1
|
Duan A, Gu F, Jiang X, Du J, Shao D, Xu C. Washable Superhydrophobic Cotton Fabric with Photothermal Self-Healing Performance Based on Nanocrystal-MXene. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9923-9936. [PMID: 39874590 DOI: 10.1021/acsami.4c21715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth. Superior photothermal conversion of the SPS cotton fabric performance enables its 10.5-56.8 °C greater temperature than that of the pure hydrophobic cotton fabric under different simulated solar light intensities. After washing, the SPS cotton fabric can spontaneously restore superhydrophobicity with ≈100% efficiency by 30 mW·cm-2 solar light irradiation; in contrast, the single superhydrophobic fabrics recover only ≈71.2%. Even after 10 washing cycles, the recovery efficiency of the SPS cotton fabric only decreases by 0.1%, exhibiting excellent laundering durability. The SPS cotton fabric can retain ultralong time antifrosting (2760 s) and antifreezing (4080 s) capacities due to sustainable water repellency. Remarkably, the excellent self-healing capability of the SPS cotton fabric is attributed to the fact that the coiled nonpolar alkane chains can be restored to a straight state by autothermal drive, confirmed through element analyses and molecular dynamics simulations.
Collapse
Affiliation(s)
- Anyang Duan
- Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
| | - Fuyang Gu
- Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaodong Jiang
- Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
| | - Jinmei Du
- Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
| | - Dongyan Shao
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, China
| | - Changhai Xu
- Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
2
|
Cabrera-Quiñones NC, López-Méndez LJ, Cruz-Hernández C, Guadarrama P. Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine. Int J Mol Sci 2024; 26:36. [PMID: 39795895 PMCID: PMC11719597 DOI: 10.3390/ijms26010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine.
Collapse
Affiliation(s)
| | - Luis José López-Méndez
- Biological Systems Deparment, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Villa Quietud, Mexico City 04960, Mexico;
| | - Carlos Cruz-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05300, Mexico;
| | - Patricia Guadarrama
- Materials Research Institute, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
3
|
You T, Guo G, Li W. Waterborne Liquid-like Coatings with High Transparency, Superior Scratch Resistance, and Antismudge Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43907-43917. [PMID: 39110772 DOI: 10.1021/acsami.4c06278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The aqueous formulation of antismudge coatings is a crucial step for environmental protection and pollution reduction. However, the inferior mechanical durability of waterborne antismudge coatings poses challenges for their practical application. Herein, we developed a fully waterborne antismudge coating with excellent scratch resistance by preparing hyperbranched amine-rich polysiloxane (HySPx) for antismudge ability and epoxy-rich zirconium-based aqueous solution (ZAS) for mechanical performance. The former is obtained by combining SPx, polydimethylsiloxane modified by 3-isocyanatopropyltriethoxysilane (IPTS), with 3-aminopropyltriethoxysilane (KH550), and the latter is synthesized using zirconium propoxide solution (TPOZ) with 3-glycidyloxypropyltrimethoxysilane (KH560). This report investigates the effects of the chain length and content of SPx on the performance of the coating. The results indicate that the coating exhibits optimal comprehensive performance when the molecular weight of polydimethylsiloxane is 4.5 kDa, and the mass fraction of SPx in HySPx is 1.5%. The coating possesses high transparency similar to glass, good adhesion (≈3 MPa) to various substrates, high hardness (8H), flexibility (2.5 mm bending radius), and exceptional antismudge property. More importantly, the coating can still maintain excellent antismudge property even after enduring 400 cycles of abrasion with steel wool. Furthermore, the rapid enrichment of polydimethylsiloxane on the coating surface endows the coating with excellent lubrication ability, allowing most common liquid stains to slide off the coating surface. Moreover, the rewritability of the coating remains stable even after writing traces that have persisted on its surface for several weeks. This coating is anticipated to be utilized for protecting foldable electronic screens, vehicles, and other fields.
Collapse
Affiliation(s)
- Tianlong You
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guixuan Guo
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wenbo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
5
|
Niu Y, Chen Y, Liu J, Liu Y, Xiao S, Yang C, Yang T, Huan W. Effect of diets supplemented with coated plant essential oil on the growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Front Vet Sci 2024; 11:1346922. [PMID: 38528870 PMCID: PMC10962761 DOI: 10.3389/fvets.2024.1346922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction This trial was conducted to compare the effect of diets supplemented with plant essential oil (PEO) and coated plant essential oil (CEO) on growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Methods A total of 360 21-day-old weaned piglets were randomly allocated into three groups, namely, CON, PEO, and CEO (basal diets supplemented with 0, 500 mg/kg PEO, and 500 mg/kg CEO, respectively) for a 4-week feeding trial. Results and discussion The results showed that dietary supplementation with CEO improved the average final weight and average daily gain, decreased the diarrhea rate, increased antioxidant enzyme activities, enhanced immunoglobulin concentrations, and decreased concentrations of pro-inflammatory cytokines in the serum of weaned piglets (p < 0.05). In addition, CEO addition increased the fecal concentrations of propionic acid and isovaleric acid of piglets (p < 0.05). Spearman correlation analysis showed that fecal microorganisms at the genus level were closely correlated with the volatile fatty acid concentrations. The present study indicated that PEO and CEO could improve growth performance, enhance immunity, and increase antioxidant capacity by modulating the microbial flora in weaned piglets. Moreover, CEO addition seemed to offer more positive results than of PEO addition.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Yiying Chen
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Yulan Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Shiping Xiao
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Caimei Yang
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Ting Yang
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Wang Q, Yang Z, Feng X, Liu X. Modification of nanocellulose via atom transfer radical polymerization and its reinforcing effect in waterborne UV-curable resin. Int J Biol Macromol 2023; 253:126743. [PMID: 37689290 DOI: 10.1016/j.ijbiomac.2023.126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Cellulose nanocrystals (CNCs) are green reinforcing materials, and their potential has been evaluated in the preparation of waterborne UV-curable resin composites with high-performance. Herein, we present a novel and scalable approach for preparing surface-modified CNCs with acrylic-based polymers to strengthen the compatibility and interaction between CNCs and UV-curable resins. Using tert-butyl acrylate as the monomer, the nanocellulose grafted copolymer CNC-g-PtBA was successfully synthesized via atom transfer radical polymerization (ATRP) in the presence of a macromolecular initiator. Then, the CNC-g-PtBA is blended into the acrylic resin as a nanofiller to prepare the UV-curable nanocomposite. The results indicated that the contact angle of the CNCs increased from 38.7° to approximately 74.8°, and their thermal stability was significantly improved after graft modification. This contributed to the effective alleviation of the agglomeration phenomenon of nanocomposites due to the high hydrophilicity of pure CNCs. Notably, not only was the UV curing efficiency of the nanocomposites greatly increased but the mechanical properties were also further enhanced. Specifically, with the addition of 0.5 wt% CNC-g-PtBA, the curing time of the nanocomposite was shortened from >30 mins down to approximately 6 mins, and the bending strength was increased from 10 MPa for the original resin and 5 MPa for the addition of pure CNCs to 14.3 MPa, and the bending modulus was also greatly increased (up to approximately 730 MPa). Compared to pure CNCs, they are compatible with the resin, exhibiting high mechanical strength and flexibility, and have virtually no effect on the light transmission of the nanocomposites. Additionally, dielectric analysis (DEA) was used to monitor the dielectric constant and conductivity of the UV-curable nanocomposites in real time to further characterize their curing kinetics. The permittivity of these nanocomposites increased by 125 % compared to pristine resin, which shows potential for applications in high dielectric composites or for improving electrical conductivity. This work provides a feasible method for preparing UV-curable nanocomposites with high curing efficiency and permittivity, realizing a wider application of this high-performance nanocomposite.
Collapse
Affiliation(s)
- Qi Wang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaozhe Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Xinhao Feng
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing 210037, China.
| | - Xinyou Liu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Deng H, Chen Q, Xie F, Zhao C, Pan J, Cheng Q, Zhang C. Castor oil-based waterborne polyurethane/tunicate cellulose nanocrystals nanocomposites for wearable strain sensors. Carbohydr Polym 2023; 302:120313. [PMID: 36604095 DOI: 10.1016/j.carbpol.2022.120313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
In this study, tunicate cellulose nanocrystals (TCNCs) were introduced into castor oil-based waterborne polyurethane (WPU) to prepare bio-based nanocomposites through a simple solution blending method. The effect of TCNCs content on the particle size and stability of the composite dispersions, as well as the thermophysical and mechanical properties of the composite films were studied and discussed. The unique structure and properties of TCNCs, such as high crystallinity, large aspect ratio and high modulus, not only greatly improved the storage stability of WPU, but also showed significant reinforcing/toughening effects and excellent compatibility to WPU. By drip-coating silver nanowires (AgNWs) on the surface of the composite films, the flexible strain sensors were fabricated, which showed excellent sensitivity in monitoring human movement.
Collapse
Affiliation(s)
- Henghui Deng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - Fei Xie
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Caimei Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jun Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qiaoyun Cheng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Research Center for Sugarcane Industry, Engineering Technology of Light Industry, Guangzhou 510316, China.
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
8
|
Li C, Guo H, Zhang N, Jin Y, Han K, Yuan J, Pan Z, Pan M. Multifunctional Waterborne Polyurethane Microreactor-Based Approach to Fluorocarbon Composite Latex Coatings with Double Self-Healing and Excellent Synergistic Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4216. [PMID: 36500839 PMCID: PMC9737679 DOI: 10.3390/nano12234216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this article, chlorotrifluoroethylene (CTFE)-based fluorocarbon composite latexes and their coatings are successfully fabricated by an environmentally friendly preparation method based on a new multifunctional waterborne polyurethane (MFWPU) dispersion. It is worth noting that the MFWPU acts as the sole system stabilizer as well as microreactor and simultaneously endows the composite coating with excellent double self-healing performance and adhesion. Moreover, the introduction of a dynamic disulfide bond in the polyurethane dispersion entrusts the coating with excellent scratch self-healing performance. Simultaneously, carbon-carbon double bonds in the polyurethane dispersion increase the compatibility between the core polymer and shell polymer. The fluorine-containing chain segments can be distributed in the coating evenly during the self-assembly film-forming process of composite particles so that the original element composition of the worn coating surface can restore the original element composition after heating, and the coating presents a regeneration ability, which further and verifies the usefulness of the double self-healing model of the coating. Afterward, efficient recovery and durability, which are two contradictory properties of scratch self-healing polymers, are optimized to obtain a composite coating with excellent comprehensive performance. The research results regarding the composite system may provide a valuable reference for the structural design and application of waterborne fluorocarbon functional coatings in the future.
Collapse
Affiliation(s)
- Chao Li
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Huimin Guo
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ning Zhang
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yao Jin
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kai Han
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jinfeng Yuan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, China
| | - Zhicheng Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, China
| | - Mingwang Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
9
|
Fu H, Gong S. Self‐dispersible waterborne comb‐like polyester with alkali resistance and pigment‐dispersion capability. J Appl Polym Sci 2022. [DOI: 10.1002/app.52747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Fu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei China
| | - Shu‐ling Gong
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei China
| |
Collapse
|
10
|
Waterborne polyurethane‐acrylate‐polyaniline: Interfacial hydrogen bonding for enhancing the antistatic, damping, and mechanical properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Affiliation(s)
- Qianhui Liu
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| | - Marek W. Urban
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| |
Collapse
|
12
|
Yang M, Li Y, Dang X. An eco-friendly wood adhesive based on waterborne polyurethane grafted with gelatin derived from chromium shavings waste. ENVIRONMENTAL RESEARCH 2022; 206:112266. [PMID: 34688642 DOI: 10.1016/j.envres.2021.112266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
An environmentally friendly wood adhesive developed from waterborne polyurethane (WPU) grafted gelatin (G) was investigated in this research. First, the G was extracted from chromium shavings waste, and then mixed with a prepolymer emulsion of WPU to synthesis the graft copolymer (WPUG) via a solvent-free emulsion copolymerization. The synthesized copolymer was characterized using the mechanical properties test, TGA, FT-IR, and other analysis technology. The results indicated that the WPUG had a good overall performance. Specifically, the contact angle reached 111.5°, the tensile strength reached 32.91 MPa, the temperature of the maximum weight loss was greater than 350 °C. The WPUG adhesive had excellent bonding power and mechanical properties; the dry bonding strength reached 4.21 MPa when the ratio between free amino groups of the G and isocyanate-groups of the WPU (the R value) was 1.5. This preparation of the graft copolymer not only satisfies the need of environment-friendly wood adhesives, but it also effectively improves the recyclability of chromium shavings waste.
Collapse
Affiliation(s)
- Mao Yang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yanchun Li
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xugang Dang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
13
|
Jiang Y, Wang S, Xu C, Du J. Synthesis and application of hybrid waterborne polyurethane/acrylate dispersion with diol grafting agent containing carbon–carbon double bond. J Appl Polym Sci 2022. [DOI: 10.1002/app.51681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Jiang
- College of Textiles and Clothing Qingdao University Qingdao China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Tai'an China
| | - Shaofei Wang
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textiles Science and Engineering Jiangnan University Wuxi China
| | - Changhai Xu
- College of Textiles and Clothing Qingdao University Qingdao China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Tai'an China
| | - Jinmei Du
- College of Textiles and Clothing Qingdao University Qingdao China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Tai'an China
| |
Collapse
|
14
|
Wang D, Wang Y, He C, Li J, Omoniyi AO, Lu S, Li X, Zhang J, Sun J, Su Z. Demonstration of temperature-sensitive paints with rigorously controlled thickness applied to variously shaped metal substrates with a highly stable connection based on a demulsification-induced fast solidification strategy. NEW J CHEM 2022. [DOI: 10.1039/d1nj06054f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature-sensitive paints with rigorously controlled thickness are in situ fabricated on metal surfaces based on the demulsification-induced fast solidification method.
Collapse
Affiliation(s)
- Dan Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Yaokai Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Caicai He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jiangyan Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Ahmed Olalekan Omoniyi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Siyu Lu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Xiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jianfu Zhang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| |
Collapse
|
15
|
Dong X, Ren J, Duan Y, Wu D, Lin L, Shi J, Jia R, Xu X, He X. Preparation and properties of green
UV
‐curable itaconic acid cross‐linked modified waterborne polyurethane coating. J Appl Polym Sci 2021. [DOI: 10.1002/app.52042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiangbin Dong
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
| | - Jingyu Ren
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
| | - Yanjie Duan
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
| | - Dandan Wu
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
| | - Lin Lin
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
- Research Laboratory for Functional Nanomaterial National Engineering Research Center for Nanotechnology Shanghai China
| | - Jichao Shi
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
| | - Runping Jia
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
- Research Laboratory for Functional Nanomaterial National Engineering Research Center for Nanotechnology Shanghai China
| | - Xiaowei Xu
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Xinyao He
- The Research and Development Department Jiahua Chemical (Shanghai) Co., Ltd. Shanghai China
| |
Collapse
|
16
|
Aazem I, Rathinam P, Pillai S, Honey G, Vengellur A, Bhat SG, Sailaja GS. Active bayerite underpinned Ag2O/Ag: An efficient antibacterial nanohybrid combating microbial contamination. Metallomics 2021; 13:6342163. [PMID: 34351413 DOI: 10.1093/mtomcs/mfab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022]
Abstract
Active surfaces with bactericidal properties are of paramount importance in health care sector as a judicious approach to confront prevalent challenges presented by disastrous pathogenic infections and antibiotic-resistant microbes. Herein, we present Bayerite underpinned Ag2O/Ag (ALD), a nanohybrid with excellent antibacterial and antibiofilm functionalities against tested standard strains and clinical isolates. The multicomponent system coexists and complement each other with respect to phase and functionalities, demonstrated by XRD, XPS and TEM analyses. In situ reduction of Ag+ ions to Ag0 over Bayerite as a stable bound phase is favoured by pH of the reaction, yielding 60-80% bound Ag protruding outwards facilitating active surface for interaction with microbes. ALD has a minimum inhibitory concentration (MIC) of 0.068 mg/mL against clinical isolates: Pseudomonas aeruginosa RRLP1, RRLP2, Acinetobactor baumannii C78 and C80. Disc diffusion assay demonstrated excellent antibacterial activity against standard strains (positive control: standard antibiotic disc, Amikacin). ALD incorporated PMMA films (5 and 10 wt%(PALD-5 and PALD-10) exhibited significant contact killing (99.9%) of clinical isolates in drop-test besides strong antibacterial activity (disc diffusion assay) comparable to that of ALD. ALD exemplified a dose (0.034 mg/mL and 0.017 mg/mL) dependent biofilm inhibition (p < 0.001) and significant eradication of pre-formed biofilms (p < 0.001) by clinical isolates. PALD 5 and PALD 10 significantly declined the number of viable biofilm associated bacteria (99.9%) compared to control. Both ALD and PALD samples are proposed as green antibacterial materials with antibiofilm properties. Results also present ample opportunity to explore PALD as antibacterial and/or antibiofilm coating formulations.
Collapse
Affiliation(s)
- Irthasa Aazem
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala-682022 - India
| | - Prasanth Rathinam
- Department of Biochemistry and Medical Biotechnology Laboratory, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, Kerala -689101, India
| | - Saju Pillai
- Material Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala-695019, India
| | - Gopinathan Honey
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - Ajith Vengellur
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala-682022 - India.,Centre for Excellence in Advanced Materials, Cochin University of Science and Technology, Kochi, Kerala-682022, India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| |
Collapse
|
17
|
Synthesis of bio-based waterborne polyesters as environmentally benign biodegradable material through regulation of unsaturated acid structure. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Controlled preparation and properties of acrylic acid
epoxy‐acrylate
composite emulsion for
self‐crosslinking
coatings. J Appl Polym Sci 2021. [DOI: 10.1002/app.51441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Core/shell colloidal nanoparticles based multifunctional and robust photonic paper via drop-casting self-assembly for reversible mechanochromic and writing. J Colloid Interface Sci 2021; 603:834-843. [PMID: 34237601 DOI: 10.1016/j.jcis.2021.06.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Photonic crystals film that possesses periodic dielectric structure have shown great prospect in developing environmentally friendly paper alternatives due to the unique properties of dye free and non-photobleaching, but their practical application is limited by the weak interaction between colloidal particles. Although some progress has been obtained, it is still a challenge to develop photonic paper with the desired mechanical and optical properties. Herein, multifunctional hard core/soft shell nanoparticles with controlled size are fabricated by semi-continuous seed emulsion polymerization method. Compared with convention colloidal particles, these core/shell nanoparticles can facile self-assemble into large-scale dense ordered structure film via dried at room temperature due to the relatively low glass transition temperature (Tg) of the shell layers. The facile fabrication route enables the continuous high-through put production of the photonic papers. The as-formed papers not only possess the capacity to solvent (water/ethanol) rewritable and multicolor painting, but also can rapidly reversible mechanochromic. Moreover, due to the good compatibility of core/shell interface, these photonic films possess excellent mechanical properties, demonstrating that this multifunctional film makes the fabrication of novel robust rewritable papers possible and enables visual monitoring of deformation degree.
Collapse
|
20
|
Arias A, González-García S, Feijoo G, Moreira MT. Environmental benefits of soy-based bio-adhesives as an alternative to formaldehyde-based options. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29781-29794. [PMID: 33566296 DOI: 10.1007/s11356-021-12766-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The restrictions imposed on the use of formaldehyde in wood panel adhesives have been the driving force behind the development of formaldehyde-free resins for the manufacture of wood products. Considering as a boundary condition the idea that the use of fossil-based raw materials should be replaced by biological options, there is growing interest in the environmental assessment of different alternatives for soy-based adhesives, as possible options to replace commonly used synthetic resins. This report includes the environmental profiles of soy-based adhesives taking into account the life cycle assessment (LCA) methodology. In addition, in order to increase their potential to replace synthetic resins, a sensitivity analysis of the main contributors to environmental damage was performed, thus giving an open guide for further research and improvement. This study aims to provide innovative alternatives and new trends in the field of environmentally friendly bio-adhesives for the wood panel industry.
Collapse
Affiliation(s)
- Ana Arias
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Sara González-García
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Teresa Moreira
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Chen M, Zhang X, Luo C, Qi R, Peng H, Lin H. Highly Stable Waterborne Luminescent Inks Based on MAPbBr 3@PbBr(OH) Nanocrystals for LEDs and Anticounterfeit Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20622-20632. [PMID: 33886265 DOI: 10.1021/acsami.1c01905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Waterborne polymers are advantageous in terms of cost, convenience, sustainability, and environmental friendliness. As lead halide perovskite (LHP) nanocrystals suffer from fast degradation in the presence of water, it is challenging to encapsulate LHP nanocrystals in waterborne polymers. In this work, luminescent MAPbBr3@PbBr(OH) nanocrystals were synthesized via the aqueous grinding process in the presence of 2-methyl-imidazole (2-MIM) and oleylamime (OAm). 2-MIM triggers the formation of the PbBr(OH) matrix, and OAm acts as a size-control ligand to control the size of MAPbBr3@PbBrOH particles in the nanoscale range. Highly stable waterborne luminescent inks were successfully prepared by blending MAPbBr3@PbBr(OH) nanocrystals with waterborne polymers, including poly(vinylpyrrolidone), poly(vinyl acetate), and acrylate resins. Owning to the dual protection of the polymer matrix and PbBr(OH) to LHP quantum dots (QDs), the luminescent films exhibit excellent stability to the environment under thermal and light irradiation. The ink can be used as a phosphor to fabricate down-converting green and white light-emitting diodes (LEDs). Waterborne anticounterfeiting inks suitable for screen printing were prepared via formula tuning for the anticounterfeit purpose. The anticounterfeiting luminescent patterns can be screen printed on paper, cloth, and poly(ethylene terephthalate) (PET), with encryption and decryption of information being accurately and conveniently realized by switching UV irradiation.
Collapse
Affiliation(s)
- Maosheng Chen
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Xu Zhang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Chunhua Luo
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Hui Peng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Hechun Lin
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| |
Collapse
|
22
|
Martins TD, Ribeiro T, Farinha JPS. Overview of Silica-Polymer Nanostructures for Waterborne High-Performance Coatings. Polymers (Basel) 2021; 13:1003. [PMID: 33805231 PMCID: PMC8037112 DOI: 10.3390/polym13071003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Combining organic and inorganic components at a nanoscale is an effective way to obtain high performance coating materials with excellent chemical and physical properties. This review focuses on recent approaches to prepare hybrid nanostructured waterborne coating materials combining the mechanical properties and versatility of silica as the inorganic filler, with the flexural properties and ease of processing of the polymer matrix. We cover silica-polymer coupling agents used to link the organic and inorganic components, the formation of hybrid films from these silica-polymer nanostructures, and their different applications. These hybrid nanostructures can be used to prepare high performance functional coatings with different properties from optical transparency, to resistance to temperature, hydrophobicity, anti-corrosion, resistance to scratch, and antimicrobial activity.
Collapse
Affiliation(s)
| | | | - José Paulo S. Farinha
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (T.D.M.); (T.R.)
| |
Collapse
|
23
|
Xu J, Li X, Liu R, Shang Z, Long L, Qiu H, Ni Y. Dialdehyde modified cellulose nanofibers enhanced the physical properties of decorative paper impregnated by aldehyde-free adhesive. Carbohydr Polym 2020; 250:116941. [PMID: 33049853 DOI: 10.1016/j.carbpol.2020.116941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Impregnated decorative paper was an important wood-based panel finishing material. However, traditional impregnated decorative paper was impregnated with melamine-formaldehyde resin, which will release formaldehyde and harm the human health. To solve this problem, small molecule polyacrylate-polyethylene glycol (PEG) adhesive was used to achieve the non-formaldehyde addition of the impregnation system. The dialdehyde modified CNF (D-CNF), modified by sodium periodate (NaIO4), and triethylenediamine were introduced to enhance the surface properties of the impregnated decorative paper. The results showed that the incorporation of D-CNF and triethylenediamine imparted excellent physical strength and surface properties to impregnated decorative paper. When the dosage of 0.3 wt% D-CNF and 3 mL/100 g triethylenediamine in the compound emulsion, the hardness, abrasion resistant value and surface bonding strength of impregnated decorative paper adhered fiberboard reached 3H, 330 r of damage and 1.13 MPa, respectively. Thus, it could be effectively used for making high-performance formaldehyde-free impregnated decorative paper.
Collapse
Affiliation(s)
- Jianfeng Xu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, PR China
| | - Xiaoyan Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, PR China
| | - Ru Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, PR China.
| | - Zhen Shang
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NBE3B5A3, Canada
| | - Ling Long
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, PR China
| | - Hongyun Qiu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, PR China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NBE3B5A3, Canada.
| |
Collapse
|
24
|
Upadhyaya S, Konwar A, Chowdhury D, Sarma NS. High-performance water-borne fluorescent acrylic-based adhesive: synthesis and application. RSC Adv 2020; 10:25408-25417. [PMID: 35518622 PMCID: PMC9055326 DOI: 10.1039/d0ra03782f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
Water-borne adhesives have immense importance in cellulose-based materials, where their durability, handling, and strength remain to be a major concern. The present work demonstrates the development of three water-borne adhesives, namely, poly(1-vinyl-2-pyrrolidone-co-acrylic acid), poly(acrylonitrile-co-acrylic acid), and poly(1-vinyl-2-pyrrolidone-co-acrylonitrile-co-acrylic acid) applicable for cellulose-based materials. These acrylic-acid based adhesives were characterized by Fourier-transform infra-red spectroscopy, thermogravimetric analysis, X-ray diffraction, gel permeation chromatography, and universal testing machine. The synthesized polymer adhesives can be stored in the powder form for a longer period, thus utilizing less space. In order to use as adhesives, suitable formulations can be prepared in water. The adhesives show thermal stability up to 300 °C. Our studies show that poly(1-vinyl-2-pyrrolidone-co-acrylonitrile-co-acrylic acid) showed higher lap shear strength (ASTM D-906) than commercially available adhesives. In addition, these adhesives, being fluorescent in nature, can be detected under UV light and thus are applicable for the detection of fractured joints of any specimen. This property also helps in anti-counterfeiting applications, thus adding further to their utility. Synthesis and application of a water-borne fluorescent acrylic adhesive, which can be stored as a powder for long-term use.![]()
Collapse
Affiliation(s)
- Samiran Upadhyaya
- Advanced Materials Laboratory, Institute of Advanced Study in Science and Technology Paschim Boragaon Guwahati-35 Assam India
| | - Achyut Konwar
- Materials Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology Paschim Boragaon Guwahati-35 Assam India
| | - Devasish Chowdhury
- Materials Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology Paschim Boragaon Guwahati-35 Assam India
| | - Neelotpal Sen Sarma
- Advanced Materials Laboratory, Institute of Advanced Study in Science and Technology Paschim Boragaon Guwahati-35 Assam India
| |
Collapse
|
25
|
Ali N, Bilal M, Khan A, Ali F, Iqbal HM. Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation. Trends Analyt Chem 2020; 127:115902. [DOI: 10.1016/j.trac.2020.115902] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Islam S, Velev OD. Mechanism and control of "coffee-ring erosion" phenomena in structurally colored ionomer films. SOFT MATTER 2020; 16:2683-2694. [PMID: 32026917 DOI: 10.1039/c9sm02457c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ionomer polyesters have polymer backbones functionalized with charged groups that make them water-dispersible. Despite the widespread use of ionomer polymers in environmentally friendly coatings without volatile organic solvents, the fundamental understanding of their film formation properties is still limited. In the study, we deposited polyester nanofilms of brilliant structural colors and correlated the macroscale optical properties to the microscale thickness of the thin films. We found that sessile water droplets deposited on these films drive the formation of a rich variety of structures by an evaporation-induced effect of "coffee-ring erosion". The ionomers spontaneously get partially re-dispersed in the form of nanoparticles in the sessile droplets and driven by convective evaporation flows, become redistributed in multiple colorful ring patterns. By using the structural colors as means to follow the polymer redistribution, we characterized further the coffee-ring patterns and found that the generated patterns are dictated by polymer composition but are mostly independent on molecular weight. As expected by colloidal theory, this phenomenon was suppressed in presence of electrolytes. Furthermore, we show that the integrity of these thin polyester films can be significantly improved by thermal densification without any further chemical curing.
Collapse
Affiliation(s)
- Sabina Islam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
27
|
Zhang W, Wang D, Wang JX, Pu Y, Chen JF. High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1895-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Preparation of green waterborne polyurethane with improved hydrolysis repellency from CO2 derived amino-alcohol. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Fang Y, Du X, Cheng X, Zhou M, Du Z, Wang H. Preparation of living and highly stable blended polyurethane emulsions for self-healing films with enhancive toughness and recyclability. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Li R, Huang T, Gong S. Preparation of high hydroxyl self‐emulsifying polyester and compounding with acrylate. J Appl Polym Sci 2020. [DOI: 10.1002/app.48278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rui‐Qi Li
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 People's Republic of China
| | - Tao Huang
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 People's Republic of China
| | - Shu‐Ling Gong
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 People's Republic of China
| |
Collapse
|
32
|
Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M, Takeya S, Ruppel C, Yang J, English NJ, Schicks JM, Edlmann K, Mehrabian H, Aman ZM, Tohidi B. Gas hydrates in sustainable chemistry. Chem Soc Rev 2020; 49:5225-5309. [DOI: 10.1039/c8cs00989a] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review includes the current state of the art understanding and advances in technical developments about various fields of gas hydrates, which are combined with expert perspectives and analyses.
Collapse
Affiliation(s)
- Aliakbar Hassanpouryouzband
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Edris Joonaki
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Mehrdad Vasheghani Farahani
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba 305-8565
- Japan
| | | | - Jinhai Yang
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Niall J. English
- School of Chemical and Bioprocess Engineering
- University College Dublin
- Dublin 4
- Ireland
| | | | - Katriona Edlmann
- School of Geosciences
- University of Edinburgh
- Grant Institute
- Edinburgh
- UK
| | - Hadi Mehrabian
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Zachary M. Aman
- Fluid Science & Resources
- School of Engineering
- University of Western Australia
- Perth
- Australia
| | - Bahman Tohidi
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| |
Collapse
|
33
|
Wang Y, Chen R, Li T, Ma P, Zhang H, Du M, Chen M, Dong W. Antimicrobial Waterborne Polyurethanes Based on Quaternary Ammonium Compounds. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rui Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
34
|
Samanta P, Kapat K, Maiti S, Biswas G, Dhara S, Dhara D. pH-labile and photochemically cross-linkable polymer vesicles from coumarin based random copolymer for cancer therapy. J Colloid Interface Sci 2019; 555:132-144. [DOI: 10.1016/j.jcis.2019.07.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022]
|
35
|
He Y, Li Q, Ma C, Xie D, Li L, Zhao Y, Shan D, Chomos SK, Dong C, Tierney JW, Sun L, Lu D, Gui L, Yang J. Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration. Acta Biomater 2019; 93:180-191. [PMID: 30926580 DOI: 10.1016/j.actbio.2019.03.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate disodium (β-GP-Na) and glycerophosphate calcium (GP-Ca), incorporated through a simple and convenient one-pot condensation reaction, which might address the above challenge in the search of suitable orthopedic biomaterials. Tensile strength of the resultant poly (octamethylene citrate glycerophosphate), POC-βGP-Na and POC-GP-Ca, was as high as 28.2 ± 2.44 MPa and 22.76 ± 1.06 MPa, respectively. The initial modulus ranged from 5.28 ± 0.56 MPa to 256.44 ± 22.88 MPa. The mechanical properties and degradation rate of POC-GP could be controlled by varying the type of salts, and the feeding ratio of salts introduced. Particularly, POC-GP-Ca demonstrated better cytocompatibility and the corresponding composite POC-GP-Ca/hydroxyapatite (HA) also elicited improved osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro, as compared to POC-βGP-Na/HA and POC/HA. The superior in-vivo performance of POC-GP-Ca/HA microparticle scaffolds in promoting bone regeneration over POC-βGP-Na/HA and POC/HA was further confirmed in a rabbit femoral condyle defect model. Taken together, the tunability of mechanical properties and degradation rates, together with the osteopromotive nature of POC-GP polymers make these materials, especially POC-GP-Ca well suited for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate disodium (β-GPNa) and glycerophosphate calcium (GPCa), incorporated through a simple and convenient one-pot condensation reaction. The resultant POC-GP polymers showed significantly improved mechanical property and tunable degradation rate. Within the formulation investigated, POC-GPCa/HA composite further demonstrated better bioactivity in favoring osteogenic differentiation of hMSCs in vitro and promoted bone regeneration in rabbit femoral condyle defects. The development of POC-GP expands the repertoire of the well-recognized citrate-based biomaterials to meet the ever-increasing needs for functional biomaterials in tissue engineering and other biomedical applications.
Collapse
|
36
|
Waterborne Polyurethanes as a New and Promising Class of Kinetic Inhibitors for Methane Hydrate Formation. Sci Rep 2019; 9:9797. [PMID: 31278321 PMCID: PMC6611824 DOI: 10.1038/s41598-019-46274-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/14/2019] [Indexed: 11/25/2022] Open
Abstract
A facile, new and promising technique based on waterborne polymers for designing and synthesizing kinetic hydrate inhibitors (KHIs) has been proposed to prevent methane hydrate formation. This topic is challenging subject in flow assurance problems in gas and oilfields. Proposed technique helps to get KHIs with required number and distance of hydrophilic and hydrophobic groups in molecule and good solubility in water. The performance of these new KHIs was investigated by high pressure micro-differential scanning calorimeter (HP-μDSC) and high-pressure autoclave cell. The results demonstrated the high performance of these inhibitors in delay the induction time (10–20 times) and reduce the hydrate growth rate (3 times). Also they did not increase hydrate dissociation temperature in comparison with pure water and show thermodynamic inhibition as well. Inhibition effect of synthesized polymers is improved with the increase of concentration significantly. Since this is the first report of the use of waterborne polymers as kinetic hydrate inhibitor, we expect that KHIs based on waterborne-based polymers can be a prospective option for preventing methane hydrate formation.
Collapse
|
37
|
Zhang Q, Deng Y, Fu Z, Zhang H. Effects of the molecular structure on the vibration reduction and properties of hyperbranched waterborne polyurethane–acrylate for damping coatings. J Appl Polym Sci 2019. [DOI: 10.1002/app.47733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qiuxue Zhang
- Engineering Research Center of Synthetic Resin and Special Fiber (Ministry of Education), School of Chemical EngineeringChangchun University of Technology Changchun 130012 China
| | - Yunjiao Deng
- Engineering Research Center of Synthetic Resin and Special Fiber (Ministry of Education), School of Chemical EngineeringChangchun University of Technology Changchun 130012 China
| | - Zhongyu Fu
- Engineering Research Center of Synthetic Resin and Special Fiber (Ministry of Education), School of Chemical EngineeringChangchun University of Technology Changchun 130012 China
| | - Huixuan Zhang
- Engineering Research Center of Synthetic Resin and Special Fiber (Ministry of Education), School of Chemical EngineeringChangchun University of Technology Changchun 130012 China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Science Changchun 130022 China
| |
Collapse
|
38
|
Wang S, Du X, Jiang Y, Xu J, Zhou M, Wang H, Cheng X, Du Z. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus–nitrogen flame retardant. J Colloid Interface Sci 2019; 537:197-205. [DOI: 10.1016/j.jcis.2018.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/27/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
|
39
|
Lin GQ, Chen HY, Zhou HJ, Zhou XH, Xu H. Avermectin/polyacrylate nanoparticles: preparation, characterization, anti-UV and sustained release properties. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1473866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guan-Quan Lin
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Hua-Yao Chen
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Hong-Jun Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Xin-Hua Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Hua Xu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| |
Collapse
|
40
|
Huo J, Hu Z, Chen D, Luo S, Wang Z, Gao Y, Zhang M, Chen H. Preparation and Characterization of Poly-1,2,3-triazole with Chiral 2(5 H)-Furanone Moiety as Potential Optical Brightening Agents. ACS OMEGA 2017; 2:5557-5564. [PMID: 31457821 PMCID: PMC6644745 DOI: 10.1021/acsomega.7b00196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/25/2017] [Indexed: 05/26/2023]
Abstract
A series of novel heterocyclic polymers with fluorescent brightening properties are synthesized via Click polymerization. Fast synthesis of poly-1,2,3-triazoles (M n ≥ 9.31 kDa) is described herein, with a high yield of up to 95%. The Click polymerization approach has a number of advantages, including facile operation and outstanding isolation yield. The resultant polymers have a high thermal stability, excellent UV resistance, as well as acid and light fastness. On embedding with optical brightening agents, the polymers display strong fluorescent brightening properties in the tetrahydrofuran solution. Moreover, these products have a strong solution emission intensity and extraordinary photostability under UV light.
Collapse
Affiliation(s)
- Jingpei Huo
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R.
China
| | - Zhudong Hu
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Dongchu Chen
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Shihe Luo
- School
of Chemistry and Environment, South China
Normal University, Guangzhou 510006, P. R. China
| | - Zhaoyang Wang
- School
of Chemistry and Environment, South China
Normal University, Guangzhou 510006, P. R. China
| | - Yonghui Gao
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Min Zhang
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Hong Chen
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| |
Collapse
|
41
|
Bagherzadeh M, Bayrami A, Kia R, Amini M, Cook LJK, Raithby PR. Two new copper(II) complexes with chelating N,O-type bidentate ligands: Synthesis, characterization, crystal structure and catalytic activity in azide–alkyne cycloaddition reaction. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Lu Y, Yuan W. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29167-29176. [PMID: 28796484 DOI: 10.1021/acsami.7b09160] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Superhydrophobic/superoleophilic and reinforced ethyl cellulose (SEC) sponges were prepared by cross-linking EC with epichlorohydrin (ECH) and complexing with silanized carbon nanotubes (Si-CNTs) followed by coating nanosilica on the surface of porous sponges and subsequent modification with hexadecyltrimethoxysilane (HDTMS). These synergistic strategies endowed the SEC sponges with the superhydrophobic/superoleophilic properties (θwater = 158.2°, θoil = 0°, sliding angle = 3°) and outstanding mechanical properties (could bear the pressure of 28.6 kPa without damage). The unique micronanostructures and properties of the porous sponges were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and water contact angle measurements. The as prepared SEC sponges with high mechanical strength were able to collect a wide range of oils and organic solvents with absorption capacity up to 64 times of their own weight. Furthermore, the absorption capacity of the sponges decreased slightly to 86.4% of its initial value after 50 separation cycles, suggesting their excellent recyclable performance. The high efficiency and endurability of the sponges during oil/water separation made them ideal absorbent in oil spillage cleanup.
Collapse
Affiliation(s)
- Yeqiang Lu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University , Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University , Shanghai 201804, People's Republic of China
| |
Collapse
|
43
|
Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Adv 2017. [DOI: 10.1039/c6ra27012c] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most recent advances of the synthesis of poly-1,2,3-triazole-based functional materials.
Collapse
Affiliation(s)
- Jingpei Huo
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Huawen Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Zhang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Xiaohong Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
- Department of Chemistry
- University of Oslo
| | - Dongchu Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Jinwen Liu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Guifeng Xiao
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Yang Wang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Zhongliu Wen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| |
Collapse
|
44
|
Peng K, Zou T, Ding W, Wang R, Guo J, Round JJ, Tu W, Liu C, Hu J. Development of contact-killing non-leaching antimicrobial guanidyl-functionalized polymers via click chemistry. RSC Adv 2017. [DOI: 10.1039/c7ra02706k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A new contact-killing and non-leaching antimicrobial polymer was prepared by a robust, efficient and orthogonal click-chemistry.
Collapse
Affiliation(s)
- Kaimei Peng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Tao Zou
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wei Ding
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Ruonan Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jinshan Guo
- Aleo BME
- Inc.200 Innovation Blvd
- State College
- USA
| | | | - Weiping Tu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chao Liu
- Aleo BME
- Inc.200 Innovation Blvd
- State College
- USA
| | - Jianqing Hu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
45
|
Guo J, Kim GB, Shan D, Kim JP, Hu J, Wang W, Hamad FG, Qian G, Rizk EB, Yang J. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials 2017; 112:275-286. [PMID: 27770631 PMCID: PMC5121090 DOI: 10.1016/j.biomaterials.2016.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
For the first time, a convenient copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry) was successfully introduced into injectable citrate-based mussel-inspired bioadhesives (iCMBAs, iCs) to improve both cohesive and wet adhesive strengths and elongate the degradation time, providing numerous advantages in surgical applications. The major challenge in developing such adhesives was the mutual inhibition effect between the oxidant used for crosslinking catechol groups and the Cu(II) reductant used for CuAAC, which was successfully minimized by adding a biocompatible buffering agent typically used in cell culture, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), as a copper chelating agent. Among the investigated formulations, the highest adhesion strength achieved (223.11 ± 15.94 kPa) was around 13 times higher than that of a commercially available fibrin glue (15.4 ± 2.8 kPa). In addition, dual-crosslinked (i.e. click crosslinking and mussel-inspired crosslinking) iCMBAs still preserved considerable antibacterial and antifungal capabilities that are beneficial for the bioadhesives used as hemostatic adhesives or sealants for wound management.
Collapse
Affiliation(s)
- Jinshan Guo
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria B Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dingying Shan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jimin P Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jianqing Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Wang
- Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Fawzi G Hamad
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Elias B Rizk
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, 17033, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|