1
|
Song W, Muhammad S, Dang S, Ou X, Fang X, Zhang Y, Huang L, Guo B, Du X. The state-of-art polyurethane nanoparticles for drug delivery applications. Front Chem 2024; 12:1378324. [PMID: 38476653 PMCID: PMC10929011 DOI: 10.3389/fchem.2024.1378324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Nowadays, polyurethanes (PUs) stand out as a promising option for drug delivery owing to their versatile properties. PUs have garnered significant attention in the biomedical sector and are extensively employed in diverse forms, including bulk devices, coatings, particles, and micelles. PUs are crucial in delivering various therapeutic agents such as antibiotics, anti-cancer medications, dermal treatments, and intravaginal rings. Effective drug release management is essential to ensure the intended therapeutic impact of PUs. Commercially available PU-based drug delivery products exemplify the adaptability of PUs in drug delivery, enabling researchers to tailor the polymer properties for specific drug release patterns. This review primarily focuses on the preparation of PU nanoparticles and their physiochemical properties for drug delivery applications, emphasizing how the formation of PUs affects the efficiency of drug delivery systems. Additionally, cutting-edge applications in drug delivery using PU nanoparticle systems, micelles, targeted, activatable, and fluorescence imaging-guided drug delivery applications are explored. Finally, the role of artificial intelligence and machine learning in drug design and delivery is discussed. The review concludes by addressing the challenges and providing perspectives on the future of PUs in drug delivery, aiming to inspire the design of more innovative solutions in this field.
Collapse
Affiliation(s)
- Wencong Song
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shanxing Dang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingyan Ou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingzi Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Lihe Huang
- Center for Educational Technology, Yulin Normal University, Yulin, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - XueLian Du
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Shang X, Jin Y, Du W, Bai L, Zhou R, Zeng W, Lin K. Flame-Retardant and Self-Healing Waterborne Polyurethane Based on Organic Selenium. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16118-16131. [PMID: 36926801 DOI: 10.1021/acsami.3c02251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Waterborne polyurethane has drawn extensive attention due to its environmental friendliness and is widely used in many areas. However, it is still a great challenge to synthesize waterborne polyurethanes with flame retardancy and fast room-temperature self-healing ability, along with excellent mechanical performance and emulsion stability due to the mutually contradictory nature of these properties. Herein, waterborne polyurethanes containing organic selenium (SWPU-x) from 0.67 to 3.28 wt % were synthesized, which could simultaneously realize flame retardancy and self-healing ability based on the ability to scavenge active free radicals at high temperature and the dynamic switch of diselenide. All these SWPU-x films self-extinguished within 1 s after the ignition in the vertical combustion tests. The limiting oxygen index of SWPU-4 was improved to 28.5% with excellent UL-94 level (V-0) and self-healing efficiency (91.25%, after being healed in the photoreactor for 30 min at room temperature), together with high mechanical properties (tensile strength was 18.5 MPa and elongation at break was 869.63%), and the total heat release (THR) for SWPU-4 (49.28 MJ/m2) could decrease to 23.80% of the THR for the original waterborne polyurethane WPU (64.67 MJ/m2). This work discovered a new flame-retardant element (organic selenium) and studied its flame-retardant behaviors and self-healing function simultaneously, which would extremely extend the application of waterborne polyurethanes.
Collapse
Affiliation(s)
- Xiang Shang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University, Chengdu 610065, PR China
| | - Yong Jin
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University, Chengdu 610065, PR China
| | - Weining Du
- Sichuan Fire Research Institute of Ministry of Emergency Management, Chengdu 610037, PR China
| | - Long Bai
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University, Chengdu 610065, PR China
| | - Rong Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University, Chengdu 610065, PR China
| | - Wenhua Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University, Chengdu 610065, PR China
| | - Kunyan Lin
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
3
|
Sachdev A, Acharya S, Gadodia T, Shukla S, J H, Akre C, Khare M, Huse S. A Review on Techniques and Biomaterials Used in 3D Bioprinting. Cureus 2022; 14:e28463. [PMID: 36176831 PMCID: PMC9511817 DOI: 10.7759/cureus.28463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional (3D) bioprinting is a cutting-edge technology that has come to light recently and shows a promising potential whose progress will change the face of medicine. This article reviews the most commonly used techniques and biomaterials for 3D bioprinting. We will also look at the advantages and limitations of various techniques and biomaterials and get a comparative idea about them. In addition, we will also look at the recent applications of these techniques in different industries. This article aims to get a basic idea of the techniques and biomaterials used in 3D bioprinting, their advantages and limitations, and their recent applications in various fields.
Collapse
|
4
|
Blynskaya EV, Tishkov SV, Alekseev KV, Vetcher AA, Marakhova AI, Rejepov DT. Polymers in Technologies of Additive and Inkjet Printing of Dosage Formulations. Polymers (Basel) 2022; 14:2543. [PMID: 35808591 PMCID: PMC9269197 DOI: 10.3390/polym14132543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Technologies for obtaining dosage formulations (DF) for personalized therapy are currently being developed in the field of inkjet (2D) and 3D printing, which allows for the creation of DF using various methods, depending on the properties of pharmaceutical substances and the desired therapeutic effect. By combining these types of printing with smart polymers and special technological approaches, so-called 4D printed dosage formulations are obtained. This article discusses the main technological aspects and used excipients of a polymeric nature for obtaining 2D, 3D, 4D printed dosage formulations. Based on the literature data, the most widely used polymers, their properties, and application features are determined, and the technological characteristics of inkjet and additive 3D printing are shown. Conclusions are drawn about the key areas of development and the difficulties that arise in the search and implementation in the production of new materials and technologies for obtaining those dosage formulations.
Collapse
Affiliation(s)
- Evgenia V. Blynskaya
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.I.M.); (D.T.R.)
| | - Sergey V. Tishkov
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Konstantin V. Alekseev
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.I.M.); (D.T.R.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya St., 117588 Moscow, Russia
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.I.M.); (D.T.R.)
| | - Dovlet T. Rejepov
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.I.M.); (D.T.R.)
| |
Collapse
|
5
|
Ma Y, You Y, Cao L, Liang B, Tian B, Dong J, Lin H. Improved Osteogenesis by Mineralization Combined With Double-Crosslinked Hydrogel Coating for Proliferation and Differentiation of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2021; 9:706423. [PMID: 34917593 PMCID: PMC8670089 DOI: 10.3389/fbioe.2021.706423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
In consideration of improving the interface problems of poly-L-lactic acid (PLLA) that hindered biomedical use, surface coatings have been explored as an appealing strategy in establishing a multi-functional coating for osteogenesis. Though the layer-by-layer (LBL) coating developed, a few studies have applied double-crosslinked hydrogels in this technique. In this research, we established a bilayer coating with double-crosslinked hydrogels [alginate–gelatin methacrylate (GelMA)] containing bone morphogenic protein (BMP)-2 [alginate-GelMA/hydroxyapatite (HA)/BMP-2], which displayed great biocompatibility and osteogenesis. The characterization of the coating showed improved properties and enhanced wettability of the native PLLA. To evaluate the biosafety and inductive ability of osteogenesis, the behavior (viability, adherence, and proliferation) and morphology of human bone mesenchymal stem cells (hBMSCs) on the bilayer coatings were tested by multiple exams. The satisfactory function of osteogenesis was verified in bilayer coatings. We found the best ratios between GelMA and alginate for biological applications. The Alg70-Gel30 and Alg50-Gel50 groups facilitated the osteogenic transformation of hBMSCs. In brief, alginate-GelMA/HA/BMP-2 could increase the hBMSCs’ early transformation of osteoblast lineage and promote the osteogenesis of bone defect, especially the outer hydrogel layer such as Alg70-Gel30 and Alg50-Gel50.
Collapse
Affiliation(s)
- Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwang You
- Hospital Infection Management Department, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lu Cao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Lin
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Li X, Ye F, Ouyang J, Chen Z, Yang X. Phase structure and transition behavior of zwitterionic polyurethane containing sulfobetaine. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Synthesis of bio-based waterborne polyesters as environmentally benign biodegradable material through regulation of unsaturated acid structure. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Staňo R, Košovan P, Tagliabue A, Holm C. Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roman Staňo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell’Insubria, via Valleggio 9, 22100 Como, Italy
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
9
|
Glover K, Stratakos AC, Varadi A, Lamprou DA. 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. Int J Pharm 2021; 599:120423. [PMID: 33647412 DOI: 10.1016/j.ijpharm.2021.120423] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus, affecting roughly 25% of diabetic patients and resulting in lower limb amputation in over 70% of known cases. In addition to the devastating physiological consequences of DFU and its impact on patient quality of life, DFU has significant clinical and economic implications. Various traditional therapies are implemented to effectively treat DFU. However, emerging technologies such as bioprinting and electrospinning, present an exciting opportunity to improve current treatment strategies through the development of 3D scaffolds, by overcoming the limitations of current wound healing strategies. This review provides a summary on (i) current prevention and treatment strategies available for DFU; (ii) methods of fabrication of 3D scaffolds relevant for this condition; (iii) suitable materials and commonly used molecules for the treatment of DFU; and (iv) future directions offered by emerging technologies.
Collapse
Affiliation(s)
- Katie Glover
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexandros Ch Stratakos
- Faculty of Health and Applied Sciences, Center for Research in Biosciences, University of the West of England, Bristol BS16 1QY, UK
| | - Aniko Varadi
- Faculty of Health and Applied Sciences, Center for Research in Biosciences, University of the West of England, Bristol BS16 1QY, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
10
|
Li X, Ye F, Wang J, Chen Z, Yang X. The synthesis of polyurethane with mechanical properties that are responsive to water retention states. Polym Chem 2021. [DOI: 10.1039/d0py01559h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Water-retention-state-responsive polyurethane was designed and synthesized via introducing zwitterionic sulfobetaine onto its polymer chains.
Collapse
Affiliation(s)
- Xuemin Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Feng Ye
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jie Wang
- Polymer Composites Engineering Laboratory
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhaobin Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
11
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Liu F, Wang X. Synthetic Polymers for Organ 3D Printing. Polymers (Basel) 2020; 12:E1765. [PMID: 32784562 PMCID: PMC7466039 DOI: 10.3390/polym12081765] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing, known as the most promising approach for bioartificial organ manufacturing, has provided unprecedented versatility in delivering multi-functional cells along with other biomaterials with precise control of their locations in space. The constantly emerging 3D printing technologies are the integration results of biomaterials with other related techniques in biology, chemistry, physics, mechanics and medicine. Synthetic polymers have played a key role in supporting cellular and biomolecular (or bioactive agent) activities before, during and after the 3D printing processes. In particular, biodegradable synthetic polymers are preferable candidates for bioartificial organ manufacturing with excellent mechanical properties, tunable chemical structures, non-toxic degradation products and controllable degradation rates. In this review, we aim to cover the recent progress of synthetic polymers in organ 3D printing fields. It is structured as introducing the main approaches of 3D printing technologies, the important properties of 3D printable synthetic polymers, the successful models of bioartificial organ printing and the perspectives of synthetic polymers in vascularized and innervated organ 3D printing areas.
Collapse
Affiliation(s)
- Fan Liu
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Department of Orthodontics, School of Stomatology, China Medical University, No. 117 North Nanjing Street, Shenyang 110003, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Jacob S, Nair AB, Patel V, Shah J. 3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems. AAPS PharmSciTech 2020; 21:220. [PMID: 32748243 DOI: 10.1208/s12249-020-01771-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The 3D printing is considered as an emerging digitized technology that could act as a key driving factor for the future advancement and precise manufacturing of personalized dosage forms, regenerative medicine, prosthesis and implantable medical devices. Tailoring the size, shape and drug release profile from various drug delivery systems can be beneficial for special populations such as paediatrics, pregnant women and geriatrics with unique or changing medical needs. This review summarizes various types of 3D printing technologies with advantages and limitations particularly in the area of pharmaceutical research. The applications of 3D printing in tablets, films, liquids, gastroretentive, colon, transdermal and intrauterine drug delivery systems as well as medical devices have been briefed. Due to the novelty and distinct features, 3D printing has the inherent capacity to solve many formulation and drug delivery challenges, which are frequently associated with poorly aqueous soluble drugs. Recent approval of Spritam® and publication of USFDA technical guidance on additive manufacturing related to medical devices has led to an extensive research in various field of drug delivery systems and bioengineering. The 3D printing technology could be successfully implemented from pre-clinical phase to first-in-human trials as well as on-site production of customized formulation at the point of care having excellent dose flexibility. Advent of innovative 3D printing machineries with built-in flexibility and quality with the introduction of new regulatory guidelines would rapidly integrate and revolutionize conventional pharmaceutical manufacturing sector.
Collapse
|
14
|
Influence of the addition of PEG into PCL‐based waterborne polyurethane‐urea dispersions and films properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Griffin M, Castro N, Bas O, Saifzadeh S, Butler P, Hutmacher DW. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:272-283. [DOI: 10.1089/ten.teb.2019.0224] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michelle Griffin
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
| | - Nathan Castro
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Onur Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Siamak Saifzadeh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Peter Butler
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
16
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
17
|
Islam S, Velev OD. Mechanism and control of "coffee-ring erosion" phenomena in structurally colored ionomer films. SOFT MATTER 2020; 16:2683-2694. [PMID: 32026917 DOI: 10.1039/c9sm02457c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ionomer polyesters have polymer backbones functionalized with charged groups that make them water-dispersible. Despite the widespread use of ionomer polymers in environmentally friendly coatings without volatile organic solvents, the fundamental understanding of their film formation properties is still limited. In the study, we deposited polyester nanofilms of brilliant structural colors and correlated the macroscale optical properties to the microscale thickness of the thin films. We found that sessile water droplets deposited on these films drive the formation of a rich variety of structures by an evaporation-induced effect of "coffee-ring erosion". The ionomers spontaneously get partially re-dispersed in the form of nanoparticles in the sessile droplets and driven by convective evaporation flows, become redistributed in multiple colorful ring patterns. By using the structural colors as means to follow the polymer redistribution, we characterized further the coffee-ring patterns and found that the generated patterns are dictated by polymer composition but are mostly independent on molecular weight. As expected by colloidal theory, this phenomenon was suppressed in presence of electrolytes. Furthermore, we show that the integrity of these thin polyester films can be significantly improved by thermal densification without any further chemical curing.
Collapse
Affiliation(s)
- Sabina Islam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
18
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
19
|
Ahmadi Y, Ahmad S. Recent Progress in the Synthesis and Property Enhancement of Waterborne Polyurethane Nanocomposites: Promising and Versatile Macromolecules for Advanced Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1673403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Sharif Ahmad
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
20
|
Herzberger J, Sirrine JM, Williams CB, Long TE. Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101144] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Hsieh CT, Hsu SH. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32746-32757. [PMID: 31407899 DOI: 10.1021/acsami.9b10784] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three-dimensional (3D) bioprinting is a technology to print materials (bioink) with cells into customized tissues for regeneration or organoids for drug screening applications. Herein, a series of biodegradable polyurethane (PU)-gelatin hydrogel with tunable mechanical properties and degradation rates were developed as the bioink. The PU-gelatin hydrogel demonstrated good printability in 24-31 °C and could print a complicated structure such as the nose-shaped construct. Due to the excellent shear thinning and fast strain recovery properties, the PU-gelatin hydrogel also had long working windows for bioprinting (over 24 h), stacking ability (up to 80 layers), and feasibility for high-resolution printing (through an 80 μm nozzle). The structure stability of the PU-gelatin hydrogel was maintained by two-stage double-network formation through Ca2+ chelation and thermal gelation at 37 °C without any toxic cross-linking reagent. The compressive modulus of printed PU-gelatin hydrogel constructs increased in about 3-fold by the treatment of CaCl2 solution for 15 min and enhanced further after incubation because of the thermal sensitivity of PU at 37 °C. Mesenchymal stem cells (MSCs) printed with the PU-gelatin hydrogel through the 80 μm nozzle showed good viability, high mobility, and ∼200% proliferation ratio (or an ∼300% proliferation ratio through a 200 μm nozzle) in 10 days. Furthermore, the MSC-laden PU-gelatin constructs containing small molecular drug Y27632 underwent chondrogenesis in 10 days. The novel series of PU-gelatin hydrogels with tunable modulus, long working window, convenient bioprinting process, and high-resolution printing possibilities may serve as new bioink for 3D bioprinting of various tissues.
Collapse
Affiliation(s)
- Cheng-Tien Hsieh
- Institute of Polymer Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan, R.O.C
- Institute of Cellular and System Medicine , National Health Research Institutes , Zhunan 35053 , Taiwan, R.O.C
| |
Collapse
|
22
|
Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.019] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Abstract
The broad clinical use of synthetic vascular grafts for vascular diseases is limited by their thrombogenicity and low patency rate, especially for vessels with a diameter inferior to 6 mm. Alternatives such as tissue-engineered vascular grafts (TEVGs), have gained increasing interest. Among the different manufacturing approaches, 3D bioprinting presents numerous advantages and enables the fabrication of multi-scale, multi-material, and multicellular tissues with heterogeneous and functional intrinsic structures. Extrusion-, inkjet- and light-based 3D printing techniques have been used for the fabrication of TEVG out of hydrogels, cells, and/or solid polymers. This review discusses the state-of-the-art research on the use of 3D printing for TEVG with a focus on the biomaterials and deposition methods.
Collapse
|
24
|
Komez A, Buyuksungur S, Hasirci V, Hasirci N. Effect of chemical structure on properties of polyurethanes: Temperature responsiveness and biocompatibility. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518783233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyurethanes are known as one of the most biocompatible and inherently blood-compatible materials and have a wide range of applications in the medical field due to their controllable structure and properties. Durability, elasticity, elastomeric structure, fatigue resistance, versatility, and easy acceptance by the biological media after the application makes these polymers preferable in medical area. In this study, polyurethane films were prepared using poly(propylene-ethylene glycol) and either toluene-2,4-diisocyanate or 4,4′-methylenediphenyl diisocyanate without adding any other ingredients such as solvent, catalyst, or chain extender to prevent negative effects of leachable molecules. Mechanical tests were performed at room temperature while swelling tests were conducted in water and phosphate-buffered saline at 4°C, 25°C, and 37°C. Temperature responsiveness was observed for the samples synthesized using toluene-2,4-diisocyanate and poly(propylene-ethylene glycol). These samples had more than 100% swelling at 4°C and about 4% swelling at 25°C and 37°C. Cytocompatibility tests were performed by culturing the samples and their extracts with mouse fibroblast cells (L929). Viability of human umbilical vein endothelial cells was studied to examine the compatibility of the films for blood contacting devices. Both toluene-2,4-diisocyanate and 4,4-methylenediphenyl diisocyanate–based polyurethane films showed no cytotoxic effect and good biocompatibility. Oxygen plasma treatment enhanced hydrophilicity of the films. After plasma treatment, human umbilical vein endothelial cell attachment on toluene-2,4-diisocyanate–based polyurethane films improved and 4,4-methylenediphenyl diisocyanate–based polyurethane films maintained their high cell affinity. Polyurethanes presenting temperature responsiveness, high biocompatibility, and high affinity for human umbilical vein endothelial cells were synthesized in medical purity and in a reaction media involving only diisocyanate and diol components without addition of any solvent, chain extender, or catalyst. Polyurethanes with these properties and as produced in this study are reported for the first time in the literature.
Collapse
Affiliation(s)
- Aylin Komez
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Senem Buyuksungur
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey
| |
Collapse
|
25
|
Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK, Ozbolat IT. Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnol Adv 2018; 36:1481-1504. [PMID: 29909085 DOI: 10.1016/j.biotechadv.2018.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/15/2018] [Accepted: 06/10/2018] [Indexed: 12/17/2022]
Abstract
An increasing demand for directed assembly of biomaterials has inspired the development of bioprinting, which facilitates the assembling of both cellular and acellular inks into well-arranged three-dimensional (3D) structures for tissue fabrication. Although great advances have been achieved in the recent decade, there still exist issues to be addressed. Herein, a review has been systematically performed to discuss the considerations in the entire procedure of bioprinting. Though bioprinting is advancing at a rapid pace, it is seen that the whole process of obtaining tissue constructs from this technique involves multiple-stages, cutting across various technology domains. These stages can be divided into three broad categories: pre-bioprinting, bioprinting and post-bioprinting. Each stage can influence others and has a bearing on the performance of fabricated constructs. For example, in pre-bioprinting, tissue biopsy and cell expansion techniques are essential to ensure a large number of cells are available for mass organ production. Similarly, medical imaging is needed to provide high resolution designs, which can be faithfully bioprinted. In the bioprinting stage, compatibility of biomaterials is needed to be matched with solidification kinetics to ensure constructs with high cell viability and fidelity are obtained. On the other hand, there is a need to develop bioprinters, which have high degrees of freedom of movement, perform without failure concerns for several hours and are compact, and affordable. Finally, maturation of bioprinted cells are governed by conditions provided during the post-bioprinting process. This review, for the first time, puts all the bioprinting stages in perspective of the whole process of bioprinting, and analyzes their current state-of-the art. It is concluded that bioprinting community will recognize the relative importance and optimize the parameter of each stage to obtain the desired outcomes.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah 711103, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah 711103, West Bengal, India
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Veli Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Kazim K Moncal
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
26
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Placone JK, Engler AJ. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv Healthc Mater 2018; 7:e1701161. [PMID: 29283220 PMCID: PMC5954828 DOI: 10.1002/adhm.201701161] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/11/2017] [Indexed: 12/13/2022]
Abstract
Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion-based printing, materials are used for applications that range from cell free printing to cell-laden bioinks that mimic natural tissues. Beyond single tissue applications, multi-material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion-based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross-platform utilization and reproducibility.
Collapse
Affiliation(s)
- Jesse K Placone
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Adam J Engler
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| |
Collapse
|
28
|
Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2018; 107:261-275. [DOI: 10.1016/j.ijbiomac.2017.08.171] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
|
29
|
Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:67-77. [DOI: 10.1016/j.msec.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
|
30
|
Shin EJ, Choi SM. Advances in Waterborne Polyurethane-Based Biomaterials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:251-283. [PMID: 30357693 DOI: 10.1007/978-981-13-0947-2_14] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyurethane (PU) is one of the most popular synthetic elastomers and widely employed in biomedical fields owing to the excellent biocompatibility and hemocompatibility known today. In addition, PU is simply prepared and its mechanical properties such as durability, elasticity, elastomer-like character, fatigue resistance, compliance or tolerance in the body during the healing, can be mediated by modifying the chemical structure. Furthermore, modification of bulk and surface by incorporating biomolecules such as anticoagulant s or biorecognizable groups, or hydrophilic/hydrophobic balance is possible through altering chemical groups for PU structure. Such modifications have been designed to improve the acceptance of implant. For these reason, conventional solventborne (solvent-based) PUs have established the standard for high performance systems, and extensively used in medical devices such as dressings, tubing, antibacterial membrane , catheters to total artificial heart and blood contacting materials, etc. However, waterborne polyurethane (WPU) has been developed to improve the process of dissolving PU materials using toxic organic solvents, in which water is used as a dispersing solvent. The prepared WPU materials have many advantages, briefly (1) zero or very low levels of organic solvents, namely environmental-friendly (2) non-toxic, due to absence of isocyanate residues, and (3) good applicability caused by extensive structure/property diversity as well as an environment-friendly fabrication method resulting in increasing applicability. Therefore, WPUs are being in the spotlight as biomaterials used for biomedical applications . The purpose of this review is to introduce an environmental- friendly synthesis of WPU and consider the manufacturing process and application of WPU and/or WPU based nanocomposites as the viewpoint of biomaterials.
Collapse
Affiliation(s)
- Eun Joo Shin
- Department of Organic Materials and Polymer Engineering, Dong-A University, Busan, South Korea
| | - Soon Mo Choi
- Regional Research Institute for Fiber & Fashion Materials, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
31
|
Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of Polymers in 3D Printing Technology for Drug Delivery - An Overview. Curr Pharm Des 2018; 24:4979-4990. [PMID: 30585543 DOI: 10.2174/1381612825666181226160040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND 3D printing (3DP) is an emerging technique for fabrication of a variety of structures and complex geometries using 3D model data. In 1986, Charles Hull introduced stereolithography technique that took advances to beget new methods of 3D printing such as powder bed fusion, fused deposition modeling (FDM), inkjet printing, and contour crafting (CC). Being advantageous in terms of less waste, freedom of design and automation, 3DP has been evolved to minimize incurred cost for bulk production of customized products at the industrial outset. Due to these reasons, 3DP technology has acquired a significant position in pharmaceutical industries. Numerous polymers have been explored for manufacturing of 3DP based drug delivery systems for patient-customized medication with miniaturized dosage forms. METHOD Published research articles on 3D printed based drug delivery have been thoroughly studied and the polymers used in those studies are summarized in this article. RESULTS We have discussed the polymers utilized to fabricate 3DP systems including their processing considerations, and challenges in fabrication of high throughput 3DP based drug delivery systems. CONCLUSION Despite several advantages of 3DP in drug delivery, there are still a few issues that need to be addressed such as lower mechanical properties and anisotropic behavior, which are obstacles to scale up the technology. Polymers as a building material certainly plays crucial role in the final property of the dosage form. It is an effort to bring an assemblage of critical aspects for scientists engaged in 3DP technology to create flexible, complex and personalized dosage forms.
Collapse
Affiliation(s)
- Ankit Jain
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura (U.P.), India
| | - Kuldeep K Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological Interfaces, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland
| | - Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), India
| | - Ari Rosling
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological Interfaces, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland
| |
Collapse
|
32
|
Tai N, Adhikari R, Shanks R, Adhikari B. Starch-polyurethane films synthesized using polyethylene glycol-isocyanate (PEG-iso): Effects of molecular weight, crystallinity, and composition of PEG-iso on physiochemical characteristics and hydrophobicity of the films. Food Packag Shelf Life 2017. [DOI: 10.1016/j.fpsl.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Malkappa K, Rao BN, Suresh G, Ramana CV, Jana T. Organic/inorganic hybrid nanocolloids of water dispersible polyurethanes with antibacterial activity. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4229-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Li K, Zhou C, Liu S, Yao F, Fu G, Xu L. Preparation of mechanically-tough and thermo-responsive polyurethane-poly(ethylene glycol) hydrogels. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Hou Y, Jiang N, Zhang L, Li Y, Meng Y, Han D, Chen C, Yang Y, Zhu S. Oppositely Charged Polyurethane Microspheres with Tunable Zeta Potentials as an Injectable Dual-Loaded System for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25808-25817. [PMID: 28704028 DOI: 10.1021/acsami.7b06673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To effectively repair irregular shaped bone defects by a minimally invasive procedure, the exploration of an injectable gel to fill the defect is desirable. Herein, positively and negatively charged polyurethane microspheres (PU-A and PU-B) with adjustable zeta potentials as well as the hydroxyapatite-loaded PU microsphere (PU-A/HA) and the dexamethasone-loaded PU microsphere (PU-B/Dex) were successfully prepared, and the oppositely charged microspheres could self-assemble into injectable gels with 3D structures by a mutually electrostatic attraction. The self-assembly PU-A/HA+PU-B/Dex gel exhibited a much higher elastic modulus (about 0.20 MPa) and excellent shear-thinning and self-recovery behaviors, which would allow the gel to be injected through a fine syringe to fill the irregular defect. The in vitro and in vivo experiments demonstrated that the coexistence of HA and Dex in PU-A/HA+PU-B/Dex gel had a synergistic effect on cell differentiation and accelerating new bone formation, displaying a good prospect as an injectable gel for bone repair in minimally invasive surgery.
Collapse
Affiliation(s)
- Yi Hou
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan 610041, PR China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yubao Li
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University , Guangzhou, Guangdong 510275, PR China
| | - Dongmei Han
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University , Guangzhou, Guangdong 510275, PR China
| | - Chen Chen
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yuan Yang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3E3, Canada
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan 610041, PR China
| |
Collapse
|
36
|
A Comprehensive Systematic Study on Thermoresponsive Gels: Beyond the Common Architectures of Linear Terpolymers. Polymers (Basel) 2017; 9:polym9010031. [PMID: 30970709 PMCID: PMC6432086 DOI: 10.3390/polym9010031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
In this study, seven thermoresponsive methacrylate terpolymers with the same molar mass (MM) and composition but various architectures were successfully synthesized using group transfer polymerization (GTP). These terpolymers were based on tri(ethylene glycol) methyl ether methacrylate (TEGMA, A unit), n-butyl methacrylate (BuMA, B unit), and 2-(dimethylamino)ethyl methacrylate (DMAEMA, C unit). Along with the more common ABC, ACB, BAC, and statistical architectures, three diblock terpolymers were also synthesized and investigated for the first time, namely (AB)C, A(BC), and B(AC); where the units in the brackets are randomly copolymerized. Two BC diblock copolymers were also synthesized for comparison. Their hydrodynamic diameters and their effective pKas were determined by dynamic light scattering (DLS) and hydrogen ion titrations, respectively. The self-assembly behavior of the copolymers was also visualized by transmission electron microscopy (TEM). Both dilute and concentrated aqueous copolymer solutions were extensively studied by visual tests and their cloud points (CP) and gel points were determined. It is proven that the aqueous solution properties of the copolymers, with specific interest in their thermoresponsive properties, are influenced by the architecture, with the ABC and A(BC) ones to show clear sol-gel transition.
Collapse
|
37
|
Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W. Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 2016; 107:192-205. [PMID: 27432797 DOI: 10.1016/j.addr.2016.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 11/29/2022]
Abstract
Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG-PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels.
Collapse
Affiliation(s)
- Arijit Basu
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel.
| | - Konda Reddy Kunduru
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel
| | - Sindhu Doppalapudi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel.
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
38
|
Abstract
Tissue engineering aims to repair the damaged tissue by transplantation of cells or introducing bioactive factors in a biocompatible scaffold. In recent years, biodegradable polymer scaffolds mimicking the extracellular matrix have been developed to promote the cell proliferation and extracellular matrix deposition. The biodegradable polymer scaffolds thus act as templates for tissue repair and regeneration. This article reviews the updated information regarding various types of natural and synthetic biodegradable polymers as well as their functions, physico-chemical properties, and degradation mechanisms in the development of biodegradable scaffolds for tissue engineering applications, including their combination with 3D printing.
Collapse
Affiliation(s)
- Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| | | | | |
Collapse
|
39
|
Omrani I, Babanejad N, Shendi HK, Nabid MR. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:607-616. [PMID: 27770933 DOI: 10.1016/j.msec.2016.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/25/2016] [Accepted: 09/17/2016] [Indexed: 12/16/2022]
Abstract
Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst. The resulting polyurethane self-assembles into nanocarrier in water. The dynamic light scattering (DLS) measurements and scanning electron microscope (SEM) revealed fast swelling and disruption of nanocarriers under an intracellular reduction-mimicking environment. The in vitro release studies showed that DOX was released in a controlled and redox-dependent manner. MTT assays showed that DOX-loaded WPU had a high in vitro antitumor activity in both HDF noncancer cells and MCF- 7 cancer cells. In addition, it is found that the blank WPU nanocarriers are nontoxic to HDF and MCF-7 cells even at a high concentration of 2mg/mL. Hence, nanocarriers based on disulfide labeled WPU have appeared as a new class of biocompatible and redox-degradable nanovehicle for efficient intracellular drug delivery.
Collapse
Affiliation(s)
- Ismail Omrani
- Department of polymer, Faculty of Chemistry, Shahid Beheshti University, G.C. 1983963411, Tehran, Iran
| | - Niloofar Babanejad
- Department of polymer, Faculty of Chemistry, Shahid Beheshti University, G.C. 1983963411, Tehran, Iran
| | - Hasan Kashef Shendi
- Department of polymer, Faculty of Chemistry, Shahid Beheshti University, G.C. 1983963411, Tehran, Iran
| | - Mohammad Reza Nabid
- Department of polymer, Faculty of Chemistry, Shahid Beheshti University, G.C. 1983963411, Tehran, Iran.
| |
Collapse
|
40
|
Zhang HB, Xing TL, Yin RX, Shi Y, Yang SM, Zhang WJ. Three-dimensional bioprinting is not only about cell-laden structures. Chin J Traumatol 2016; 19:187-92. [PMID: 27578372 PMCID: PMC4992174 DOI: 10.1016/j.cjtee.2016.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 02/04/2023] Open
Abstract
In this review, we focused on a few obstacles that hinder three-dimensional (3D) bioprinting process in tissue engineering. One of the obstacles is the bioinks used to deliver cells. Hydrogels are the most widely used bioink materials; however, they aremechanically weak in nature and cannot meet the requirements for supporting structures, especially when the tissues, such as cartilage, require extracellular matrix to be mechanically strong. Secondly and more importantly, tissue regeneration is not only about building all the components in a way that mimics the structures of living tissues, but also about how to make the constructs function normally in the long term. One of the key issues is sufficient nutrient and oxygen supply to the engineered living constructs. The other is to coordinate the interplays between cells, bioactive agents and extracellular matrix in a natural way. This article reviews the approaches to improve the mechanical strength of hydrogels and their suitability for 3D bioprinting; moreover, the key issues of multiple cell lines coprinting with multiple growth factors, vascularization within engineered living constructs etc. were also reviewed.
Collapse
Affiliation(s)
- Hong-Bo Zhang
- Complex and Intelligent Research Centre, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Tian-Long Xing
- Complex and Intelligent Research Centre, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Rui-Xue Yin
- Complex and Intelligent Research Centre, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong Shi
- Complex and Intelligent Research Centre, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Shi-Mo Yang
- Complex and Intelligent Research Centre, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Jun Zhang
- Complex and Intelligent Research Centre, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
41
|
Hu J, Peng K, Guo J, Shan D, Kim GB, Li Q, Gerhard E, Zhu L, Tu W, Lv W, Hickner MA, Yang J. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17499-17510. [PMID: 27326894 DOI: 10.1021/acsami.6b02131] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.
Collapse
Affiliation(s)
- Jianqing Hu
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, China
| | - Kaimei Peng
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, China
| | | | | | | | | | | | | | - Weiping Tu
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, China
| | - Weizhong Lv
- College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen 518060, China
| | | | | |
Collapse
|
42
|
Voorhaar L, Hoogenboom R. Supramolecular polymer networks: hydrogels and bulk materials. Chem Soc Rev 2016; 45:4013-31. [PMID: 27206244 DOI: 10.1039/c6cs00130k] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular polymer networks are materials crosslinked by reversible supramolecular interactions, such as hydrogen bonding or electrostatic interactions. Supramolecular materials show very interesting and useful properties resulting from their dynamic nature, such as self-healing, stimuli-responsiveness and adaptability. Here we will discuss recent progress in polymer-based supramolecular networks for the formation of hydrogels and bulk materials.
Collapse
Affiliation(s)
- Lenny Voorhaar
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | | |
Collapse
|