internal electrons, which facilitates electron transfer in electrochemical reactions. An assembled FSAB device can provide an energy density of 158.33 µWh cm-2 and the devices can provide power for a calculator and an electronic watch screen, demonstrating a wide application prospect in the field of energy storage.
Collapse
Affiliation(s)
- Jiaxu Gong
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Weige Luo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yang Zhao
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jiaheng Wang
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Shuai Wang
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Cunhai Hu
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yatang Dai
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| |
Collapse
|
11
|
Kumar P, Sharma S, Jabeen S, Samra KS. Hybrid microwave annealing assisted synthesis of MoS2-RGO nanostructures: Optimization and characterization for application in supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Shi C, Sun J, Ji F, Chen W, Pang Y, Liu BT. Mesoporous vanadium nitride as anion storage electrode for reverse dual-ion hybrid supercapacitor. iScience 2022; 25:104141. [PMID: 35391827 PMCID: PMC8980809 DOI: 10.1016/j.isci.2022.104141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
In traditional dual-ion systems, the cathode usually is employed as anion-storage materials. Herein, we propose a new dual-ion hybrid supercapacitor with reverse anion/cation-storage mechanism, consisting of a mesoporous (MPs) VN anode as a pivotal anion-storage material and K2-xMn8O16 nanosheet arrays grown on carbon cloth (NSs/CC) as (K-storage) cathode. During charge/discharge, the anode and cathode reversibly store/release OH− ions and K+ ions, respectively. Herein, the MPs VN as anion-storage electrode can operate in an alkaline condition and deliver a high capacitance of 251 mF cm−2 with desired low-voltage plateau. More importantly, benefiting from unique reverse dual-ion mechanism, the (MPs VN-K2-xMn8O16 NSs/CC) hybrid device displays excellent rate performance and satisfying area capacitance along with good durability of 92.2% after 10,000 cycles at a scan rate of 100 mV s−1. It offers new ideas to expand the range of anion-storage materials in dual-ion hybrid supercapacitors. The MPs VN anode as anion storage material was firstly proposed The dual-ion supercapacitors were firstly constructed by employing the MPs VN anode The reverse storage mechanism was firstly applied to hybrid supercapacitors
Collapse
Affiliation(s)
- Chenglong Shi
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Junlong Sun
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Faqi Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wenjun Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Youyong Pang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Bo-Tian Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.,Guangdong Institute of Semiconductor Industrial Technology, Guangdong Academy of Science, Guangzhou 510650, China
| |
Collapse
|
13
|
Begum B, Bilal S, Shah AUHA, Röse P. Synthesis, Characterization and Electrochemical Performance of a Redox-Responsive Polybenzopyrrole@Nickel Oxide Nanocomposite for Robust and Efficient Faraday Energy Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:513. [PMID: 35159856 PMCID: PMC8840143 DOI: 10.3390/nano12030513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
A polybenzopyrrole@nickel oxide (Pbp@NiO) nanocomposite was synthesized by an oxidative chemical one-pot method and tested as an active material for hybrid electrodes in an electrochemical supercapattery device. The as-prepared composite material exhibits a desirable 3D cross-linked nanostructured morphology and a synergistic effect between the polymer and metal oxide, which improved both physical properties and electrochemical performance. The unprocessed material was characterized by X-ray diffraction, FTIR and UV-Vis spectroscopy, scanning electron microscopy/energy disperse X-ray analysis, and thermogravimetry. The nanocomposite material was deposited without a binder on gold current collectors and investigated for electrochemical behavior and performance in a symmetrical two- and three-electrode cell setup. A high specific capacity of up to 105 C g-1 was obtained for the Pbp@NiO-based electrodes with a gravimetric energy density of 17.5 Wh kg-1, a power density of 1925 W kg-1, and excellent stability over 10,000 cycles.
Collapse
Affiliation(s)
- Bushra Begum
- National Centre of Excellence in Physical Chemistry 1, University of Peshawar, Peshawar 25120, Pakistan;
| | - Salma Bilal
- National Centre of Excellence in Physical Chemistry 1, University of Peshawar, Peshawar 25120, Pakistan;
- Karlsruhe Institute of Technology (KIT), Institute for Applied Materials–Electrochemical Technologies (IAM-ET), 76131 Karlsruhe, Germany
| | | | - Philipp Röse
- Karlsruhe Institute of Technology (KIT), Institute for Applied Materials–Electrochemical Technologies (IAM-ET), 76131 Karlsruhe, Germany
| |
Collapse
|
14
|
The vertically aligned graphene/graphite/PPy composites electrode and its PPy thickness-dependent electrochemical performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zhao Z, Xia K, Hou Y, Zhang Q, Ye Z, Lu J. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev 2021; 50:12702-12743. [PMID: 34643198 DOI: 10.1039/d1cs00800e] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of portable/wearable electronics proposes new demands for energy storage devices, which are flexibility, smart functions and long-time outdoor operation. Supercapacitors (SCs) show great potential in portable/wearable applications, and the recently developed flexible, smart and self-sustainable supercapacitors greatly meet the above demands. In these supercapacitors, conductive polymers (CPs) are widely applied due to their high flexibility, conductivity, pseudo-capacitance, smart characteristics and moderate preparation conditions. Herein, we'd like to introduce the CP-based flexible, smart and self-sustainable supercapacitors for portable/wearable electronics. This review first summarizes the flexible SCs based on CPs and their composites with carbon materials and metal compounds. The smart supercapacitors, i.e., electrochromic, electrochemical actuated, stretchable, self-healing and stimuli-sensitive ones, are then presented. The self-sustainable SCs which integrate SC units with energy-harvesting units in one compact configuration are also introduced. The last section highlights some current challenges and future perspectives of this thriving field.
Collapse
Affiliation(s)
- Zhenyun Zhao
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Kequan Xia
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
16
|
Wang Y, Du Z, Xiao J, Cen W, Yuan S. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Li Z, Mi H, Ji C, Guo F, Qiu P, Ma K, He S, Wu D, Cui H, Yang N. Phosphate-modified Co-Ni phosphide heterostructure formed by interfacial and electronic tuning for boosted faradaic properties. Dalton Trans 2021; 50:5036-5043. [PMID: 33877201 DOI: 10.1039/d1dt00817j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rational structural and compositional modulation endows electrode materials with unique physicochemical characteristics due to their adjustable electronic properties. Herein, a phosphate-modified hierarchical nanoarray consisting of a heterojunction with a well-aligned cobalt phosphide nanowire core and nickel phosphide nanosheet shell on flexible carbon cloth (denoted as CoP@Ni2P-CC) is engineered. The phosphate-modulated heterogeneous phosphide with a tuned electronic structure, additional heterojunction interfaces, and high degree of covalency in the chemical bonds accelerates the reaction kinetics and enhances the energy storage performance. Due to these reasons, the as-obtained phosphide-based heterostructured CoP@Ni2P-CC electrode delivers a capacity of 475.9 C g-1 at 0.5 A g-1 with a satisfying rate capability, which is greatly superior to that of its transition metal counterparts (sulfide, selenide, and oxide). After being assembled into a flexible hybrid supercapacitor (FHSC), a wide operating voltage (1.8 V), high energy/power densities (49.8 W h kg-1/8.6 kW kg-1), and long-term stability (85.1% capacity retention after 10 000 cycles) were achieved. This work may provide a general method from multiple strategies for designing reliable pseudocapacitive materials for flexible electronics.
Collapse
Affiliation(s)
- Zhan Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen J, Wang Y, Cao J, Liao L, Liu Y, Zhou Y, Ouyang JH, Jia D, Wang M, Li X, Li Z. Pulsed electrochemical fabrication of graphene/polypyrrole composite gel films for high performance and flexible supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002806. [PMID: 32761793 DOI: 10.1002/smll.202002806] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Indexed: 05/13/2023]
Abstract
The development of pseudocapacitive materials for energy-oriented applications has stimulated considerable interest in recent years due to their high energy-storing capacity with high power outputs. Nevertheless, the utilization of nanosized active materials in batteries leads to fast redox kinetics due to the improved surface area and short diffusion pathways, which shifts their electrochemical signatures from battery-like to the pseudocapacitive-like behavior. As a result, it becomes challenging to distinguish "pseudocapacitive" and "battery" materials. Such misconceptions have further impacted on the final device configurations. This Review is an earnest effort to clarify the confusion between the battery and pseudocapacitive materials by providing their true meanings and correct performance metrics. A method to distinguish battery-type and pseudocapacitive materials using the electrochemical signatures and quantitative kinetics analysis is outlined. Taking solid-state supercapacitors (SSCs, only polymer gel electrolytes) as an example, the distinction between asymmetric and hybrid supercapacitors is discussed. The state-of-the-art progress in the engineering of active materials is summarized, which will guide for the development of real-pseudocapacitive energy storage systems.
Collapse
Affiliation(s)
- Nilesh R Chodankar
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Hong Duc Pham
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Ashok Kumar Nanjundan
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Joseph F S Fernando
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu, Jammu & Kashmir, 181221, India
| | - Dmitri Golberg
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Young-Kyu Han
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Deepak P Dubal
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| |
Collapse
|
20
|
Chang J, Zang S, Wang Y, Chen C, Wu D, Xu F, Jiang K, Bai Z, Gao Z. Co3O4@Ni3S4 heterostructure composite constructed by low dimensional components as efficient battery electrode for hybrid supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Wang X, Yin S, Jiang J, Xiao H, Li X. A tightly packed Co3O4/C&S composite for high-performance electrochemical supercapacitors from a cobalt(III) cluster-based coordination precursor. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Yang J, Luo J, Liu H, Shi L, Welch K, Wang Z, Strømme M. Electrochemically Active, Compressible, and Conducting Silk Fibroin Hydrogels. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Engineering Science, Uppsala University, Uppsala SE-75121, Sweden
| | - Jun Luo
- Department of Engineering Science, Uppsala University, Uppsala SE-75121, Sweden
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Haidong Liu
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala SE-75121, Sweden
| | - Liyang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Ken Welch
- Department of Engineering Science, Uppsala University, Uppsala SE-75121, Sweden
| | - Zhaohui Wang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala SE-75121, Sweden
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Maria Strømme
- Department of Engineering Science, Uppsala University, Uppsala SE-75121, Sweden
| |
Collapse
|
23
|
Yang J, Li XL, Zhou JW, Wang B, Cheng JL. Fiber-shaped Supercapacitors: Advanced Strategies toward High-performances and Multi-functions. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2389-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Liu K, Chen Z, Lv T, Yao Y, Li N, Li H, Chen T. A Self-supported Graphene/Carbon Nanotube Hollow Fiber for Integrated Energy Conversion and Storage. NANO-MICRO LETTERS 2020; 12:64. [PMID: 34138272 PMCID: PMC7770695 DOI: 10.1007/s40820-020-0390-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 05/27/2023]
Abstract
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention, but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance. Here, we grow aligned carbon nanotubes (CNTs) array on continuous graphene (G) tube, and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure. Taking advantage of the hollow structure, other active materials (e.g., polyaniline, PANI) could be easily functionalized on both inner and outer surfaces of the tube, and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading (90%) of PANI. The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm-2, but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell (DSSC) with a high power conversion efficiency of 4.20%. As desired, the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%. Furthermore, the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.
Collapse
Affiliation(s)
- Kai Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Yao Yao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ning Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China
| | - Huili Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
25
|
Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application Challenges in Fiber and Textile Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901971. [PMID: 31273843 DOI: 10.1002/adma.201901971] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Indexed: 05/24/2023]
Abstract
Modern electronic devices are moving toward miniaturization and integration with an emerging focus on wearable electronics. Due to their close contact with the human body, wearable electronics have new requirements including low weight, small size, and flexibility. Conventional 3D and 2D electronic devices fail to efficiently meet these requirements due to their rigidity and bulkiness. Hence, a new family of 1D fiber-shaped electronic devices including energy-harvesting devices, energy-storage devices, light-emitting devices, and sensing devices has risen to the challenge due to their small diameter, lightweight, flexibility, and weavability into soft textile electronics. The application challenges faced by fiber and textile electronics from single fiber-shaped devices to continuously scalable fabrication, to encapsulation and testing, and to application mode exploration, are discussed. The evolutionary trends of fiber and textile electronics are then summarized. Finally, future directions required to boost their commercialization are highlighted.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Xuemei Fu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jiqing He
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Xiang Shi
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Taiqiang Chen
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Peining Chen
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Bingjie Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Huisheng Peng
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
26
|
Li Z, Ma K, Mi H, Ji C, Li Z, Guo F, He S, Wang C, Xu M, Pang H. Solid‐State Hybrid Supercapacitor Assembled from a Heterostructured Co−Ni Battery‐like Cathode and Supercapacitor‐Type Highly Disordered Carbon Nanosheets. ChemElectroChem 2020. [DOI: 10.1002/celc.201901800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhan Li
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Kongjun Ma
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Hongyu Mi
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Chenchen Ji
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Zhiwei Li
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Fengjiao Guo
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Shixue He
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Conghui Wang
- School of Materials Science and EngineeringNankai University Tianjin 300350 P. R. China
| | - Mengjiao Xu
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Jiangsu 225009 P.R. China
| |
Collapse
|
27
|
Chen HW, Li C. PEDOT: Fundamentals and Its Nanocomposites for Energy Storage. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2373-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Guo X, Li M, Liu Y, Huang Y, Geng S, Yang W, Yu Y. Hierarchical core-shell electrode with NiWO 4 nanoparticles wrapped MnCo 2O 4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2019; 563:405-413. [PMID: 31896486 DOI: 10.1016/j.jcis.2019.12.076] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Rational construction of MnCo2O4-based core-shell nanomaterials with distinctive and desirable architectures possesses great potential in the advanced electrode material of high-performance supercapacitors. Here, a new class of hierarchical core-shell nanowire arrays (NWAs) with a shell of NiWO4 nanoparticles and a core of MnCo2O4 nanowires is reported, which can significantly improve the electrochemical energy storage properties of supercapacitors. The unique core-shell structure endows the MnCo2O4@NiWO4 NWAs electrode with a high areal specific capacitance of 5.09 F cm-2 at a current density of 1 mA cm-2 and a superior cyclic retention of 96% after 5000 charge-discharge cycles, which are more preferable than those of MnCo2O4 NWAs electrode. More importantly, an aqueous electrochemical energy storage device (core-shell MnCo2O4@NiWO4 NWAs as the positive electrode and active carbon as the negative electrode, MnCo2O4@NiWO4//AC ASC) was assembled and shows a high energy density of 0.23 mWh cm-2 at a power density of 2.66 mW cm-2, and 0.09 mWh cm-2 at 16.00 mW cm-2, indicating hopeful potential for practical applications. This work highlights the significance of NiWO4 as a shell for hierarchical core-shell nanostructures, which can further improve the electron transport characteristic of the electrode material, thereby achieving performance breakthroughs in energy storage devices.
Collapse
Affiliation(s)
- Xin Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yequn Liu
- Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Yarong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Shuo Geng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
29
|
Luo ZY, Lyu SS, Mo DC. Cauliflower-like Nickel with Polar Ni(OH) 2/NiO x F y Shell To Decorate Copper Meshes for Efficient Oil/Water Separation. ACS OMEGA 2019; 4:20486-20492. [PMID: 31858032 PMCID: PMC6906775 DOI: 10.1021/acsomega.9b02152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/22/2019] [Indexed: 05/23/2023]
Abstract
In recent years, superhydrophilic and underwater superoleophobic membranes have shown promising results in advanced oil/water separation. However, these membranes still have some drawbacks, like tedious preparation process and instability, which hinder their application in oil/water separation. Accordingly, the development of a facile approach to prepare superhydrophilic membranes with excellent oil/water separation performance is still coveted. Here, a copper mesh decorated with cauliflower-like nickel (Cu mesh@CF-Ni) is synthesized via a facile one-step electrodeposition method. Due to the surface polar -OH and -O-Ni-F groups of the Ni(OH)2/NiO x F y shell of the cauliflower-like nickel (CF-Ni), this Cu mesh@CF-Ni displays superhydrophilic and underwater superoleophobic wettability. The results show that the Cu mesh@CF-Ni has excellent oil/water separation efficiency (higher than 99.2%) and ultrahigh water flux (around 20 L h-1 cm-2). Moreover, it also displays good stability in a 10 wt % NaCl solution and 1 M NaOH solution for oil/water separation. By introducing the CF-Ni with polar Ni(OH)2/NiO x F y components onto the surface of the materials via a simple electrodeposition method, the materials will acquire the capability to not only achieve oil/water separation but also realize many other applications, like self-cleaning, underwater bubble manipulation, and fog harvesting.
Collapse
Affiliation(s)
- Zhi-Yong Luo
- School
of Materials, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Guangdong
Engineering Technology Research Centre for Advanced Thermal Control
Material and System Integration (ATCMSI), Guangzhou 510275, China
| | - Shu-Shen Lyu
- School
of Materials, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong
Engineering Technology Research Centre for Advanced Thermal Control
Material and System Integration (ATCMSI), Guangzhou 510275, China
| | - Dong-Chuan Mo
- School
of Materials, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong
Engineering Technology Research Centre for Advanced Thermal Control
Material and System Integration (ATCMSI), Guangzhou 510275, China
- E-mail: . Tel: +86-20-84113985
| |
Collapse
|
30
|
Lokhande PE, Chavan US, Pandey A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00057-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Facile Electrodeposition of Poly(3,4-ethylenedioxythiophene) on Poly(vinyl alcohol) Nanofibers as the Positive Electrode for High-Performance Asymmetric Supercapacitor. ENERGIES 2019. [DOI: 10.3390/en12173382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene) (PVA/PEDOT) nanofibers were synthesized as a positive electrode for high-performance asymmetric supercapacitor (ASC). PVA/PEDOT nanofibers were prepared through electrospinning and electrodeposition meanwhile reduced graphene oxide (rGO) was obtained by electrochemical reduction. The PVA/PEDOT nanofibers demonstrated cauliflower-like morphology showing that PEDOT was uniformly coated on the smooth cross-linking structure of PVA nanofibers. In addition, the ASC showed a remarkable energy output efficiency by delivering specific energy of 21.45 Wh·kg−1 at a specific power of 335.50 W·kg−1 with good cyclability performance (83% capacitance retained) after 5000 CV cycles. The outstanding supercapacitive performance is contributed from the synergistic effects of both PVA/PEDOT//rGO, which gives promising materials for designing high-performance supercapacitor applications.
Collapse
|
32
|
Gao X, Xiao X, Dong B, Hu J, Tang S, Qi W, Zou D. Converting Commercial Sewing Threads into High‐Performance and Flexible/Wearable Fiber‐Shaped Supercapacitors via Facile Vapor Deposition Polymerization. ChemistrySelect 2019. [DOI: 10.1002/slct.201900143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xue Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xinyu Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bin Dong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jing Hu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Sheng Tang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Wen Qi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Materials CenterBeijing Institute of Collaborative Innovation Beijing 100094 China
| | - Dechun Zou
- Beijing Engineering Research Center for Active Matrix DisplayPeking University Beijing 100871 China
| |
Collapse
|
33
|
Polypyrrole⁻Nickel Hydroxide Hybrid Nanowires as Future Materials for Energy Storage. NANOMATERIALS 2019; 9:nano9020307. [PMID: 30813485 PMCID: PMC6410247 DOI: 10.3390/nano9020307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022]
Abstract
Hybrid materials play an essential role in the development of the energy storage technologies since a multi-constituent system merges the properties of the individual components. Apart from new features and enhanced performance, such an approach quite often allows the drawbacks of single components to be diminished or reduced entirely. The goal of this paper was to prepare and characterize polymer-metal hydroxide (polypyrrole-nickel hydroxide, PPy-Ni(OH)₂) nanowire arrays demonstrating good electrochemical performance. Nanowires were fabricated by potential pulse electrodeposition of pyrrole and nickel hydroxide into nanoporous anodic alumina oxide (AAO) template. The structural features of as-obtained PPy-Ni(OH)₂ hybrid nanowires were characterized using FE-SEM and TEM analysis. Their chemical composition was confirmed by energy-dispersive x-ray spectroscopy (EDS). The presence of nickel hydroxide in the synthesized PPy-Ni(OH)₂ nanowire array was investigated by X-ray photoelectron spectroscopy (XPS). Both FE-SEM and TEM analyses confirmed that the obtained nanowires were composed of a polymer matrix with nanoparticles dispersed within. EDS and XPS techniques confirmed the presence of PPy-Ni(OH)₂ in the nanowire array obtained. Optimal working potential range (i.e., available potential window), charge propagation, and cyclic stability of the electrodes were determined with cyclic voltammetry (CV) at various scan rates. Interestingly, the electrochemical stability window for the aqueous electrolyte at PPy-Ni(OH)₂ nanowire array electrode was remarkably wider (ca. 2 times) in comparison with the non-modified PPy electrode. The capacitance values, calculated from cyclic voltammetry performed at 20 mV s-1, were 25 F cm-2 for PPy and 75 F cm-2 for PPy-Ni(OH)₂ array electrodes. The cyclic stability of the PPy nanowire array electrode up to 100 cycles showed a capacitance fade of about 13%.
Collapse
|
34
|
Naderi L, Shahrokhian S. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances. J Colloid Interface Sci 2019; 542:325-338. [PMID: 30763900 DOI: 10.1016/j.jcis.2019.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Wire-shaped micro-supercapacitors attracted extensive attentions in next-generation portable and wearable electronics, due to advantages of miniature size, lightweight and flexibility. Herein, NiMoO4 nanorods supported on Ni film coated Cu wire are successfully fabricated thorough direct deposition of Ni film onto Cu wire as the conductive substrate, followed by growth of the NiMoO4 nanorods on Ni film coated Cu wire substrate by means a hydrothermal annealing process. The prepared 3D, porous electrode demonstrates extremely high areal specific capacitance of 12.03F cm-2 at the current density of 4 mA cm-2 and retained capacitance of 8.23 F cm-2 at a much higher current density of 80 mAcm-2. The electrode, also, shows an excellent cycling stability with capacitance retention of 99.3% after 3000 cycles. The superior electrochemical performance can be attributed to the high area surface, low contact resistance between NiMoO4 nanorods and Cu wire current collector and presence of a 3D and porous structure provides many electroactive sites and sufficient open space for easy diffusion of the electrolyte ions during redox reactions. Benefiting from their structural features, a fiber shaped asymmetric micro-supercapacitor based on NiMoO4/Ni film/Cu wire as the positive electrode and carbon fiber coated with reduced graphene oxide as the negative electrode is assembled. The fabricated fiber device presents a wide potential window between 0 and 1.7 V and exhibits high specific capacitance of 0.504F cm-2 (38.8F cm-3) at a current density of 4.8 mA cm-2 with a high energy density of 202 µWh cm-2 (15.6 mWh cm-3) at a power density of 4050 µW cm-2 (313 mWh cm-3). The energy density retains 124 µWh cm-2 (9.54 mWh cm-3) when the power density is increased to 13530 µW cm-2 (1040.73 mWh cm-3). In addition, the asymmetric device exhibits an outstanding cycling stability (98.5% capacitance retention after 1000 consecutive cycles) and good mechanical stability. Therefore, this work suggested the promising potential of NiMoO4 nanorods supported on Ni film coated Cu wire as an advanced electrode material for construction of flexible and portable next-generation energy storage micro-devices with superior electrochemical performances.
Collapse
Affiliation(s)
- Leila Naderi
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran; Institute for Nanoscience and Technology, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
35
|
Zhang J, Seyedin S, Qin S, Wang Z, Moradi S, Yang F, Lynch PA, Yang W, Liu J, Wang X, Razal JM. Highly Conductive Ti 3 C 2 T x MXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804732. [PMID: 30653274 DOI: 10.1002/smll.201804732] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/28/2018] [Indexed: 05/17/2023]
Abstract
Fiber-shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one-step wet-spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3 C2 Tx MXene nanosheets and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm-1 , which is about five times higher than other reported Ti3 C2 Tx MXene-based fibers (up to ≈290 S cm-1 ). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm-3 at 5 mV s-1 ) and an excellent rate performance (≈375.2 F cm-3 at 1000 mV s-1 ). When assembled into a free-standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm-3 and ≈8249 mW cm-3 , respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene-based fiber electrodes and their scalable production for fiber-based energy storage applications.
Collapse
Affiliation(s)
- Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Shayan Seyedin
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Zhiyu Wang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Sepehr Moradi
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Fangli Yang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Peter A Lynch
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
36
|
Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time. CRYSTALS 2019. [DOI: 10.3390/cryst9010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A NiO@ZnO (NZO) hybrid with different reaction times was successfully synthesized by a green hydrothermal method. After comparison, it was found that hydrothermal time had a great impact on specific capacitance. As a supercapacitor electrode of NZO-12h, it exhibited the maximum reversible specific capacitance of 985.0 F/g (3.94 F/cm2) at 5 mA/cm2 and 587.5 F/g (2.35 F/cm2) at 50 mA/cm2, as well as a high retention of 74.9% capacitance after 1500 cycles at 20 mA/cm2. Furthermore, the asymmetric electrode device with ZnO-12h and activated carbon (AC) as the positive and negative electrodes was successfully assembled. In addition, the device exhibited a specific capacitance of 85.7 F/g at 0.4 A/g. Moreover, the highest energy density of 27.13 Wh kg−1 was obtained at a power density of 321.42 W kg−1. These desirable electrochemical properties demonstrate that the NZO hybrid is a promising electrode material for a supercapacitor.
Collapse
|
37
|
Karthikeyan G, Boopathi G, Pandurangan A. Facile Synthesis of Mesoporous Carbon Spheres Using 3D Cubic Fe-KIT-6 by CVD Technique for the Application of Active Electrode Materials in Supercapacitors. ACS OMEGA 2018; 3:16658-16671. [PMID: 31458297 PMCID: PMC6644106 DOI: 10.1021/acsomega.8b02160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Mesoporous carbon spheres (MCS-750, MCS-800, MCS-850, MCS-900, and MCS-950) have been synthesized by a facile strategy with low temperature and rapid chemical vapor deposition technique. The synthesized MCS possess relatively large surface area (570-670 m2 g-1), good graphitization, remarkable porosity, and redox functionalities on the surface of the synthesized MCS. Combination of these structural and surface properties of the synthesized MCS as an electrode material (MCS-850) showed an excellent charge-storage capacity with a specific capacitance of 338 F/g at 1 mV/s, 217 F/g at 0.5 A/g. MCS-850 shows long-term cycling stability with capacitive retention of more than 96% after 2000 cycles in 6 M KOH electrolyte. In addition, a fabricated two-electrode symmetric cell obtained 86% retention after 2000 cycles. The two-electrode symmetric device exhibited a specific capacitance of 63 F/g at 5 mV/s with an energy density of 7.1 Wh/kg.
Collapse
Affiliation(s)
| | - Ganesan Boopathi
- Laboratory
of Experimental and Applied Physics, Centro
Federal de Educação Tecnológica Celso Suckow
da Fonseca, Av. Maracanã 229, Rio de Janeiro 20271-110, Brazil
| | | |
Collapse
|
38
|
Zhou Z, Zhang Q, Sun J, He B, Guo J, Li Q, Li C, Xie L, Yao Y. Metal-Organic Framework Derived Spindle-like Carbon Incorporated α-Fe 2O 3 Grown on Carbon Nanotube Fiber as Anodes for High-Performance Wearable Asymmetric Supercapacitors. ACS NANO 2018; 12:9333-9341. [PMID: 30193057 DOI: 10.1021/acsnano.8b04336] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Iron oxide (Fe2O3) has drawn much attention because of its high theoretical capacitance, wide operating potential window, low cost, natural abundance, and environmental friendliness. However, the inferior conductivity and insufficient ionic diffusion rate of a simple Fe2O3 electrode leading to the low specific capacitance and poor rate performance of supercapacitors have impeded its applications. In this work, we report a facile and cost-effective method to directly grow MIL-88-Fe metal-organic framework (MOF) derived spindle-like α-Fe2O3@C on oxidized carbon nanotube fiber (S-α-Fe2O3@C/OCNTF). The S-α-Fe2O3@C/OCNTF electrode is demonstrated with a high areal capacitance of 1232.4 mF/cm2 at a current density of 2 mA/cm2 and considerable rate capability with capacitance retention of 63% at a current density of 20 mA/cm2 and is well matched with the cathode of the Na-doped MnO2 nanosheets on CNTF (Na-MnO2 NSs/CNTF). The electrochemical test results show that the S-α-Fe2O3@C/OCNTF//Na-MnO2 NSs/CNTF asymmetric supercapacitors possess a high specific capacitance of 201.3 mF/cm2 and an exceptional energy density of 135.3 μWh/cm2. Thus, MIL-88-Fe MOF derived S-α-Fe2O3@C will be a promising anode for applications in next-generation wearable asymmetric supercapacitors.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Nano Science and Technology Institute , University of Science and Technology of China , Suzhou 215123 , China
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- Division of Nanomaterials , Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences , Nanchang 330200 , China
| | - Qichong Zhang
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Juan Sun
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Bing He
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Jiabin Guo
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Qiulong Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Chaowei Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Liyan Xie
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Yagang Yao
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- Division of Nanomaterials , Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences , Nanchang 330200 , China
| |
Collapse
|
39
|
Wang HT, Jin C, Liu YN, Kang XH, Bian SW, Zhu Q. Cotton yarns modified with three-dimensional metallic Ni conductive network and pseudocapacitive Co-Ni layered double hydroxide nanosheet array as electrode materials for flexible yarn supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wang Z, Qin S, Seyedin S, Zhang J, Wang J, Levitt A, Li N, Haines C, Ovalle-Robles R, Lei W, Gogotsi Y, Baughman RH, Razal JM. High-Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802225. [PMID: 30084530 DOI: 10.1002/smll.201802225] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/06/2018] [Indexed: 05/26/2023]
Abstract
Yarn-shaped supercapacitors (YSCs) once integrated into fabrics provide promising energy storage solutions to the increasing demand of wearable and portable electronics. In such device format, however, it is a challenge to achieve outstanding electrochemical performance without compromising flexibility. Here, MXene-based YSCs that exhibit both flexibility and superior energy storage performance by employing a biscrolling approach to create flexible yarns from highly delaminated and pseudocapacitive MXene sheets that are trapped within helical yarn corridors are reported. With specific capacitance and energy and power densities values exceeding those reported for any YSCs, this work illustrates that biscrolled MXene yarns can potentially provide the conformal energy solution for powering electronics beyond just the form factor of flexible YSCs.
Collapse
Affiliation(s)
- Zhiyu Wang
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Shayan Seyedin
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Jiangting Wang
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Ariana Levitt
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Na Li
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Carter Haines
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Raquel Ovalle-Robles
- Nano-Science and Technology Center, Lintec of America, Inc., Richardson, TX, 75081, USA
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| |
Collapse
|
41
|
Gao L, Song J, Surjadi JU, Cao K, Han Y, Sun D, Tao X, Lu Y. Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28597-28607. [PMID: 30036032 DOI: 10.1021/acsami.8b08680] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Portable fiber supercapacitors with high-energy storage capacity are in great demand to cater for the rapid development of flexible and deformable electronic devices. Hence, we employed a 3D cellular copper foam (CF) combined with the graphene sheets (GSs) as the support matrix to bridge the active material with nickel fiber (NF) current collector, significantly increasing surface area and decreasing the interface resistance. In comparison to the active material directly growing onto the NF in the absence of CF and GSs, our rationally designed architecture achieved a joint improvement in both capacity (0.217 mAh cm-2/1729.413 mF cm-2, 1200% enhancement) and rate capability (87.1% from 1 to 20 mA cm-2, 286% improvement), which has never been achieved before with other fiber supercapacitors. The in situ scanning electron microscope (SEM) microcompression test demonstrated its superior mechanical recoverability for the first time. Importantly, the assembled flexible and wearable device presented a superior energy density of 109.6 μWh cm-2 at a power density of 749.5 μW cm-2, and the device successfully coupled with a flexible strain sensor, solar cell, and nanogenerator. This rational design should shed light on the manufacturing of 3D cellular architectures as microcurrent collectors to realize high energy density for fiber-based energy storage devices.
Collapse
Affiliation(s)
- Libo Gao
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong SAR, Kowloon 999077 , Hong Kong
- Shenzhen Research Institute , City University of Hong Kong , Shenzhen 518057 , China
| | - Jian Song
- Nanotechnology Center of Functional and Intelligent Textiles and Apparel Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Kowloon 999077 , Hong Kong
| | - James Utama Surjadi
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong SAR, Kowloon 999077 , Hong Kong
| | - Ke Cao
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong SAR, Kowloon 999077 , Hong Kong
| | - Ying Han
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong SAR, Kowloon 999077 , Hong Kong
| | - Dong Sun
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong SAR, Kowloon 999077 , Hong Kong
| | - Xiaoming Tao
- Nanotechnology Center of Functional and Intelligent Textiles and Apparel Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Kowloon 999077 , Hong Kong
| | - Yang Lu
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong SAR, Kowloon 999077 , Hong Kong
- Shenzhen Research Institute , City University of Hong Kong , Shenzhen 518057 , China
| |
Collapse
|
42
|
Jatoi AW, Kim IS, Ni QQ. Ultrasonic energy-assisted coloration of polyurethane nanofibers. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0823-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Qin S, Seyedin S, Zhang J, Wang Z, Yang F, Liu Y, Chen J, Razal JM. Elastic Fiber Supercapacitors for Wearable Energy Storage. Macromol Rapid Commun 2018; 39:e1800103. [DOI: 10.1002/marc.201800103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Si Qin
- Institute for Frontier Materials Deakin University Geelong Waurn Ponds Campus VIC 3216 Australia
| | - Shayan Seyedin
- Institute for Frontier Materials Deakin University Geelong Waurn Ponds Campus VIC 3216 Australia
| | - Jizhen Zhang
- Institute for Frontier Materials Deakin University Geelong Waurn Ponds Campus VIC 3216 Australia
| | - Zhiyu Wang
- Institute for Frontier Materials Deakin University Geelong Waurn Ponds Campus VIC 3216 Australia
| | - Fangli Yang
- Institute for Frontier Materials Deakin University Geelong Waurn Ponds Campus VIC 3216 Australia
| | - Yuqing Liu
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Australian Institute of Innovative Materials University of Wollongong Wollongong NSW 2500 Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Australian Institute of Innovative Materials University of Wollongong Wollongong NSW 2500 Australia
| | - Joselito M. Razal
- Institute for Frontier Materials Deakin University Geelong Waurn Ponds Campus VIC 3216 Australia
| |
Collapse
|
44
|
Chen Y, Xu B, Wen J, Gong J, Hua T, Kan CW, Deng J. Design of Novel Wearable, Stretchable, and Waterproof Cable-Type Supercapacitors Based on High-Performance Nickel Cobalt Sulfide-Coated Etching-Annealed Yarn Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704373. [PMID: 29675877 DOI: 10.1002/smll.201704373] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Indexed: 05/26/2023]
Abstract
Rapid advances in functional electronics bring tremendous demands on innovation toward effective designs of device structures. Yarn supercapacitors (SCs) show advantages of flexibility, knittability, and small size, and can be integrated into various electronic devices with low cost and high efficiency for energy storage. In this work, functionalized stainless steel yarns are developed to support active materials of positive and negative electrodes, which not only enhance capacitance of both electrodes but can also be designed into stretchable configurations. The as-made asymmetric yarn SCs show a high energy density of 0.0487 mWh cm-2 (10.19 mWh cm-3 ) at a power density of 0.553 mW cm-2 (129.1 mW cm-3 ) and a specific capacitance of 127.2 mF cm-2 under an operating voltage window of 1.7 V. The fabricated SC is then made into a stretchable configuration by a prestraining-then-releasing approach using polydimethylsiloxane (PDMS) tube, and its electrochemical performance can be well maintained when stretching up to a high strain of 100%. Moreover, the stretchable cable-type SCs are stably workable under water-immersed condition. The method opens up new ways for fabricating flexible, stretchable, and waterproof devices.
Collapse
Affiliation(s)
- Yuejiao Chen
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Bingang Xu
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianfeng Wen
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianliang Gong
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Tao Hua
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chi-Wai Kan
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiwei Deng
- College of Mechanical and Electrical Engineering, Central South University, 410083, China
| |
Collapse
|
45
|
Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 2018; 47:2065-2129. [PMID: 29399689 DOI: 10.1039/c7cs00505a] [Citation(s) in RCA: 486] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.
Collapse
Affiliation(s)
- Deepak P Dubal
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia. and Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Nilesh R Chodankar
- School of Chemical Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Pedro Gomez-Romero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
46
|
Rui K, Wang X, Du M, Zhang Y, Wang Q, Ma Z, Zhang Q, Li D, Huang X, Sun G, Zhu J, Huang W. Dual-Function Metal-Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2837-2842. [PMID: 29286235 DOI: 10.1021/acsami.7b16761] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Metal-organic frameworks (MOFs) coupled with multiwalled carbon nanotubes (MWCNTs) have been developed with an ultrahigh sensitivity for hazardous gas monitoring. Both the MOF/MWCNT and as-derived metal oxides (MOs)/MWCNTs hybrid fibers deliver an ultralow detection limit for NO2 down to 0.1 ppm without external heating, and they can be further bent into different angles without loss of sensing performance. Also, a high specific capacitance of 110 F cm-3 can also be obtained for MO/MWCNT hybrid fibers, demonstrating promising application for integrated wearable devices.
Collapse
Affiliation(s)
- Kun Rui
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoshan Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Min Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Yao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Qingqing Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Zhongyuan Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Qiao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Desheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) , 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
47
|
High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep 2018; 8:640. [PMID: 29330476 PMCID: PMC5766552 DOI: 10.1038/s41598-017-18593-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
A simple approach for growing porous electrochemically reduced graphene oxide (pErGO) networks on copper wire, modified with galvanostatically deposited copper foam is demonstrated. The as-prepared pErGO networks on the copper wire are directly used to fabricate solid-state supercapacitor. The pErGO-based supercapacitor can deliver a specific capacitance (Csp) as high as 81±3 F g−1 at 0.5 A g−1 with polyvinyl alcohol/H3PO4 gel electrolyte. The Csp per unit length and area are calculated as 40.5 mF cm−1 and 283.5 mF cm−2, respectively. The shape of the voltammogram retained up to high scan rate of 100 V s−1. The pErGO-based supercapacitor device exhibits noticeably high charge-discharge cycling stability, with 94.5% Csp retained even after 5000 cycles at 5 A g−1. Nominal change in the specific capacitance, as well as the shape of the voltammogram, is observed at different bending angles of the device even after 5000 cycles. The highest energy density of 11.25 W h kg−1 and the highest power density of 5 kW kg−1 are also achieved with this device. The wire-based supercapacitor is scalable and highly flexible, which can be assembled with/without a flexible substrate in different geometries and bending angles for illustrating promising use in smart textile and wearable device.
Collapse
|
48
|
Ma G, Hua F, Sun K, Fenga E, Peng H, Zhang Z, Lei Z. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171186. [PMID: 29410830 PMCID: PMC5792907 DOI: 10.1098/rsos.171186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 05/22/2023]
Abstract
The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi18SeO29/BiSe as the negative electrode and flower-like Co0.85Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi18SeO29/BiSe and Co0.85Se have high specific capacitance (471.3 F g-1 and 255 F g-1 at 0.5 A g-1), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg-1 at a power density of 871.2 W kg-1 in the voltage window of 0-1.6 V with 2 M KOH solution.
Collapse
Affiliation(s)
- Guofu Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Authors for correspondence: Guofu Ma e-mail:
| | - Fengting Hua
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Kanjun Sun
- College of Chemistry and Environmental Science, Lanzhou City University, Lanzhou 730070, People's Republic of China
| | - Enke Fenga
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hui Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhiguo Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Authors for correspondence: Ziqiang Lei e-mail:
| |
Collapse
|
49
|
Saravanakumar B, Jayaseelan SS, Seo MK, Kim HY, Kim BS. NiCo 2S 4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications. NANOSCALE 2017; 9:18819-18834. [PMID: 29177332 DOI: 10.1039/c7nr06725a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo2S4-decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo2S4 as an electroactive material. The fabricated NiCo2S4-decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm-2 and 199.74 F cm-3, respectively, at a current density of 0.2 mA cm-1 with a maximum volumetric energy and power density (EV: 6.935 mW h cm-3; PV: 1.019 W cm-3). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo2S4-decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of CA: 0.12 F cm-2 and CV: 19.57 F cm-2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (EV: 5.33 mW h cm-3) and power (PV: 855.69 mW cm-3) density.
Collapse
Affiliation(s)
- Balasubramaniam Saravanakumar
- Department of BIN Convergence Technology, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | | | | | | | | |
Collapse
|
50
|
Wang L, Yang H, Shu T, Chen X, Huang Y, Hu X. Rational Design of Three-Dimensional Hierarchical Nanomaterials for Asymmetric Supercapacitors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700525] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Libin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Huiling Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Ting Shu
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Xue Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Yunhui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| |
Collapse
|