1
|
Chittari SS, Dykeman-Bermingham PA, Bogen MP, Knight AS. Structure-Function Insights into Thermoresponsive Copolymers as Lanthanide Precipitants. J Am Chem Soc 2024; 146:33499-33508. [PMID: 39586773 DOI: 10.1021/jacs.4c10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The synthetic toolbox for stimuli-responsive polymers has broadened to include many tunable variables, making these materials applicable in diverse technologies. However, unraveling the key composition-structure-function relationships to facilitate ground-up design remains a challenge due to the inherent dispersity in sequence and conformations for synthetic polymers. We here present a systematic study of these relationships using a model system of copolymers with a thermoresponsive (N-isopropylacrylamide) backbone in addition to metal-chelating (acrylic acid) and hydrophobic structural comonomers and evaluate their efficiency at isolating technologically critical lanthanide ions. The efficiency of lanthanide ion extraction by precipitation was quantitated with a metallochromic dye to reveal trends relating copolymer hydrophobicity to improved separations. Further, we examined the role of different hydrophobic comonomers in dictating the solution-phase conformation of the polymer in the presence and absence of lanthanide ions, and we correlated key features of the hydrophobic comonomer to extraction efficiency. Finally, we identified how the local proximity of thermoresponsive, chelating, and hydrophobic subunits facilitates metal extraction by manipulating the copolymer sequence with multiblock polymerization. Through mechanistic analysis, we propose a binding-then-assembly process through which metal ions are coprecipitated with macromolecular chelators.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Xu C, Fu Y, Wang P, Wang L, Chen J, Li Q, Xia Y, Zhang Z, Tang Y, Liu X, Qiu S, Xue Y, Cao J, Wang Z. Self-Assembled Ultra-Long Hybrid Nanowire Formed by Simple Mixing: An Untapped Feature of Peroxydisulfate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404143. [PMID: 39344520 DOI: 10.1002/smll.202404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Peroxydisulfate (PDS), a popular molecule that is able to oxidize organic compounds, is garnering attention across various disciplines of chemistry, materials, pharmaceuticals, environmental remediation, and sustainability. Methylene blue (MB) is a model pollutant that can be readily oxidized by PDS-derived radicals. Unlike the conventional degradation process, here a reversible "dissolution-precipitation" phenomenon is discovered, triggered by a simple mixing of PDS and MB, revealing a novel application of PDS in fabricating self-assembled ultra-long nanowires with MB. This phenomenon is unique to PDS and MB, different from the traditional salting out or self-aggregation of dyes. Formation of nanowires facilitated by electrostatic interaction between S+ and O- moieties and π-π stacking is reversible, controlled by temperature and the solvent polarity. MB1-PDS-MB2 configuration (MB: PDS = 2:1) is theoretically predicted by density functional theory (DFT) calculations and further validated by stoichiometric ratios of carbon, sulfur, and nitrogen in the obtained precipitates (MBO). This untapped feature of PDS enables the development of colorimetric quantitative detection of PDS and sustainable dye recycling. Far more than those demonstrated cases, the potentialities of MBO as a nanomaterial merit further exploration.
Collapse
Affiliation(s)
- Chunxiao Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Pu Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuqi Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Tang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaojing Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Sifan Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanna Xue
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinhui Cao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| |
Collapse
|
3
|
Ataie M, Sutherland K, Pakzad L, Fatehi P. Assembly of aluminum oxide particles with lignin-acrylic acid polymer in saline systems. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Lv S, Peng W, Cao Y, Liu S, Wang W, Fan G, Huang Y, Song X. Synthesis and characterisation of a novel pH-sensitive flocculant and its flocculation performance. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Xie L, Wang J, Lu Q, Hu W, Yang D, Qiao C, Peng X, Peng Q, Wang T, Sun W, Liu Q, Zhang H, Zeng H. Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives. Adv Colloid Interface Sci 2021; 295:102491. [PMID: 34332278 DOI: 10.1016/j.cis.2021.102491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022]
Abstract
As non-renewable natural resources, minerals are essential in a broad range of biological and technological applications. The surface interactions of mineral particles with other objects (e.g., solids, bubbles, reagents) in aqueous suspensions play a critical role in mediating many interfacial phenomena involved in mineral flotation. In this work, we have reviewed the fundamentals of surface forces and quantitative surface property-force relationship of minerals, and the advances in the quantitative measurements of interaction forces of mineral-mineral, bubble-mineral and mineral-reagent using nanomechanical tools such as surface forces apparatus (SFA) and atomic force microscope (AFM). The quantitative correlation between surface properties of minerals at the solid/water interface and their surface interaction mechanisms with other objects in complex aqueous media at the nanoscale has been established. The existing challenges in mineral flotation such as characterization of anisotropic crystal plane or heterogeneous surface, low recovery of fine particle flotation, and in-situ electrochemical characterization of collectorless flotation as well as the future work to resolve the challenges based on the understanding and modulation of surface forces of minerals have also been discussed. This review provides useful insights into the fundamental understanding of the intermolecular and surface interaction mechanisms involved in mineral processing, with implications for precisely modulating related interfacial interactions towards the development of highly efficient industrial processes and chemical additives.
Collapse
Affiliation(s)
- Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jingyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiuyi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenjihao Hu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tao Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
6
|
Fujimoto K, Yamawaki-Ogata A, Narita Y, Kotsuchibashi Y. Fabrication of Cationic Poly(vinyl alcohol) Films Cross-Linked Using Copolymers Containing Quaternary Ammonium Cations, Benzoxaborole, and Carboxy Groups. ACS OMEGA 2021; 6:17531-17544. [PMID: 34278139 PMCID: PMC8280637 DOI: 10.1021/acsomega.1c02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 05/26/2023]
Abstract
Water-insoluble cationic poly(vinyl alcohol) (PVA) films were fabricated using a mixed aqueous solution of PVA and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC)-co-methacrylic acid (MAAc)-co-5-methacrylamido-1,2-benzoxaborole (MAAmBO)) copolymer (3D). The surface of the PVA film is typically negatively charged, and simple fabrication methods for water-insoluble PVA films with cationic surface charges are required to expand their application fields. METAC, which has a permanent positive charge owing to the presence of a quaternary ammonium cation, was selected as the cationic unit. The MAAc and MAAmBO units were used as two types of cross-linking structures for the thermal cross-linking of the hydroxy and carboxy groups of the MAAc unit (covalent bonding) as well as the diol and benzoxaborole groups of the MAAmBO unit (dynamic covalent bonding). The films were thermally cross-linked at 135 °C for 4 h without the addition of materials. After immersion in surplus water at 80 °C for 3 h, the cross-linked PVA/3D films retained almost 100% of their weights. The ζ-potential of the water-insoluble PVA/3D film was 9.4 ± 0.8 mV. The PVA/3D film was strongly dyed using anionic acid red 1 (AR1) because of its positively charged surface. Interestingly, it could also be slightly dyed using cationic methylene blue (MB) and became transparent (original state) after immersion in water for 2 days. These results suggested that positive and negative charges coexisted in the PVA/3D film, and the surface properties were positively inclined. Moreover, the degree of hemolysis of the PVA/3D films was similar to that of the negative control, which showed high blood compatibility. To our knowledge, this is the first report on the fabrication of water-insoluble cationic PVA films using two types of cross-linking structures containing carboxy and benzoxaborole groups. The cross-linked PVA films were analyzed using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and contact angle (CA) and ζ-potential measurement, as well as by determining the mechanical properties, adsorption of charged molecules, and biocompatibility. These readily fabricated water-insoluble PVA films with positive charges can show potential applications in sensors, adsorption systems, and antimicrobial materials.
Collapse
Affiliation(s)
- Kazuma Fujimoto
- Department
of Materials and Life Science, Shizuoka
Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Aika Yamawaki-Ogata
- Department
of Cardiac Surgery, Nagoya University Graduate
School of Medicine, 65
Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuji Narita
- Department
of Cardiac Surgery, Nagoya University Graduate
School of Medicine, 65
Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yohei Kotsuchibashi
- Department
of Materials and Life Science, Shizuoka
Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| |
Collapse
|
7
|
Sun W, Zeng H, Tang T. Enhanced Adsorption of Anionic Polymer on Montmorillonite by Divalent Cations and the Effect of Salinity. J Phys Chem A 2021; 125:1025-1035. [PMID: 33494601 DOI: 10.1021/acs.jpca.0c08797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adsorption of polymers from an aqueous solution onto clay minerals is of great interest to many applications such as water purification and soil conditioning. Molecular dynamics simulations were performed to study the adsorption of anionic polyacrylamide (APAM) on anionic montmorillonite, in an aqueous solution containing monovalent or divalent salts. Compared with monovalent salts (NaCl), the enhancement of APAM adsorption brought by divalent salts (CaCl2) was significant, which could not be explained by the Poisson-Boltzmann theory alone. Each solvated Ca2+ was coordinated by 4-6 water oxygens in its first coordination shell. One to two of these water molecules were displaced when APAM formed a complex with Ca2+. Ca2+ ions in the adsorbed Ca2+-APAM complexes did not serve as bridges sandwiched between APAM and Mt; instead, the complexes carried a residual positive charge and were subsequently attracted to montmorillonite. The number of adsorbed Ca2+-APAM complexes changed with salinity in a nonmonotonic manner, due to the modulation of apparent charges of montmorillonite and APAM by Ca2+. Increasing adsorption of Ca2+-APAM complexes also promoted APAM adsorption through direct hydrogen bonding with montmorillonite. The findings provided new molecular insights into the long-standing debates on the role of divalent ions in promoting polymer adsorption on like-charged solid surfaces.
Collapse
Affiliation(s)
- Wenyuan Sun
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
8
|
Afacan C, Narain R, Soares JBP. Flocculating and dewatering of kaolin suspensions with different forms of poly(acrylamide‐co‐diallyl dimethylammonium chloride). CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christopher Afacan
- Department of Chemical and Materials Engineering Donadeo Innovation Centre in Engineering Edmonton Alberta Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering Donadeo Innovation Centre in Engineering Edmonton Alberta Canada
| | - João B. P. Soares
- Department of Chemical and Materials Engineering Donadeo Innovation Centre in Engineering Edmonton Alberta Canada
| |
Collapse
|
9
|
Kiran, Koyilapu R, Tiwari R, Krishnamoorthi S, Kumar K. Synthesis, Characterization, and Flocculation Studies of β-Cyclodextrin-Based Stimuli-Responsive Star Copolymer: An Environmental Remediation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900089. [PMID: 32642073 PMCID: PMC7330502 DOI: 10.1002/gch2.201900089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 11/12/2023]
Abstract
Thermoresponsive star polymers are synthesized by using poly(NIPAM-b-DMA) diblock copolymer and β-cyclodextrin (β-CD). The synthesis of thermoresponsive diblock copolymer (TRP) is carried out by reversible addition-fragmentation chain transfer mediated aqueous polymerization using N-isopropylacrylamide (PNIPAM) and di-methylacrylamide as monomers. Mercaptopropionic acid is used as in situ chain transfer agent (CTA) to synthesize PNIPAM, i.e., macro-CTA. The polymeric materials are characterized by Fourier-transform infrared spectroscopy, gel permeation chromatography, 1H-NMR, particle size measurement, scanning electron microscopy, thermogravimetric analysis, UV-vis spectroscopy, and X-ray diffraction analysis. PNIPAM, TRP, and b-CD grafted thermoresponsive diblock copolymer (β-CD-TRP) show lower critical solution temperature at 32.8, 34.3, and 36.8 °C, respectively. TRP and β-CD-TRP are also studied for the removal of model contaminant (kaolin). Among all grades, β-CD-TRP 4 shows the best performance in the removal of kaolin from aqueous solution at 25 and 50 °C.
Collapse
Affiliation(s)
- Kiran
- Department of Chemistry and Environmental ScienceMadan Mohan Malaviya University of TechnologyGorakhpur273010India
| | - Rambabu Koyilapu
- School of ChemistryUniversity of HyderabadGachibowliHyderabad500046India
| | - Rudramani Tiwari
- Department of ChemistryInstitute of ScienceBanaras Hindu UniversityVaranasi221005India
| | | | - Krishna Kumar
- Department of Chemistry and Environmental ScienceMadan Mohan Malaviya University of TechnologyGorakhpur273010India
| |
Collapse
|
10
|
Afacan C, Narain R, Soares JBP. Water soluble polymeric nanofibres for rapid flocculation and enhanced dewatering of mature fine tailings. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christopher Afacan
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta Canada
| | - Ravin Narain
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta Canada
| | - João B. P. Soares
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
11
|
Yan B, Han L, Xiao H, Zhang J, Huang J, Hu W, Gu Y, Liu Q, Zeng H. Rapid Dewatering and Consolidation of Concentrated Colloidal Suspensions: Mature Fine Tailings via Self-Healing Composite Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21610-21618. [PMID: 31117468 DOI: 10.1021/acsami.9b05692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Billions of tonnes of thick waste streams with highly concentrated colloidal suspensions from different origins have accumulated worldwide, exampled as over 220 km2 mature fine tailings (MFT) from oil sands production in north Alberta. Current treatment technologies are limited by slow yet insufficient water release and sludge consolidation. Herein, a self-healing composite hydrogel system is designed to convert concentrated aqueous colloidal suspensions (e.g., MFT with colloidal solid content >30 wt %) into a dynamic double cross-linked network for rapid dewatering and consolidation. The resultant composite hydrogel demonstrates an excellent dewatering performance so that over 50% of water could be rapidly released within 30 min by vacuum filtration. Furthermore, the formed infinite cross-linked network with self-healing ability can effectively trap fine particles of all sizes and capture small flocs during mechanical mixing, thereby enabling a low solid content at the ppm level in the released water. This new strategy outperforms all the previously reported treatment methods; under mechanical compression, over 80% of water is removed from the MFT, thereby generating a stackable material with >70 wt % solids within an hour. These results demonstrate a highly effective approach and provide insight into the development of advanced materials to tackle the challenging environmental slurry issues.
Collapse
Affiliation(s)
- Bin Yan
- College of Light Industry, Textile, and Food Engineering , Sichuan University , Chengdu 610065 , China
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , AB T6G 1H9 , Canada
| | - Linbo Han
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , AB T6G 1H9 , Canada
| | - Hongyan Xiao
- College of Light Industry, Textile, and Food Engineering , Sichuan University , Chengdu 610065 , China
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , AB T6G 1H9 , Canada
| | - Jun Huang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , AB T6G 1H9 , Canada
| | - Wenjihao Hu
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , AB T6G 1H9 , Canada
| | - Yingchun Gu
- College of Light Industry, Textile, and Food Engineering , Sichuan University , Chengdu 610065 , China
| | - Qi Liu
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , AB T6G 1H9 , Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , AB T6G 1H9 , Canada
| |
Collapse
|
12
|
Zhang L, Xie L, Cui X, Chen J, Zeng H. Intermolecular and surface forces at solid/oil/water/gas interfaces in petroleum production. J Colloid Interface Sci 2018; 537:505-519. [PMID: 30469119 DOI: 10.1016/j.jcis.2018.11.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022]
Abstract
Many challenging issues are encountered along the petroleum production such as the wettability alteration of reservoir solids due to deposition of petroleum materials, stabilization/destabilization of water-in-oil and oil-in-water emulsions and treatment of tailings water. All these problems are essentially driven by the fundamental intermolecular and surface forces among the different components (i.e., water, oil, solid and gas) in the surrounding complex fluid media, and comprehensive understanding of the interactions among these components will pave the way to the development of advanced materials and technologies for improved petroleum production processes. In this work, we have reviewed the quantitative force measurement methods in different petroleum systems by using nanomechanical techniques including surface forces apparatus (SFA) and atomic force microscope (AFM). Interaction forces between petroleum components (e.g., asphaltenes) and mineral solids in both organic solvents and aqueous solutions are reviewed and correlated to the wettability change of the reservoir solids. The recent key progress in quantifying the surface forces of water-in-oil and oil-in-water emulsion drops using AFM drop probe techniques are discussed. The interaction forces of polymer flocculants and colloidal particles are correlated to the performance of tailings water treatment. The current knowledge gap and future perspectives are also presented.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Xinwei Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
13
|
Gumfekar SP, Vajihinejad V, Soares JBP. Advanced Polymer Flocculants for Solid-Liquid Separation in Oil Sands Tailings. Macromol Rapid Commun 2018; 40:e1800644. [PMID: 30417463 DOI: 10.1002/marc.201800644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/04/2018] [Indexed: 01/09/2023]
Abstract
The generation of tailings as a by product of the bitumen extraction process is one of the largest environmental footprints of oil sands operations. Most of the tailings treatment technologies use polymer flocculants to induce solid-liquid separation. However, due to the complex composition of tailings, conventional flocculants cannot reach the same performance achieved in other wastewater treatments. Over the last couple of decades, the oil sands industry has used acrylamide-based flocculants to treat tailings, achieving major progress in process optimization and integration with mechanical operations, but they still could not reach the required land reclamation targets. Over the last 5 years, the group designed, synthesized, and tested several novel polymer flocculants tailored for oil sands tailings treatment. This feature article communicates recent developments in these innovative polymers. The article first provides a background on tailings generation and treatment, followed by the description of advanced polymer flocculants categorized according to their microstructures such as linear, branched, and graft. The other tailings remediation technologies and one of the initial works on modeling of tailings flocculation is discussed.
Collapse
Affiliation(s)
- Sarang P Gumfekar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Vahid Vajihinejad
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - João B P Soares
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| |
Collapse
|
14
|
Gumfekar SP, Soares JBP. Polymer reaction engineering tools to design multifunctional polymer flocculants. CHEMOSPHERE 2018; 210:156-165. [PMID: 29990754 DOI: 10.1016/j.chemosphere.2018.06.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
A series of multifunctional terpolymers, poly(N-isopropyl acrylamide/2-(methacryloyloxy) ethyl trimethyl ammonium chloride/N-tert-butylacrylamide) [P(NIPAM-MATMAC-BAAM)], were designed to flocculate and dewater oil sands mature fine tailings (MFT). The hydrophobic BAAM comonomer helped in expelling water from the sediments, while the cationic MATMAC comonomer promoted the charge neutralization of negatively charged particles suspended in MFT. The chemical composition distributions of these terpolymers were designed based on the knowledge of the reactivity ratios of all comonomers, instead of by trial and error, as usually done for most polymer flocculants. The binary reactivity ratios of the comonomers were estimated by synthesizing the binary copolymers with various mole fractions of each comonomer in the feed and experimentally measuring the corresponding fraction of comonomer in the copolymers. Polymer reaction engineering tools were used to minimize compositional drift and guarantee the synthesis of terpolymers with narrow chemical composition distributions suitable for MFT dewatering. Focused beam reflectance measurement (FBRM) experiments showed that terpolymers promoted the formation of large MFT flocs (120 μm). The initial settling rate decreased with the increase in flocculant hydrophobicity, likely because the hydrophobic terpolymer segments did not take part in the bridging of the MFT particles. In contrast, the sediment dewaterability increased with the increase in terpolymer hydrophobicity. This study provides guidelines to design a polymer flocculant from first principles and demonstrates the potential of using hydrophobically modified cationic polymers to flocculate MFT effectively.
Collapse
Affiliation(s)
- Sarang P Gumfekar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| | - João B P Soares
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| |
Collapse
|
15
|
Tan S, Saito K, Hearn MTW. Stimuli-responsive polymeric materials for separation of biomolecules. Curr Opin Biotechnol 2018; 53:209-223. [DOI: 10.1016/j.copbio.2018.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
|
16
|
|
17
|
Gumfekar SP, Soares JBP. A novel hydrophobically-modified polyelectrolyte for enhanced dewatering of clay suspension. CHEMOSPHERE 2018; 194:422-431. [PMID: 29227890 DOI: 10.1016/j.chemosphere.2017.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/26/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
This work investigates the effect of multifunctional poly (N-isopropyl acrylamide/acrylic acid/N-tert-butylacrylamide) [p(NIPAM-AA-NTBA)] ternary polymer on the sedimentation of kaolin clay - a major fraction of oil sands tailings. A series of linear, uncross-linked p(NIPAM), p(NIPAM/AA), and p(NIPAM/AA/NTBM) were synthesized as random copolymers, where all monomer units were randomly arranged along the polymer backbone and connected by covalent bonds. The ternary copolymer, used as a flocculant, exhibited thermo-sensitivity, anionic nature, and hydrophobic association due to NIPAM, AA, and NTBM, respectively. As the ternary polymer is thermosensitive, it undergoes extended to coil-like conformation, i.e. hydrophilic to hydrophobic transition, above its lower critical solution temperature (LCST). The comonomers NIPAM (above LCST) and NTBM help expel water out of sediments due to their hydrophobicity, while AA promotes charge neutralization of the kaolin clay particles. The effect of number average molecular weight, charge density, and concentration of NTBM on settling behavior of kaolin suspension was examined. Settling test at 50 °C resulted in significantly higher settling rates compared to that at room temperature. Further, the quality of water recovered in each experiment was tested in terms of its turbidity. These results indicate that this novel ternary polymer can be employed to enhance the recovery of water from oil sands tailings containing clays.
Collapse
Affiliation(s)
- Sarang P Gumfekar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| | - João B P Soares
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| |
Collapse
|
18
|
Gumfekar SP, Rooney TR, Hutchinson RA, Soares JBP. Dewatering Oil Sands Tailings with Degradable Polymer Flocculants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36290-36300. [PMID: 28945965 DOI: 10.1021/acsami.7b10302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We synthesized hydrolytically degradable cationic polymers by micellar radical polymerization of a short-chain polyester macromonomer, polycaprolactone choline iodide ester methacrylate (PCL2ChMA) with two polyester units, and used them to flocculate oil sands mature fine tailings (MFT). We evaluated the flocculation performance of the homopolymer and copolymers with 30 mol % acrylamide (AM) by measuring initial settling rate (ISR), supernatant turbidity, and capillary suction time (CST) of the sediments. Flocculants made with trimethylaminoethyl methacrylate chloride (TMAEMC), the monomer corresponding to PCLnChMA with n = 0, have improved performance over poly(PCL2ChMA) at equivalent loadings due to their higher charge density per gram of polymer. However, MFT sediments flocculated using the PCL2ChMA-based polymers are easier to dewater (up to an 85% reduction in CST) after accelerated hydrolytic degradation of the polyester side chains. This study demonstrates the potential of designing cationic polymers that effectively flocculate oil sands tailings ponds, and also further dewater the resulting solids through polymer degradation.
Collapse
Affiliation(s)
- Sarang P Gumfekar
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Thomas R Rooney
- Department of Chemical Engineering, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Robin A Hutchinson
- Department of Chemical Engineering, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - João B P Soares
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| |
Collapse
|
19
|
Wang J, Gao Z, Qi W, Zhao Y, Zhang P, Lin M, Li Z, Chen G, Jiang M. Interactions of Glycopolymers with Assemblies of Peptide Amphiphiles via Dynamic Covalent Bonding. ACS Biomater Sci Eng 2017; 4:2061-2066. [PMID: 33445277 DOI: 10.1021/acsbiomaterials.7b00642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, peptide amphiphile (PA) with benzoboroxole (BOB) group at the hydrophilic end was prepared and assembled into fibers (PAA) with BOB group on the fiber surface. Then glycopolymer with mannopyranoside as pendent group interacted with the PAA via dynamic covalent bond between sugar and BOB. By combining the results from 2D 1H NMR spectroscopy, the exact binding mode of mannopyranoside pendent group and BOB, i.e., mannopyranoside participated by its diol on 2,3-position instead of that on 4,6-position, which was clearly observed on the fiber surface. The success in determining this binding mode in macroscopic material was due to the high density of BOB on PAA and the multivalent effect between the multiple BOB moieties on fiber surface and repeating mannopyranoside groups of the glycopolymer.
Collapse
|
20
|
Zhang D, Thundat T, Narain R. Flocculation and Dewatering of Mature Fine Tailings Using Temperature-Responsive Cationic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5900-5909. [PMID: 28514595 DOI: 10.1021/acs.langmuir.7b01160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Temperature-responsive copolymer with cationic charge was prepared with N-isopropylacrylamide (NIPAm) and 2-aminoethyl methacrylamide hydrochloride (AEMA) by conventional free-radical polymerization. The flocculation performance of the copolymer, poly(AEMA-st-NIPAm), was compared to five different mixture ratios of polyNIPAm and cationic poly(acrylamide-st-diallyldimethylammonium chloride) (poly(AAm-st-DADMAC)). The effects of polymer mixture ratios, polymer dosages, and temperature on solid-liquid separation as a function of initial settling rates (ISR), supernatant turbidity, sediment solid content, and water recovery were investigated. Poly(NIPAm) can facilitate particles aggregation by bridging and hydrogen bonding under lower critical solution temperature (LCST); whereas, at temperature above LCST, the adsorption of poly(NIPAm) chains on particles can be enhanced by hydrophobic interaction. A two-step (25 °C → 50 °C → 25 °C) consolidation can further enhance the sediment solid content by polyNIPAm. While the neutral property of polyNIPAm resulted in high turbidity of supernatant, mixing with poly(AAm-st-DADMAC) increases the clarity of supernatant by neutralization of fine particles. The copolymer poly(AEMA-st-NIPAm) functions as a polyelectrolyte to enhance the polymer adsorption onto particles via electrostatic interactions, thus further improving ISR and supernatant clarity.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre in Engineering , Edmonton, Alberta T6G 1H9, Canada
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre in Engineering , Edmonton, Alberta T6G 1H9, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre in Engineering , Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
21
|
Ren K, Du H, Yang Z, Tian Z, Zhang X, Yang W, Chen J. Separation and Sequential Recovery of Tetracycline and Cu(II) from Water Using Reusable Thermoresponsive Chitosan-Based Flocculant. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10266-10275. [PMID: 28240859 DOI: 10.1021/acsami.7b00828] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coexistence of antibiotics and heavy metals is typically detected in water containing both organic and inorganic contaminants. In this work, a flocculation method using a reusable thermoresponsive chitosan-based flocculant (CS-g-PNNPAM) was applied for separation and sequential recovery of tetracycline (TC) and Cu(II) from water. High synergistic removal rates of both TC and Cu(II) from water (>90%) were reached. Interactive effects among targeted water temperature (T1), stock solution temperature (T2), and flocculant dosage on flocculation performance were assessed using response surface methodology. To optimize flocculation, operation strategies of adjusting T2 and dosage according to T1 based on the interactive effects were given through mathematical analyses. The flocculation mechanism as well as interfacial interactions among CS-g-PNNPAM, TC, and Cu(II) were studied through experimental investigations (floc size monitoring, X-ray photoelectron spectroscopy, and UV spectra) and theoretical calculations (density functional theory and molecular dynamics simulations). Coordination of Cu(II) with TC and the flocculant promoted flocculation; switchable interactions (H bonds and hydrophobic association) of the TC-flocculant at different temperatures were key factors affecting operation strategies. When these interactions were weakened step by step, TC and Cu(II) were sequentially recovered from flocs using certain solutions. Meanwhile, the flocculant in flocs was regenerated and found reusable with high flocculation efficiency.
Collapse
Affiliation(s)
- Kexin Ren
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Hongwei Du
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Ziqi Tian
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Xuntong Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Jianqiang Chen
- College of Biology and the Environment, Nanjing Forestry University , Nanjing 210037, P. R. China
| |
Collapse
|
22
|
Lu H, Xiang L, Cui X, Liu J, Wang Y, Narain R, Zeng H. Molecular Weight Dependence of Synthetic Glycopolymers on Flocculation and Dewatering of Fine Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11615-11622. [PMID: 27741575 DOI: 10.1021/acs.langmuir.6b03072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, poly(2-lactobionamidoethyl methacrylamide) of various molecular weights (MWs) was synthesized using conventional free-radical polymerization. The effect of MW and polymer dosage on the settling rate of kaolin particles, turbidity of the supernatant, mud-line position, and solid content was investigated to determine the flocculation performance. The interaction forces, polymer conformation, particle sizes, and MWs were determined using several techniques, including surface forces apparatus, atomic force microscopy (AFM), dynamic light scattering, and gel permeation chromatography. Our results reveal that the initial settling rate of kaolin particles and the clarity of supernatants increase with increasing MW of the glycopolymers. Surface force measurements and AFM imaging of the adsorbed polymer surfaces show strong polymer-particle adhesion and bridging attraction between the glycopolymers and clay surfaces, which increase with increasing MW of the glycopolymer. The strengthened bridging attraction with the polymer MW is attributed to the formation of stronger adhesion (e.g., via hydrogen bonding) between the fine particles and the abundant hydroxyl groups in the glycopolymers of higher MW, thus contributing to enhanced flocculation behaviors. Our results provide new insights into the development of eco-friendly polymer flocculants based on glycopolymers for an efficient solid-liquid separation in tailing treatment and into the fundamental understanding of associated intermolecular interactions and flocculation mechanisms.
Collapse
Affiliation(s)
- Han Lu
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Jing Liu
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Yinan Wang
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|