1
|
Basumatary D, Bhatt P, Sankaranarayanan K. Cold Atmospheric Plasma-Driven Structural Transformation of Self-Assembled Fmoc-Trp and Fmoc-Phe into Supramolecular Aggregated Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12052-12063. [PMID: 40325555 DOI: 10.1021/acs.langmuir.5c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Supramolecular chemistry plays a key role in the design of functional nanomaterials, and the self-assembly behavior of amino acids modified with the Fmoc group has gained significant attention for its potential in nanotechnology and biomedicine. This study investigates the self-assembly behavior of N-9-fluorenylmethoxycarbonyl(Fmoc)-modified amino acids and the impact of cold atmospheric plasma (CAP) on their transformation from 2D into 3D supramolecular aggregates. Fmoc-phenylalanine (Fmoc-F), a derivative of phenylalanine, primarily relies on π-π stacking interactions to form structures while Fmoc-tryptophan (Fmoc-W), a derivative of tryptophan, engages in both π-π stacking and hydrogen bonding due to the presence of an indole ring with a nitrogen atom, leading to stronger and more stable aggregates. Upon CAP treatment, Fmoc-F forms 3D aggregates containing β-sheet moieties binding to thioflavin T (dye) at concentrations as low as 10 μM, whereas Fmoc-W aggregates at 68 μM. These differences in aggregation behaviors can be attributed to the distinct molecular interactions of the two derivatives. The rapid treatment time and nonthermal properties of CAP regulate and direct the self-assembly process, promoting the formation of complex 3D structures, with fluorescence spectra revealing aggregation-induced quenching (ACQ). Characterization techniques confirm the formation of supramolecular assemblies, offering valuable insights into the design of Fmoc-amino acid-based materials for applications in biomimetic materials, cationic dye binding, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Deepjyoti Basumatary
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priya Bhatt
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Huang Z, Li Q, Zhang X, Xue H, Liao W, Yin C, Yuan J, Tao L, Wei Y. A series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structure for drugs delivery systems of paclitaxel: Synthesis, structure-activity relationship and anti-tumors effect. Colloids Surf B Biointerfaces 2024; 244:114136. [PMID: 39116602 DOI: 10.1016/j.colsurfb.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Aggregation-induced emission (AIE) materials are attracting great attention in biomedical fields such as sensors, bioimaging, and cancer treatment, et al. due to their strong fluorescence emission in the aggregated state. In this contribution, a series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structures were synthesized by Suzuki coupling reaction and Knoevenagel condensation, and their relationship of chemical structure and fluorescence properties was investigated in detail, among which TPPA compound was selected as the monomer owing to the longest emission wavelength at about 530 nm with low energy band gap ΔE 3.09 eV of neutral TPPA and 1.43 eV of protonated TPPA. Novel amphiphilic AIE PEG-TA copolymers were prepared by RAFT polymerization of TPPA and PEGMA with about 1.44×104 Mw and narrow PDI, and the molar ratio of TPPA in the PEG-TA1 and PEG-TA2 copolymers was about 23.4 % and 29.6 %. The as-prepared PEG-TA copolymers would self-assembled in aqueous solution to form core-shell structures with a diameter of 150-200 nm, and their emission wavelength could reversibly convert from 545 nm to 650 nm with excellent pH sensitivity. The CLSM images showed that the PEG-TA FONs and PTX drugs-loaded PTX-TA FONs could be endocytosed by cells and mainly enriched in the cytoplasm, and CCK-8 results showed that the PEG-TA FONs had excellent biocompatibility but PTX-TA FONs had high inhibition ratio for A549 cells, moreover, the flow cytometry also showed that PTX-TA FONs could result in the apoptosis of A549 cells with some extent anti-tumor effect.
Collapse
Affiliation(s)
- Zengfang Huang
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China.
| | - Qiusha Li
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Xiaotong Zhang
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Haoyu Xue
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Wenxi Liao
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Chunmei Yin
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Jinying Yuan
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China
| | - Lei Tao
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China
| | - Yen Wei
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Li Y, Zhang W, Wang Z, Cui Z, Shi L, Bu T, Sun J, Cheng J, Yang Q, Wang J. Bidirectional "Win-Win": Asymmetrical Nanobowl-Coupled Aggregation-Induced Emissive Nanosilicon-Enhanced Immunochromatographic Strips for the Ultrasensitive Detection of Salmonella typhimurium. Anal Chem 2024; 96:18204-18213. [PMID: 39485239 DOI: 10.1021/acs.analchem.4c04403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The lack of nanoprobes with an efficient signal response and overlook of cooperation between nanoprobes can be responsible for the unsatisfactory analytical performance of immunochromatographic strips (ITSs). Herein, asymmetrical nanobowl-confined innumerable gold nanoparticles (AuNPs) (AuNPs@AFRNBs) to enhance the light absorption are developed for quenching the fluorescence of aggregation-induced emissive (AIE) nanosilicons, which is used for the construction of a bidirectional complementary-enhanced ITS (BC-ITS) to ultrasensitively detect Salmonella typhimurium (S. typhimurium). Briefly, density functional theory-screened AIEgens with highly fluorescent brightness are confined in nanosilicons, and the nanoconfinement has improved the fluorescent brightness by 6.78-fold compared to the free AIEgens. Moreover, the substituent group effect has also enhanced the fluorescence of the prepared fluorescent nanosilicon by 10,000-fold in ITSs. By virtue of the superior light absorption of AuNPs@AFRNBs, the BC-ITS exhibits a bidirectional "win-win" performance for the sensitive monitoring of S. typhimurium: a "turn-on" mode with a high-brightness colorimetric response and an inverse "turn-off" fluorescence response, whose limits of detection are 364 and 302 CFU mL-1, respectively, which is approximately 100-fold more sensitive than the traditional AuNPs-ITS. Furthermore, the BC-ITS can be successfully used to identify S. typhimurium in milk, illustrating the superiority of the developed BC-ITS in point-of-care diagnosis.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenrui Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ziqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Li Y, Cui Z, Wang Z, Shi L, Zhuo J, Yan S, Ji Y, Wang Y, Zhang D, Wang J. Machine-Learning-Assisted Aggregation-Induced Emissive Nanosilicon-Based Sensor Array for Point-of-Care Identification of Multiple Foodborne Pathogens. Anal Chem 2024; 96:6588-6598. [PMID: 38619494 DOI: 10.1021/acs.analchem.3c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ziqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Shengxue Yan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Xia D, Cheng Y, Zhang M, Ma J, Liang B, Wang P. Regulation of Fluorescence and Self-assembly of a Salicylaldehyde Azine-Containing Amphiphile by Pillararene. Chemistry 2024; 30:e202304200. [PMID: 38340042 DOI: 10.1002/chem.202304200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Regulation of fluorescence and self-assembly of a salicylaldehyde azine-containing amphiphile by a water-soluble pillar[5]arene via host-guest recognition in water was realized. The fluorescence and the self-assembled aggregates of the bola-type amphiphile G can be tailored by adding different amounts of water-soluble pillar[5]arene (WP5). In addition, the emission property and self-assembly behavior of G and WP5 are responsive to pH conditions. Furthermore, the fluorescence emission property of G and the regulation by WP5 or pH conditions was applied as information encryption material, rewritable paper, and erasable ink. We believe that this fluorescence regulation strategy is promising for the construction of advanced fluorescent organic materials.
Collapse
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Meiru Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jiaxin Ma
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Bicong Liang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Segawa S, He X, Tang BZ. Metal-free click and bioorthogonal reactions of aggregation-induced emission probes for lighting up living systems. LUMINESCENCE 2024; 39:e4619. [PMID: 37987236 DOI: 10.1002/bio.4619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
In 2002, two transformative research paradigms emerged: 'click chemistry' and 'aggregation-induced emission (AIE),' both leaving significant impacts on early 21st-century academia. Click chemistry, which describes the straightforward and reliable reactions for linking two building blocks, has simplified complex molecular syntheses and functionalization, propelling advancements in polymer, material, and life science. In particular, nontoxic, metal-free click reactions involving abiotic functional groups have matured into bioorthogonal reactions. These are organic ligations capable of selective and efficient operations even in congested living systems, therefore enabling in vitro to in vivo biomolecular labelling. Concurrently, AIE, a fluorogenic phenomenon of twisted π-conjugated compounds upon aggregation, has offered profound insight into solid-state photophysics and promoted the creation of aggregate materials. The inherent fluorogenicity and aggregate-emission properties of AIE luminogens have found extensive application in biological imaging, characterized by their high-contrast and photostable fluorescent signals. As such, the convergence of these two domains to yield efficient labelling with excellent fluorescence images is an anticipated progression in recent life science research. In this review, we intend to showcase the synergetic applications of AIE probes and metal-free click or bioorthogonal reactions, highlighting both the achievements and the unexplored avenues in this promising field.
Collapse
Affiliation(s)
- Shinsuke Segawa
- Department of Chemical and Biological Engineering, School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Huang Z, Zhou C, Yu Y, Wang S, Fu R, Liu X, Mao L, Yuan J, Tao L, Wei Y. Synthesis of a polymerizable aggregation-induced emission (AIE) dye with A-D structure based on benzothiadiazole for fluorescent nanoparticles and its application in bioimaging. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Harris Y, Sason H, Niezni D, Shamay Y. Automated discovery of nanomaterials via drug aggregation induced emission. Biomaterials 2022; 289:121800. [PMID: 36166893 DOI: 10.1016/j.biomaterials.2022.121800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 12/19/2022]
Abstract
Nanoformulations of small molecule drugs are essential to effectively deliver them and treat a wide range of diseases. They are normally complex to develop, lack predictability, and exhibit low drug loading. Recently, nanoparticles made via co-assembly of hydrophobic drugs and organic dyes, exhibited drug-loading of up to 90% with high predictability from the drug structure. However, these particles have relatively short stability and can formulate only a small fraction of the drug space. Here, we developed an automated workflow to synthesize and select novel dye stabilizers, based on their ability to inhibit drug aggregation-induced emission (AIE). We first screened and identified 10 drugs with previously unknown strong AIE activity and exploited this trait to automatically synthesize and select a new ultra-stabilizer named R595. Interestingly, it shares several synthetic similarities and advantages with polydopamine. We found that R595 is superior to myriad types of excipients and solubilizers such as cyclodextrins, poloxamers, albumin, and previously published organic dyes, in both long-term stability and drug compatibility. We investigated the biodistribution, pharmacokinetics, safety and efficacy of the AIEgenic MEK inhibitor trametinib-R595 nanoparticles in vitro and in vivo and demonstrated that they are non-toxic and effective in KRAS driven colon and lung cancer models.
Collapse
Affiliation(s)
- Yuval Harris
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Sason
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danna Niezni
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Sakthivel R, Lin LY, Duann YF, Chen HH, Su C, Liu X, He JH, Chung RJ. MOF-Derived Cu-BTC Nanowire-Embedded 2D Leaf-like Structured ZIF Composite-Based Aptamer Sensors for Real-Time In Vivo Insulin Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28639-28650. [PMID: 35709524 DOI: 10.1021/acsami.2c06785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin, which is a hormone produced by the β-cells of the pancreas, regulates the glucose levels in the blood and can transport glucose into cells to produce glycogen or triglycerides. Insulin deficiency can lead to hyperglycemia and diabetes. Therefore, insulin detection is critical in clinical diagnosis. In this study, disposable Au electrodes were modified with copper(II) benzene-1,3,5-tricarboxylate (Cu-BTC)/leaf-like zeolitic imidazolate framework (ZIF-L) for insulin detection. The aptamers are easily immobilized on the Cu-BTC/ZIF-L composite by physical adsorption and facilitated the specific interaction between aptamers and insulin. The Cu-BTC/ZIF-L composite-based aptasensor presented a wide linear insulin detection range (0.1 pM to 5 μM) and a low limit of detection of 0.027 pM. In addition, the aptasensor displayed high specificity, good reproducibility and stability, and favorable practicability in human serum samples. For the in vivo tests, Cu-BTC/ZIF-L composite-modified electrodes were implanted in non-diabetic and diabetic mice, and insulin was quantified using electrochemical and enzyme-linked immunosorbent assay methods.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Hsiao-Hsuan Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology,National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, 26 Kowloon, Kowloon 999077, Hong Kong
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
10
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
11
|
Frank A, Hamidi N, Xue F. Regioselective alkylation of 2,4-dihydroxybenzyaldehydes and 2,4-dihydroxyacetophenones. Tetrahedron Lett 2022; 95:153755. [PMID: 35495552 PMCID: PMC9053733 DOI: 10.1016/j.tetlet.2022.153755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a cesium bicarbonate-mediated alkylation of 2,4-dihydroxybenzyaldehyde and 2,4-dihydroxyacetophenone to generate 4-alkylated products in acetonitrile at 80 °C with excellent regioselectivity, up to 95% isolated yields, and broad substrate scope.
Collapse
Affiliation(s)
- Aziza Frank
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Negar Hamidi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
12
|
Wang Z, Yang X, Lee NZ, Cao X. Multivalent Aptamer Approach: Designs, Strategies, and Applications. MICROMACHINES 2022; 13:436. [PMID: 35334728 PMCID: PMC8956053 DOI: 10.3390/mi13030436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022]
Abstract
Aptamers are short and single-stranded DNA or RNA molecules with highly programmable structures that give them the ability to interact specifically with a large variety of targets, including proteins, cells, and small molecules. Multivalent aptamers refer to molecular constructs that combine two or more identical or different types of aptamers. Multivalency increases the avidity of aptamers, a particularly advantageous feature that allows for significantly increased binding affinities in comparison with aptamer monomers. Another advantage of multivalency is increased aptamer stabilities that confer improved performances under physiological conditions for various applications in clinical settings. The current study aims to review the most recent developments in multivalent aptamer research. The review will first discuss structures of multivalent aptamers. This is followed by detailed discussions on design strategies of multivalent aptamer approaches. Finally, recent developments of the multivalent aptamer approach in biosensing and biomedical applications are highlighted.
Collapse
Affiliation(s)
- Zhong Wang
- Ottawa-Carleton Institute of Biomedical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Xiuying Yang
- Hainan Institute of Science and Technology, Haikou 571125, China;
| | - Nicholas Zhou Lee
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada;
| | - Xudong Cao
- Ottawa-Carleton Institute of Biomedical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
13
|
Ji S, Lin M, Li Z, Xu L, Fu X, Chen G, Li Z, Sun J. Tunable Aggregation -Induced Emission Fluorophore with the Assistance of the Self -Assembly of Block Copolymers by Controlling the Morphology and Secondary Conformation for Bioimaging. Biomacromolecules 2022; 23:798-807. [PMID: 35041401 DOI: 10.1021/acs.biomac.1c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aggregation-induced emission (AIE) luminogens with highly tunable properties show great potential for many applications. In this study, we synthesized a new family of AIE-type poly(ethylene glycol)-block-poly(9-anthrylmethyl lysine) (PEG-b-PLys-An) diblock copolymers by taking advantage of amphiphilic self-assembly and rigid helical backbones. These copolymers can self-assemble into various assemblies through nanoprecipitation methods. The micelles using N,N-dimethylformamide (DMF) as a cosolvent present brighter fluorescence than the vesicles prepared from tetrahydrofuran (THF). We demonstrate that the decreased solubility of copolymers in DMF results in the formation of more compact micelles with more excimer formation during the self-assembly process, while better solvent THF favors the formation of vesicles with stretched core chains. In addition, the secondary conformation of the polypeptide block shows pronounced effects on the fluorescence property. We further show the internalization of the assemblies using two types of cells by cellular uptake experiments. By the delicate design of the block copolymer, we successfully prepare the morphology- and conformation-dependent AIE materials for potential biomedical applications.
Collapse
Affiliation(s)
- Sifan Ji
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zenghao Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
15
|
Wang Z, Ye X, Fang Y, Cheng H, Xu Y, Wang X. Development and in vitro evaluation of pH-sensitive naringenin@ZIF-8 polymeric micelles mediated by aptamer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Kajani AA, Mehrgardi MA. Fluorescence resonance energy transfer monitoring of pH-responsive doxorubicin release from carbon dots/aptamer functionalized magnetic mesoporous silica. Nanomedicine (Lond) 2021; 16:627-639. [PMID: 33759545 DOI: 10.2217/nnm-2020-0410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To develop a novel theranostic nanoplatform for simultaneous fluorescent monitoring and stimuli-triggered drug delivery. Materials & methods: Different microscopic and spectroscopic techniques were used for the characterization of nanocarriers. MCF-7 and human umbilical vein endothelial cell lines were cultured and treated with different doses of doxorubicin-loaded nanocarriers. The cell viability and drug release were studied using MTT assay and fluorescence microscopy. Results: Biocompatible and mono-disperse nanocarriers represent hollow and mesoporous structures with the calculated surface area of 552.83 m2.g-1, high magnetic activity (12.6 emu.g-1), appropriate colloidal stability and high drug loading capacity (up to 61%). Conclusion: Taxane-based carbon dots act as the pH-responsive gatekeepers for the controlled release of doxorubicin into cancer cells and provide a fluorescence resonance energy transfer system for real-time monitoring of drug delivery.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
17
|
Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS NANO 2021; 15:3900-3926. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.
Collapse
Affiliation(s)
- Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Orysia T Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- University of California-Berkeley, Berkeley, California 94720, United States
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Evelyn Ploetz
- Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation for Science, Bilbao 48009, Spain
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Jejurkar VP, Yashwantrao G, Kumar P, Neekhra S, Maliekal PJ, Badani P, Srivastava R, Saha S. Design and Development of Axially Chiral Bis(naphthofuran) Luminogens as Fluorescent Probes for Cell Imaging. Chemistry 2021; 27:5470-5482. [PMID: 33368715 DOI: 10.1002/chem.202004942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/07/2022]
Abstract
Designing chiral AIEgens without aggregation-induced emission (AIE)-active molecules externally tagged to the chiral scaffold remains a long-standing challenge for the scientific community. The inherent aggregation-caused quenching phenomenon associated with the axially chiral (R)-[1,1'-binaphthalene]-2,2'-diol ((R)-BINOL) scaffold, together with its marginal Stokes shift, limits its application as a chiral AIE-active material. Here, in our effort to design chiral luminogens, we have developed a design strategy in which 2-substituted furans, when appropriately fused with the BINOL scaffold, will generate solid-state emissive materials with high thermal and photostability as well as colour-tunable properties. The excellent biocompatibility, together with the high fluorescence quantum yield and large Stokes shift, of one of the luminogens stimulated us to investigate its cell-imaging potential. The luminogen was observed to be well internalised and uniformly dispersed within the cytoplasm of MDA-MB-231 cancer cells, showing high fluorescence intensity.
Collapse
Affiliation(s)
- Valmik P Jejurkar
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| | - Gauravi Yashwantrao
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| | - Pawan Kumar
- Department of Biotechnology, BIT Mesra, Ranchi, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, IIT Bombay, Bombay, India
| | | | - Purav Badani
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay, Bombay, India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| |
Collapse
|
19
|
Lin N, Wu L, Xu X, Wu Q, Wang Y, Shen H, Song Y, Wang H, Zhu Z, Kang D, Yang C. Aptamer Generated by Cell-SELEX for Specific Targeting of Human Glioma Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9306-9315. [PMID: 33030015 DOI: 10.1021/acsami.0c11878] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The most prevalent primary brain tumors are gliomas, which start in the glial cells. Although there have been significant technological advances in surgery and radio-chemotherapy, the prognosis and survival of patients with malignant gliomas remain poor. For routine diagnosis of glioma, computed tomography and magnetic resonance imaging primarily depend on anatomical changes and fail to detect the cellular changes that occur early in the development of malignant gliomas. Therefore, it is urgent to find effective molecular diagnostic tools to detect early stages of malignant gliomas. Currently, cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) technology is one effective tool to obtain DNA or RNA aptamers capable of differentiating the molecular signatures among different types of cell lines. Using cell-SELEX, we generated and characterized an aptamer, termed S6-1b, that can distinguish the molecular differences between glioma cell line SHG44 and human astrocytes. Under the conditions of 4 and 37 °C, respectively, the dissociation constants of aptamer-cell interaction were both measured in the low nanomolar range. The aptamer S6-1b also exhibited excellent selectivity, making it suitable for use in a complex biological environment. Furthermore, the aptamer can effectively target glioma cells for in vivo fluorescence imaging of tumors. The target type of aptamer S6-1b was identified as a cell membrane protein. Our work indicates that aptamer S6-1b has diagnostic and therapeutic potential to specifically deliver imaging or therapeutic agents to malignant gliomas.
Collapse
Affiliation(s)
- Ningqin Lin
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Liang Wu
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xing Xu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiaoyi Wu
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yuzhe Wang
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Haicong Shen
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyao Wang
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dezhi Kang
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
20
|
Hu Y, Wang Y, Guan R, Zhang C, Shao X, Yue Q. Construction of a ratio fluorescence assay of 5-aminosalicylic acid based on its aggregation induced emission with blue emitting N/P-codoped carbon dots. RSC Adv 2021; 11:6607-6613. [PMID: 35423171 PMCID: PMC8694872 DOI: 10.1039/d0ra10258j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Herein, a novel ratio fluorescence method based on N/P-doped carbon dots (NPCDs) for detecting 5-aminosalicylic acid (5-ASA) in mesalazine enteric coated tablets and blood were reported for the first time. NPCDs were successfully prepared through a simple one-step hydrothermal strategy by employing adenosine triphosphate (ATP) and p-toluidine as raw materials. NPCDs exhibit bright blue emissions with excitation/emission peaks at 340/423 nm with moderate quantum yield (20.75%). In addition, 5-ASA has a certain weak fluorescence emission peak at 487 nm. Adding 5-ASA into NPCDs significantly enhanced the fluorescence intensity, which may result from aggregation induced emission (AIE) of 5-ASA on the surface of NPCDs. Therefore, NPCDs only provide self-calibration signals, and their fluorescence remains almost unchanged when co-existing with 5-ASA. Therefore, the ratio of fluorescence at F487/F423 was used for detection of 5-ASA. For the fluorometric determination assay, there was a good linear relationship between F487/F423 and 5-ASA concentration between 0.50 and 130 μM (R2 = 0.9979). The detection limit was about 0.13 μM. Therefore, this method is simple, sensitive and low cost, and will be successfully applied to the detection of 5-ASA in drugs. Herein, a novel ratio fluorescence method based on N/P-doped carbon dots (NPCDs) for detecting 5-aminosalicylic acid (5-ASA) in mesalazine enteric coated tablets and blood were reported for the first time.![]()
Collapse
Affiliation(s)
- Yingying Hu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Yongping Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Rentian Guan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Xiaodong Shao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials
- Tubular Goods Research Institute
- Xian 710077
- China
| | - Qiaoli Yue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| |
Collapse
|
21
|
Roy E, Nagar A, Chaudhary S, Pal S. Advanced Properties and Applications of AIEgens-Inspired Smart Materials. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01869] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ekta Roy
- Department of Chemistry, Government Engineering College Jhalawar, Jhalawar, Rajasthan 326023, India
| | - Achala Nagar
- Department of Chemistry, Government Engineering College Jhalawar, Jhalawar, Rajasthan 326023, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan 302017, India
| | - Souvik Pal
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11677, R.O.C
| |
Collapse
|
22
|
Ding X, Yin C, Zhang W, Sun Y, Zhang Z, Yang E, Sun D, Wang W. Designing Aptamer-Gold Nanoparticle-Loaded pH-Sensitive Liposomes Encapsulate Morin for Treating Cancer. NANOSCALE RESEARCH LETTERS 2020; 15:68. [PMID: 32232589 PMCID: PMC7105578 DOI: 10.1186/s11671-020-03297-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 05/10/2023]
Abstract
This study proposes the synthesis of a type of anticancer nanoparticle, aptamers and Au nanoparticle (Apt-Au)-modified Morin pH-sensitive liposome (MSL), which exhibits targeting properties. Tumors are difficult to cure because their microenvironment varies from that of normal tissue; its pH is lower than that of normal tissue, which generally impedes the effectiveness of drugs. Thus, pH-responsive drugs have attracted extensive attention. Gold nanoparticles (AuNPs) show potential as drug carriers because of their small size, good biocompatibility, easy surface modification, and strong cell penetration. Apt-Au@MSL exhibits excellent monodispersity and tumor-targeting properties and can be released in partly acidic environment via dialysis. We screened our model cancer cell by MTT assay and found that SGC-7901 cells can effectively suppress proliferation. In vivo results demonstrate that the administration of Apt-Au@MSL could inhibit tumor growth in xenograft mouse models. H&E staining and TUNEL assay further confirmed that Apt-Au@MSL can promote tumor apoptosis. Apt-Au@MSL may induce apoptosis by triggering overproduction of reactive oxygen species (ROS) and regulating multiple signal crosstalk. Both blood biochemistry tests and H&E staining suggested that these materials exhibit negligible acute toxicity and good biocompatibility in vivo. With its powerful function, Apt-Au@MSL can be used as a target-based anticancer material for future clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyuan Ding
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Zhang
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, 241000, Anhui, China
| | - Yu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenzhen Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
Fabrication of aptamer modified TiO 2 nanofibers for specific capture of circulating tumor cells. Colloids Surf B Biointerfaces 2020; 191:110985. [PMID: 32247218 DOI: 10.1016/j.colsurfb.2020.110985] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Herein, we developed an inexpensive titanium dioxide (TiO2) nanofiber substrate for efficient and selective capture of circulating tumor cells (CTCs) from mimic patients' samples. The TiO2 nanofiber substrates were fabricated by electrospinning in combination with the calcination process. The surface of nanofiber substrates was modified with the anti-adhesion molecule, bovine serum albumin (BSA) and the nucleolin aptamer AS1411, wherein, aptamer AS1411 specifically binds to the nucleolin protein overexpressed on the membrane surface of cancer cells. The formed TiO2 nanofiber substrates exhibited high efficacy and specificity to capture nucleolin positive cells through synergistic topographic interactions. Using the rare number of cell capture experiments, the capture efficiency of up to 75 % was achieved on the surface of the nanofiber substrate for rare number target cells spiked in the white blood cells (WBCs) from 1 mL whole blood samples. In conclusion, this study highlighted the potential of the TiO2-BSA-biotin-AS1411 nanofiber substrate as a highly efficient platform to realize the selective and specific capture of rare CTCs in the clinical settings.
Collapse
|
24
|
Wu Y, Wen X, Fan Z. An AIE active pyrene based fluorescent probe for selective sensing Hg 2+ and imaging in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117315. [PMID: 31277030 DOI: 10.1016/j.saa.2019.117315] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
A novel fluorescence probe pyrene based derivatives (1) with aggregation induced emission (AIE) properties was synthesized by an easy procedure. The probe 1 was characterized by UV-vis, Fluorescent, NMR, MS, SEM etc. It displayed high sensitivity and selectivity to Hg2+ compared with other metal ions in H2O/DMF solvent and the detection limit was 4.2 × 10-7 M. Upon addition of Hg2+, the 1 - Hg2+ compound was formed with the formation of 2:1. More importantly, the probe exhibited very low cytotoxicity and strong fluorescence emission in live cells. This showed that the probe had potential applications for detection of Hg2+ in environment and biosystems.
Collapse
Affiliation(s)
- Yaqin Wu
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, PR China
| | - Xiaoye Wen
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, PR China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, PR China.
| |
Collapse
|
25
|
Wang K, Liu X, Zhuang J, Liu Y, Xu M, Xie D, Chen J, Zhang X, Wei Y, Zhang Y. Small fluorescent albumin nanoparticles for targeted photothermal therapy via albumin-Binding protein pathways. Colloids Surf B Biointerfaces 2019; 181:696-704. [DOI: 10.1016/j.colsurfb.2019.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
|
26
|
Dineshkumar S, Raj A, Srivastava A, Mukherjee S, Pasha SS, Kachwal V, Fageria L, Chowdhury R, Laskar IR. Facile Incorporation of "Aggregation-Induced Emission"-Active Conjugated Polymer into Mesoporous Silica Hollow Nanospheres: Synthesis, Characterization, Photophysical Studies, and Application in Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31270-31282. [PMID: 31348641 DOI: 10.1021/acsami.9b07664] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Typical aggregation-induced emission (AIE) luminogens tetraphenylethylene (TPE) and triphenylamine have been used to construct an AIE-active conjugated polymer, namely, poly(N,N-diphenyl-4-(4-(1,2,2-triphenylvinyl)styryl)aniline) (PTPA), which consist of D-π-A architecture by Wittig polymerization. We fabricated mesoporous silica hollow nanospheres (MSHNs) which were encapsulated with the AIE-active polymer for applications in cellular imaging. It exhibits a positive solvatochromism effect by increasing solvent polarity, supported by theoretical calculation using density functional theory. The structure of the monomers and polymer was confirmed by Fourier transform infrared, nuclear magnetic resonance, and high-resolution mass spectrometry techniques. Considering the advantage of high brightness in the fluorescence of PTPA, it was encapsulated into MSHNs by a noncovalent approach, and the surface was functionalized with an anti-EpCAM (antiepithelial cell adhesion molecule) aptamer through conjugation with γ-glycidoxypropyltrimethoxysilane for targeting cancer cells specifically. The aptamer-functionalized Apt-MSHNs exhibited excellent biocompatibility with the liver cancer-Huh-7 cells used for this study and was efficiently internalized by these cells. Because EpCAM are overexpressed in multiple carcinomas, including liver cancer, these aptamer-conjugated AIE MSHNs are therefore good candidates for targeted cellular imaging applications.
Collapse
|
27
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
Zhang W, Ding X, Cheng H, Yin C, Yan J, Mou Z, Wang W, Cui D, Fan C, Sun D. Dual-Targeted Gold Nanoprism for Recognition of Early Apoptosis, Dual-Model Imaging and Precise Cancer Photothermal Therapy. Am J Cancer Res 2019; 9:5610-5625. [PMID: 31534506 PMCID: PMC6735394 DOI: 10.7150/thno.34755] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Photothermal therapy as novel strategy to convert near-infrared (NIR) light into heat for treatment cancers has attracted great attention and been widely studied. However, side effects and low efficiency remain the main challenge of precise cancer photothermal therapy. Methods: In this study, we have successfully fabricated and characterized the dual-targeted gold nanoprisms, whereby bare gold nanoprisms (Au NPR) were conjugated to a phenanthroline derivatives-functionalized tetraphenylethene (TPE) and further stabilized with target peptide aptamers via Au-S bonds (Au-Apt-TPE). Then, the remaining nitrogen atoms of the Au-Apt-TPE could effectively chelate with Zn2+ ions (Au-Apt-TPE@Zn) for monitoring early stage apoptotic cells. Results: The as-synthesized Au-Apt-TPE@Zn exhibited good monodispersity, size stability and consistent spectral characteristics. TPE synthesized here showed aggregation-induced emission (AIE) characteristics, and zinc conjunction (TPE@Zn) endowed Au-Apt-TPE@Zn with the cell membrane-targeted ability to selectively recognize the membranes of early stage apoptotic cells but not respond to healthy cells, which provided valuable diagnosis information on therapeutic efficacy. Au-Apt-TPE@Zn achieved specifically nuclear-targeted ability by surface decoration of AS1411 DNA aptamer. Au-Apt-TPE@Zn under NIR irradiation showed effective photothermal therapy against SGC-7901 human gastric carcinoma cells growth in vitro by inducing apoptosis through triggering reactive oxygen species (ROS) overproduction and regulating multiple signal crosstalk. In vivo studies revealed that Au-Apt-TPE@Zn under NIR irradiation showed deep penetration and dual-model imaging application (cancer-targeted fluorescence imaging and light-up photoacoustic imaging). Au-Apt-TPE@Zn under NIR irradiation also displayed strong photothermal therapy against gastric carcinoma xenograft growth in vivo by induction of apoptosis. Importantly, analysis of histopathology, hematotoxicity and immunocytotoxicity indicated that Au-Apt-TPE@Zn had less side effect and high biocompatibility. Conclusions: Our findings validated the design of using Au nanoprism with AIE materials and dual-targeted decoration could be an effective strategy in recognition of early apoptosis, dual-model imaging and precise cancer photothermal therapy.
Collapse
|
29
|
|
30
|
Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. Light-Activatable Prodrug and AIEgen Copolymer Nanoparticle for Dual-Drug Monitoring and Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18691-18700. [PMID: 31038909 DOI: 10.1021/acsami.9b02346] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyprodrug nanoparticles have been employed recently for safer and more effective cancer treatment. However, it remains a challenge to elucidate how and when the polyprodrug nanoparticles are dissociated and activated to release active drugs in cancer cells. Herein, a visible light-activatable Pt(IV) prodrug and an aggregation-induced emission luminogen (AIEgen) were copolymerized and embedded in the main chain of PtAIECP, and the chemotherapeutic doxorubicin (DOX) was subsequently encapsulated in the nanoparticles self-assembled by PtAIECP (PtAIECP@DOX NP). PtAIECP@DOX NP enabled the monitoring of both the light-activation of Pt(IV) prodrug to active Pt(II) and release of encapsulated DOX intracellularly through the fluorescence "turn-on" in the course of visible-light-induced polymer-main-chain cleavage and self-assembled structure dissociation in vitro and ex vivo. The synergistic anticancer efficacy of the activated Pt(II) drug and DOX in PtAIECP@DOX NP was also investigated in vitro and in vivo. The implementation of polyprodrug and AIE combination strategy empowered dual drug release and monitoring, which could be further used to guide the temporal and spatial control of light irradiation to maximize therapeutic efficiency, and will inspire other combinational bioimaging and therapy strategies.
Collapse
Affiliation(s)
- Peng Wu
- College of Chemistry , Jilin University , 2519 Jiefang Road , Changchun 130023 , P. R. China
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital , Southern Medical University , Guangzhou 510282 , P. R. China
| | - Zigui Wang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- School of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China
| | - Jinshan Guo
- Department of Biomedical Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China
| | - Jizhen Li
- College of Chemistry , Jilin University , 2519 Jiefang Road , Changchun 130023 , P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
31
|
Zhang J, Lan T, Lu Y. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Adv Healthc Mater 2019; 8:e1801158. [PMID: 30725526 PMCID: PMC6426685 DOI: 10.1002/adhm.201801158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022]
Abstract
Recent advances in nanotechnology and engineering have generated many nanomaterials with unique physical and chemical properties. Over the past decade, numerous nanomaterials are introduced into many research areas, such as sensors for environmental monitoring, food safety, point-of-care diagnostics, and as transducers for solar energy transfer. Meanwhile, functional nucleic acids (FNAs), including nucleic acid enzymes, aptamers, and aptazymes, have attracted major attention from the biomedical community due to their unique target recognition and catalytic properties. Benefiting from the recent progress of molecular engineering strategies, the physicochemical properties of nanomaterials are endowed by the target recognition and catalytic activity of FNAs in the presence of a target analyte, resulting in numerous smart nanoprobes for diverse applications including intracellular imaging, drug delivery, in vivo imaging, and tumor therapy. This progress report focuses on the recent advances in designing and engineering FNA-based nanomaterials, highlighting the functional outcomes toward in vivo applications. The challenges and opportunities for the future translation of FNA-based nanomaterials into clinical applications are also discussed.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street Suite 101, Champaign, IL, 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
32
|
Mao LC, Zhang XY, Wei Y. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Wang X, Xu M, Huang K, Lou X, Xia F. AIEgens/Nucleic Acid Nanostructures for Bioanalytical Applications. Chem Asian J 2019; 14:689-699. [PMID: 30489015 DOI: 10.1002/asia.201801595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/29/2018] [Indexed: 12/27/2022]
Abstract
DNA occupies significant roles in life processes, which include encoding the sequences of proteins and accurately transferring genetic information from generation to generation. Recent discoveries have demonstrated that a variety of biological functions are correlated with DNA's conformational transitions. The non-B form has attained great attention among the diverse forms of DNA over the past several years. The main reason for this is that a large number of studies have shown that the non-B form of DNA is associated with gross deletions, inversions, duplications, translocations as well as simple repeating sequences, which therefore causes human diseases. Consequently, the conformational transition of DNA between the B-form and the non-B form is important for biology. Conventional fluorescence probes based on the conformational transitions of DNA usually need a fluorophore and a quencher group, which suffers from the complex design of the structure and tedious synthetic procedures. Moreover, conventional fluorescence probes are subject to the aggregation-caused quenching (ACQ) effect, which limits their application toward imaging and analyte detection. Fluorogens exhibiting aggregation-induced emission (AIE) have attracted tremendous attention over the past decade. By taking advantage of this unique behavior, plenty of fluorescent switch-on probes without the incorporation of fluorescent quenchers/fluorophore pairs have been widely developed as biosensors for imaging a variety of analytes. Herein, the recent progress in bioanalytical applications on the basis of aggregation-induced emission luminogens (AIEgens)/nucleic acid nanostructures are presented and discussed.
Collapse
Affiliation(s)
- Xudong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Xu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
34
|
Luu T, Liu M, Chen Y, Hushiarian R, Cass A, Tang BZ, Hong Y. Aptamer-Based Biosensing with a Cationic AIEgen. Aust J Chem 2019. [DOI: 10.1071/ch19238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fabrication of low-cost biosensing platforms with high selectivity and sensitivity is important for constructing portable devices for personal health monitoring. Herein, we report a simple biosensing strategy based on the combination of a cationic AIEgen (aggregation-induced emission fluorogen), TPE-2+, with an aptamer for specific protein detection. The target protein can displace the dye molecules on the dye–aptamer complex, resulting in changes in the fluorescence signal. Selectivity towards different targets can be achieved by simply changing the aptamer sequence. The working mechanism is also investigated.
Collapse
|
35
|
Liu Y, Mao L, Yang S, Liu M, Huang H, Wen Y, Deng F, Li Y, Zhang X, Wei Y. Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:310-317. [DOI: 10.1016/j.msec.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
36
|
Li D. AIEgen functionalized inorganic–organic hybrid nanomaterials for cancer diagnosis and therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00411d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIEgen functionalized inorganic–organic hybrid nanomaterials with multifunctions can be used for cancer diagnosis and imaging-guided synergistic therapy.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Automobile Materials of MOE
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
37
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
38
|
Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H, Wen Y, Deng F, Zhang X, Wei Y. A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:270-278. [PMID: 30423709 DOI: 10.1016/j.msec.2018.09.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Fluorescent silica nanoparticles (FSNPs) have attracted great interest for potential applications in biological and biomedical fields because they possess higher fluorescence quantum yield and better fluorescence stability as comparison with small organic fluorescent molecules. The encapsulation of covalent linkage with fluorescent organic dyes or fluorescent metal complexes has demonstrated to be the commonly adopted strategies for fabrication of FSNPs previously. However, it is still challengeable to obtain FSNPs based polymer composites with intensive fluorescence and good water dispersibility through a one-pot surface modification strategy. In this paper, we developed a facile method to fabricate novel FSNPs based polymer composites (PhE@MSNs-PEtOx) through introducing the aggregation-induced emission (AIE) dye (PhE-OH) and poly(2-ethyl-2-oxazoline) (PEtOx) onto mesoporous silica nanoparticles (MSNs) based on cationic ring opening polymerization (CROP). The resulting PhE@MSNs-PEtOx composites possess strong fluorescence emission, excellent hydrophilicity and biocompatibility. These features make the final FSNPs based polymer composites great potential for biomedical applications. Taken together, we have developed for the first time that FSNPs based polymer composites can be facilely prepared through the one-pot introduction of AIE dyes and hydrophilic PEtOx on MSNs. Moreover, the novel FSNPs based composites could also be utilized for other biomedical applications considered their properties.
Collapse
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Saijiao Yang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China; Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
39
|
Ma H, Qin Y, Yang Z, Yang M, Ma Y, Yin P, Yang Y, Wang T, Lei Z, Yao X. Positively Charged Hyperbranched Polymers with Tunable Fluorescence and Cell Imaging Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20064-20072. [PMID: 29693378 DOI: 10.1021/acsami.8b05073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescence-tunable materials are becoming increasingly attractive because of their potential applications in optics, electronics, and biomedical technology. Herein, a multicolor molecular pixel system is realized using a simple copolymerization method. Bleeding of two complementary colors from blue and yellow fluorescence segments reproduced serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in the solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] has prominent selectivity to DNA over RNA inside cells.
Collapse
Affiliation(s)
- Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Yanfang Qin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Zengming Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Manyi Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Yucheng Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Pei Yin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Tao Wang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Xiaoqiang Yao
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| |
Collapse
|
40
|
Liu C, Yu H, Li Q, Zhu C, Xia Y. Brighter, More Stable, and Less Toxic: A Host-Guest Interaction-Aided Strategy for Fabricating Fluorescent Silica Nanoparticles and Applying Them in Bioimaging and Biosensing at the Cellular Level. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16291-16298. [PMID: 29683645 DOI: 10.1021/acsami.8b03034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The exploration of fluorescent tools with distinguished optical properties and favorable biocompatibility is significant for biosensing and bioimaging. We herein present a host-guest interactions aided strategy for fabricating fluorescent silica nanoparticles (FSNPs), which is enabled by cyclodextrin (CD) supermolecules. Compared with conventional FSNPs, the modified products (are named as fluorophore@CD@SNPs) possess several advantages. First, the incorporated fluorophores can thoroughly get rid of their intrinsic aggregation due to CD's inclusion effect, and the fluorescence intensity of the obtained fluorophore@CD@SNPs can enhance 48-67%. The fluorophores can then be well-fixed by the host CD molecules. As a result, the leak rates of the incorporated fluorophores are only 15-17%, which is about 3 times lower than that of conventional ones (42-48%). Notably, the as-prepared fluorophore@CD@SNPs show observable less cytotoxicity as compared with their conventional counterparts, probably due to the substantially decreased leakage of the incorporated fluorophores. Because of prominent properties and versatile fabrication, the proposed fluorophore@CD@SNPs not only possess better performances for cell-imaging but are competent for ratiometric sensing of pH value at living cell using (indicator-reference) integrative silica NPs.
Collapse
Affiliation(s)
- Chunxiu Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | | | | | - Changqing Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Yunsheng Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education; College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
41
|
Castillo RR, Baeza A, Vallet-Regí M. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomater Sci 2018; 5:353-377. [PMID: 28105473 DOI: 10.1039/c6bm00872k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The discovery and control of the biological roles mediated by nucleic acids have turned them into a powerful tool for the development of advanced biotechnological materials. Such is the importance of these gene-keeping biomacromolecules that even nanomaterials have succumbed to the claimed benefits of DNA and RNA. Currently, there could be found in the literature a practically intractable number of examples reporting the use of combination of nanoparticles with nucleic acids, so boundaries are demanded. Following this premise, this review will only cover the most recent and powerful strategies developed to exploit the possibilities of nucleic acids as biotechnological materials when in combination with mesoporous silica nanoparticles. The extensive research done on nucleic acids has significantly incremented the technological possibilities for those biomacromolecules, which could be employed in many different applications, where substrate or sequence recognition or modulation of biological pathways due to its coding role in living cells are the most promising. In the present review, the chosen counterpart, mesoporous silica nanoparticles, also with unique properties, became a reference material for drug delivery and biomedical applications due to their high biocompatibility and porous structure suitable for hosting and delivering small molecules. Although most of the reviews dealt with significant advances in the use of nucleic acid and mesoporous silica nanoparticles in biotechnological applications, a rational classification of these new generation hybrid materials is still uncovered. In this review, there will be covered promising strategies for the development of living cell and biological sensors, DNA-based molecular gates with targeting, transfection or silencing properties, which could provide a significant advance in current nanomedicine.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Alejandro Baeza
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
42
|
Gao H, Zhao X, Chen S. AIEgen-Based Fluorescent Nanomaterials: Fabrication and Biological Applications. Molecules 2018; 23:E419. [PMID: 29443927 PMCID: PMC6017469 DOI: 10.3390/molecules23020419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, luminogens with the feature of aggregation-induced emission (AIEgen) have emerged as advanced luminescent materials for fluorescent nanomaterial preparation. AIEgen-based nanomaterials show enhanced fluorescence efficiency and superior photostability, which thusly offer unique advantages in biological applications. In this review, we will summarize the fabrication methods of AIEgen-based nanomaterials and their applications in in vitro/in vivo imaging, cell tracing, photodynamic therapy and drug delivery, focusing on the recent progress.
Collapse
Affiliation(s)
- Hui Gao
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| |
Collapse
|
43
|
Wang D, Zhang C, Ren L, Li D, Yu J. Biodegradable AIEgen-functionalised mesoporous bioactive glass nanoparticles for drug delivery and cell imaging. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00575j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIEgen-functionalised mesoporous bioactive glass nanospheres with excellent degradability in an acid environment show potential application in drug delivery and cell imaging.
Collapse
Affiliation(s)
- Duo Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Chengkai Zhang
- Key Laboratory for Molecular Enzymonlogy & Engineering
- The Ministry of Education
- Jilin University
- Changchun
- P. R. China
| | - Li Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Dongdong Li
- Department of Materials Science
- Key Laboratory of Automobile Materials of MOE
- Jilin University
- Changchun 130012
- P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
44
|
DU YL, MO LT, YI YS, QIU LP, TAN WH. Aptamers from Cell-based Selection for Bioanalysis and Bioimaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61052-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Kong RM, Zhang X, Ding L, Yang D, Qu F. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres. Anal Bioanal Chem 2017; 409:5757-5765. [PMID: 28741111 DOI: 10.1007/s00216-017-0519-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/25/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
Fluorescent light-up probes based on aggregation-induced emission (AIE)-active molecules have recently attracted great research interest due to the intelligent fluorescence activation mechanism and high sensitivity. In this work, an AIE-silica nanosphere (SiO2 NP)-based label-free fluorescent aptasensor for the sensitive "turn-on" detection of prostate-specific antigen (PSA) is reported for the first time. The positively charged amino-functionalized SiO2 NPs were used as efficient nanocapturer to electrostatically adsorb single-stranded PSA aptamer (PA) to form SiO2 NP-PA nanocomposite as well as adsorb negatively charged tetraphenylethylene derivative 3 (TPE3) to form AIE-SiO2 NP nanocomposite. The binding of the aptamer to the target PSA could induce a rigid aptamer conformation, resulting in the release of the PA away from the surface of SiO2 NPs. This made the AIE molecules TPE3 aggregate on the SiO2 NP surface and emit high fluorescence. With the advantages of simple design and rapid responses, the proposed aptasensor showed high sensitivity and selectivity for PSA with a detection limit of 0.5 ng/mL. The aptasensor was further applied in human serum samples with satisfactory results. Given its versatility, high selectivity, and sensitivity, the proposed method could be extended to other targets by varying the recognition probes. Graphical abstract An AIE-SiO2 NP-based label-free fluorescent aptasensor for the sensitive "turn-on" detection of PSA is reported for the first time.
Collapse
Affiliation(s)
- Rong-Mei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xiaobin Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Lu Ding
- Lab of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Daoshan Yang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| |
Collapse
|
46
|
Fageria L, Pareek V, Dilip RV, Bhargava A, Pasha SS, Laskar IR, Saini H, Dash S, Chowdhury R, Panwar J. Biosynthesized Protein-Capped Silver Nanoparticles Induce ROS-Dependent Proapoptotic Signals and Prosurvival Autophagy in Cancer Cells. ACS OMEGA 2017; 2:1489-1504. [PMID: 30023637 PMCID: PMC6044619 DOI: 10.1021/acsomega.7b00045] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/17/2017] [Indexed: 05/05/2023]
Abstract
In recent years, the use of silver nanoparticles (AgNPs) in biomedical applications has shown an unprecedented boost along with simultaneous expansion of rapid, high-yielding, and sustainable AgNP synthesis methods that can deliver particles with well-defined characteristics. The present study demonstrates the potential of metal-tolerant soil fungal isolate Penicillium shearii AJP05 for the synthesis of protein-capped AgNPs. The particles were characterized using standard techniques, namely, UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The anticancer activity of the biosynthesized AgNPs was analyzed in two different cell types with varied origin, for example, epithelial (hepatoma) and mesenchymal (osteosarcoma). The biological NPs (bAgNPs) with fungal-derived outer protein coat were found to be more cytotoxic than bare bAgNPs or chemically synthesized AgNPs (cAgNPs). Elucidation of the molecular mechanism revealed that bAgNPs induce cytotoxicity through elevation of reactive oxygen species (ROS) levels and induction of apoptosis. Upregulation of autophagy and activation of JNK signaling were found to act as a prosurvival strategy upon bAgNP treatment, whereas ERK signaling served as a prodeath signal. Interestingly, inhibition of autophagy increased the production of ROS, resulting in enhanced cell death. Finally, bAgNPs were also found to sensitize cells with acquired resistance to cisplatin, providing valuable insights into the therapeutic potential of bAgNPs. To the best of our knowledge, this is the first study that provides a holistic idea about the molecular mechanisms behind the cytotoxic activity of protein-capped AgNPs synthesized using a metal-tolerant soil fungus.
Collapse
Affiliation(s)
- Leena Fageria
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Vikram Pareek
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - R. Venkataramana Dilip
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Arpit Bhargava
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sheik Saleem Pasha
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Inamur Rahaman Laskar
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Heena Saini
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Subhra Dash
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Rajdeep Chowdhury
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
- E-mail: . Tel: +91 1596 515608. Fax: +91 1596 244183 (R.C.)
| | - Jitendra Panwar
- Department
of Biological Sciences and Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
- E-mail: . Tel: +91 1596 515728, Fax: +91 1596 244183 (J.P.)
| |
Collapse
|
47
|
Zhang Y, Guo S, Cheng S, Ji X, He Z. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement. Biosens Bioelectron 2017; 94:478-484. [PMID: 28342376 DOI: 10.1016/j.bios.2017.03.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
Abstract
The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shibo Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
48
|
Ding F, Gao Y, He X. Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorg Med Chem Lett 2017; 27:4256-4269. [PMID: 28803753 DOI: 10.1016/j.bmcl.2017.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them.
Collapse
Affiliation(s)
- Fei Ding
- Wuhan Economic and Technological Development Zone, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, PR China.
| | - Yangguang Gao
- Wuhan Economic and Technological Development Zone, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, PR China
| | - Xianran He
- Wuhan Economic and Technological Development Zone, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, PR China
| |
Collapse
|
49
|
Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyás B. Nanoparticle Functionalization and Its Potentials for Molecular Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600279. [PMID: 28331783 PMCID: PMC5357986 DOI: 10.1002/advs.201600279] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/02/2016] [Indexed: 05/04/2023]
Abstract
Functionalization enhances the properties and characteristics of nanoparticles through surface modification, and enables them to play a major role in the field of medicine. In molecular imaging, quality functional images are required with proper differentiation which can be seen with high contrast to obtain viable information. This review article discusses how functionalization enhances molecular imaging and enables multimodal imaging by which images with combination of functions particular to each modality can be obtained. This also explains how nanoparticles interacting at molecular level, when functionalized with molecules can target the cells of interest or substances with high specificity, reducing background signal and allowing simultaneous therapies to be carried out while imaging. Functionalization allows imaging for a prolonged period and enables to track the cells over a period of time. Recent researches and progress in functionalizing the nanoparticles to specifically enhance bioimaging with different modalities and their applications are reviewed in this article.
Collapse
Affiliation(s)
- Rukmani Thiruppathi
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
- Center for BiotechnologyAlagappa College of TechnologyAnna UniversitySardar Patel RoadChennaiTamil Nadu600025India
| | - Sachin Mishra
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
| | - Mathangi Ganapathy
- Center for BiotechnologyAlagappa College of TechnologyAnna UniversitySardar Patel RoadChennaiTamil Nadu600025India
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
| |
Collapse
|
50
|
Li D, Yu J. AIEgens-Functionalized Inorganic-Organic Hybrid Materials: Fabrications and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6478-6494. [PMID: 27510941 DOI: 10.1002/smll.201601484] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/28/2016] [Indexed: 05/18/2023]
Abstract
Inorganic materials functionalized with organic fluorescent molecules combine advantages of them both, showing potential applications in biomedicine, chemosensors, light-emitting, and so on. However, when more traditional organic dyes are doped into the inorganic materials, the emission of resulting hybrid materials may be quenched, which is not conducive to the efficiency and sensitivity of detection. In contrast to the aggregation-caused quenching (ACQ) system, the aggregation-induced emission luminogens (AIEgens) with high solid quantum efficiency, offer new potential for developing highly efficient inorganic-organic hybrid luminescent materials. So far, many AIEgens have been incorporated into inorganic materials through either physical doping caused by aggregation induced emission (AIE) or chemical bonding (e.g., covalent bonding, ionic bonding, and coordination bonding) caused by bonding induced emission (BIE) strategy. The hybrid materials exhibit excellent photoactive properties due to the intramolecular motion of AIEgens is restricted by inorganic matrix. Recent advances in the fabrication of AIEgens-functionalized inorganic-organic hybrid materials and their applications in biomedicine, chemical sensing, and solid-state light emitting are presented.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Materials Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|