1
|
Ali H, Orooji Y, Alzahrani AYA, Hassan HMA, Ajmal Z, Yue D, Hayat A. Advanced Porous Aromatic Frameworks: A Comprehensive Overview of Emerging Functional Strategies and Potential Applications. ACS NANO 2025; 19:7482-7545. [PMID: 39965777 DOI: 10.1021/acsnano.4c16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Porous aromatic frameworks (PAFs) are a fundamental group of porous materials characterized by their distinct structural features and large surface areas. These materials are synthesized from aromatic building units linked by strong carbon-carbon bonds, which confer exceptional rigidity and long-term stability. PAFs functionalities may arise directly from the intrinsic chemistry of their building units or through the postmodification of aromatic motifs using well-defined chemical processes. Compared to other traditional porous materials such as zeolites and metallic-organic frameworks, PAFs demonstrate superior stability under severe chemical treatments due to their robust carbon-carbon bonding. Even in challenging environments, the chemical stability and ease of functionalization of PAFs demonstrate their flexibility and specificity. Research on PAFs has significantly expanded and accelerated over the past decade, necessitating a comprehensive overview of key advancements in this field. This review provides an in-depth analysis of the recent advances in the synthesis, functionalization, and dimensionality of PAFs, along with their distinctive properties and wide-ranging applications. This review explores the innovative methodologies in PAFs synthesis, the strategies for functionalizing their structures, and the manipulation of their dimensionality to tailor their properties for specific potential applications. Similarly, the key application areas, including batteries, absorption, sensors, CO2 capture, photo-/electrocatalytic usages, supercapacitors, separation, and biomedical are discussed in detail, highlighting the versatility and potential of PAFs in addressing modern scientific and industrial challenges.
Collapse
Affiliation(s)
- Hamid Ali
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
- School of Resources and Environment, Shensi Lab, University of Electronic Science and Technology of China, Chengdu, 611731,China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | | | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, 72345, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Asif Hayat
- Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
2
|
Yu T, Suo Z, Zhu J, Xu Y, Ren W, Liu Y, Wang H, Wei M, He B, Zhao R. Applying hollow octahedron PtNPs/Pd-Cu 2O nanozyme and highly conductive AuPtNPs/Ni-Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection. Anal Chim Acta 2025; 1338:343609. [PMID: 39832848 DOI: 10.1016/j.aca.2025.343609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat. These foods are easily contaminated with AFB1 during planting, harvesting, storage, and processing. Therefore, the establishment of an accurate and sensitive method for the detection of AFB1 is essential to safeguard food safety and human health. RESULTS This study applied catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), hollow octahedron PtNPs/Pd-Cu2O bifunctional nanozyme, and AuPtNPs/Ni-Co NCs to develop a colorimetric-electrochemical dual-mode aptasensor for AFB1 detection. Here, Pd-Cu2O corner-etched octahedra with cavities and oxygen vacancy defects were first designed, followed by the synthesis of PtNPs/Pd-Cu2O through the loading of PtNPs to enhance the peroxidase-like activity of Pd-Cu2O. PtNPs/Pd-Cu2O effectively catalyzed the generation of blue oxidation products from 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). It also enhances the redox reaction of methylene blue (MB) at the electrode and improves the electrochemical signal. AuPtNPs/Ni-Co NCs possess a large specific surface area and excellent conductivity, enhanced the redox signal of MB. Additionally, the aptasensor combined the enzyme-free amplification strategies of CHA and HCR to improve sensitivity. The aptasensor reached limit of detection (LOD) 0.76 pg/mL in electrochemical mode and 0.49 pg/mL in colorimetric mode. SIGNIFICANCE The designed colorimetric-electrochemical dual-mode aptasensor exhibits high selectivity, specificity, stability, and reliability. The dual-mode aptasensor had been successfully applied to the spiked analysis of edible oils, peanuts, and cornmeal, demonstrating excellent recovery rates. Therefore, the dual-mode aptasensor had a wide application prospect in the field of quality supervision and food safety.
Collapse
Affiliation(s)
- Tengfei Yu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Jiaomeng Zhu
- School of Physics, Henan University of Technology, Zhengzhou, 450001, China
| | - Yiwei Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjie Ren
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng, 475004, China
| | - Huafen Wang
- High & New Technology Research Center of Henan Academy of Sciences, No. 56 Hongzhuan Road, Zhengzhou, 450002, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Porath AJ, Lybrand T, Bour JR. Relationships Between Defectivity and Porosity in High Surface Area Porous Aromatic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202314120. [PMID: 38036454 DOI: 10.1002/anie.202314120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Porous aromatic framework (PAF) microporosity is known to be strongly dependent on synthetic approach but little is known about why certain reactions yield significantly and consistently more porous PAFs. This article explores the connections between synthetic pathway, PAF defectivity, and microporosity. Using a network disassembly strategy, we show that defectivity is highly dependent on synthetic approach and that more defective PAFs are associated with lower surface areas and pore volumes. This empirical association is corroborated through systematic introduction of defects to a modelPAF, which results in significant reduction of apparent surface area and pore volumes. Taken together, these data suggest that only highly efficient coupling reactions should be targeted for the synthesis of ultra-high surface area porous aromatic frameworks.
Collapse
Affiliation(s)
- Anthony J Porath
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Tony Lybrand
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - James R Bour
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
4
|
Wang L, Wang Y, Li Z, Li T, Zhang R, Li J, Liu B, Lv Z, Cai W, Sun S, Hu W, Lu Y, Zhu G. PAF-6 Doped with Phosphoric Acid through Alkaline Nitrogen Atoms Boosting High-Temperature Proton-Exchange Membranes for High Performance of Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303535. [PMID: 37358077 DOI: 10.1002/adma.202303535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Indexed: 06/27/2023]
Abstract
High-temperature proton-exchange-membrane fuel cells (HT-PEMFCs) can offer improved energy efficiency and tolerance to fuel/air impurities. The high expense of the high-temperature proton-exchange membranes (HT-PEMs) and their low durability at high temperature still impede their further practical applications. In this work, a phosphoric acid (PA)-doped porous aromatic framework (PAF-6-PA) is incorporated into poly[2,2'-(p-oxydiphenylene)-5,5'-benzimidazole] (OPBI) to fabricate novel PAF-6-PA/OPBI composite HT-PEMs through solution-casting. The alkaline nitrogen structure in PAF-6 can be protonated with PA to provide proton hopping sites, and its porous structure can enhance the PA retention in the membranes, thus creating fast pathways for proton transfer. The hydrogen bond interaction between the rigid PAF-6 and OPBI can also enhance the mechanical properties and chemical stability of the composite membranes. Consequently, PAF-6-PA/OPBI exhibits an optimal proton conductivity of 0.089 S cm-1 at 200 °C, and peak power density of 437.7 mW cm-2 (Pt: 0.3 mg cm-2 ), which is significantly higher than that of the OPBI. The PAF-6-PA/OPBI provides a novel strategy for the practical application of PBI-based HT-PEMs.
Collapse
Affiliation(s)
- Liying Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yuliang Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Zhangnan Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Tianyang Li
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Ruyu Zhang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Jing Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Baijun Liu
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Zhongyuan Lv
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Weiwei Cai
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Shuhui Sun
- National Institute of Scientific Research (INRS) Center Energy Material and Telecommunications, Varennes, Quebec, J3×1P7, Canada
| | - Wei Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
5
|
Moradi O. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Food Chem Toxicol 2022; 168:113391. [PMID: 36041662 DOI: 10.1016/j.fct.2022.113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/27/2022]
Abstract
Vanillin is an organic compound that not only acts as a flavoring and fragrance enhancer in some foods, but also can have antioxidant, anti-inflammatory, anti-cancer and anti-depressant effects. Nevertheless, its excessive use can be associated with side effects on human health. Consequently, there is a need to achieve a rapid vanillin determination approach to enhance food safety. The diversity and high sensitivity of analytical approaches has led researchers to use more advanced and efficient methods providing quantitative and qualitative outcomes in complex matrices. Among these, prominent attention has been drawn to electrochemical sensors for reasons such as reliability, simplicity, cost-effectiveness, portability, selectivity, and ease of operation, especially for the determination of vanillin. Nanomaterials are a good candidate for sensor construction due to their commendable physicochemical attributes. Some advanced nanostructures with promising platforms for high-sensitivity, highly selective, and long-lasting electrochemical sensors include graphene (Gr) and its derivatives, graphite carbon nitride (g-C3N4), carbon nanotubes (CNTs), metal nanoparticles, metal organic frameworks, carbon nanofibers (CNFs) and quantum dots. Study about sizes, dimensions, and morphologies of nanomaterials makes strong candidates for improving sensitivity or selectivity according to electrocatalytic abilities. The low LOD and wide linear range of samples demonstrated an excellent catalytic performance towards the vanillin oxidation. Some investigations have reported the synergistic effects like great conductivity of carbon nanomaterials which improved the electrocatalytic performance of nanocomposites which demonstrated the estimable sensitivity of nanomaterial-supported electrochemical sensors for determination of vanillin concentrations. The sensors which have reported have a commendable response to practical potential and evaluated in biscuit, pudding powder, chocolate, custard specimens and etc. sensitivity, stability, reproducibility and repeatability of suggested sensor were investigated. The present review article scrutinizes recent advances in the fabrication of nanomaterial-based electrochemical sensors to detect vanillin in various food matrices.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Frustrated Lewis pairs in situ formation in B-based porous aromatic frameworks for efficient o-phenylenediamine cyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yin L, Wang Z, Wu Q, Liu L, Zhang N, Xie Z, Zhu G. Water-Dispersible Porous Aromatic Frameworks with Quasi-Amino Acid Structures via N-H Insertion Reactions. ACS NANO 2022; 16:6197-6205. [PMID: 35349273 DOI: 10.1021/acsnano.2c00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a class of materials with large specific surface area and chemical stability, porous aromatic frameworks (PAFs) have attracted much attention in the fields of gas adsorption, separation, and catalysis. However, synthetic methods for PAFs have been limited to a few coupling reactions, and PAF powders were usually obtained with a diameter of micrometer size. Here, we demonstrate an efficient N-H insertion reaction of diazoesters in the synthesis of PAFs with a diameter <200 nm. The established polymerization can be performed at room temperature, and four PAFs with different skeletons and composition can be obtained in high yields. The prepared PAFs have appreciable thermal and chemical stabilities. Because of the presence of ester groups in the backbone, the prepared PAFs with α-phenylglycine fragments can be easily obtained through the successive hydrolysis of the ester groups. The synthesized PAFs bearing phenylglycine moieties exhibit good water dispersibility and low cytotoxicity. We further show the potential of these PAFs in drug loading and photodynamic therapy.
Collapse
Affiliation(s)
- Liying Yin
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zikun Wang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
8
|
Wang M, Guo H, Wu N, Zhang J, Zhang T, Liu B, Pan Z, Peng L, Yang W. A novel triazine-based covalent organic framework combined with AuNPs and reduced graphene oxide as an electrochemical sensing platform for the simultaneous detection of uric acid, dopamine and ascorbic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Kouhi I, Parvizi Fard G, Alipour E, Saadatirad A. Development of an electrochemical sensor for determination of vanillin in some food stuffs. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Iraj Kouhi
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Golnaz Parvizi Fard
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Esmaeel Alipour
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Afsaneh Saadatirad
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
10
|
Zhang C, Pan G, He Y. Conjugated microporous organic polymer as fluorescent chemosensor for detection of Fe 3+ and Fe 2+ ions with high selectivity and sensitivity. Talanta 2022; 236:122872. [PMID: 34635253 DOI: 10.1016/j.talanta.2021.122872] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
A conjugated microporous organic polymer (TPA-Bp) comprised of triphenylamine (TPA) and 2,2'-bipyridine-5,5'-diformaldehyde (Bp) was prepared via the Schiff-base reaction under ambient conditions. TPA-Bp is an amorphous and microporous spherical nanoparticle with very high stability. TPA-Bp suspension in DMF displayed strong fluorescence emission and selective fluorescence quenching response towards Fe3+ and Fe2+ ions. The fluorescence intensity of TPA-Bp at 331 nm presents linear relationship with the concentrations of both Fe3+ and Fe2+ with low detection limits of 1.02 × 10-5 M for Fe3+ and 5.37 × 10-6 M for Fe2+. The results of X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FTIR) confirm the selective coordination of N atoms of pyridine unit with Fe ions. The fluorescence quenching of TPA-Bp upon the addition of Fe3+/Fe2+ ions can be attributed to the absorption competition quenching (ACQ) mechanism and the energy transfer between TPA-Bp and Fe3+/Fe2+ ions. This work demonstrates that the conjugated microporous polymers are promising candidates as luminescent sensor for detection of the special analytes in practical applications.
Collapse
Affiliation(s)
- Chao Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guanjun Pan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yi He
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
11
|
Xi E, Zhao Y, Xie Y, Gao N, Bian Z, Zhu G. Biological Application of Porous Aromatic Frameworks: State of the Art and Opportunities. J Phys Chem Lett 2021; 12:11050-11060. [PMID: 34747622 DOI: 10.1021/acs.jpclett.1c03209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous aromatic frameworks (PAFs) were first reported in 2009 and have quickly attracted much attention because of their exceptionally ultrahigh specific surface area (5800 m2·g-1). Uniquely, PAFs are constructed from carbon-carbon-bond-linked aromatic-based building units, which render PAFs extremely stable in various environments. At present, PAFs have been applied in many fields, such as adsorption, catalysis, ion exchange, electrochemistry, and so on. However, for such a unique material, its application in the biological fields is still rarely explored. Therefore, this Perspective introduces the reported application of PAFs in biological fields, for instance, diagnosis and treatment of diseases, artificial enzymes, drug delivery, and extraction of bioactive substances. Major challenges and opportunities for future research on PAFs in biology and biomedicine are identified in diagnostic platforms, novel drug carriers/antidotes, and novel artificial enzymes.
Collapse
Affiliation(s)
- Enpeng Xi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yue Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yiling Xie
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Nan Gao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
12
|
Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Karakaya S, Kaya İ. A Novel Sensitive and Selective Amperometric Detection Platform for the Vanillin Content in Real Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serkan Karakaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - İsmet Kaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| |
Collapse
|
14
|
Sangili A, Vinothkumar V, Chen SM, Veerakumar P, Lin KC. Gold Nanoparticle Embedded on a Reduced Graphene Oxide/polypyrrole Nanocomposite: Voltammetric Sensing of Furazolidone and Flutamide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13949-13962. [PMID: 33174747 DOI: 10.1021/acs.langmuir.0c02448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new electrochemical sensor has been constructed based on the in situ preparation of gold nanoparticle embedded on reduced graphene oxide and polypyrrole nanotube (AuNP@rGO/PPyNT) composite through a nanosecond laser-induced heating technique. The as-prepared composite is used for individual as well as the simultaneous electrochemical determination of chemotherapy drug (furazolidone, FU) and anticancer drug (flutamide, FLT). The composite was analyzed by X-ray Diffraction, scanning electron microscopy/energy-dispersive X-ray analysis, transmission electron microscopy, Raman spectrometry, and X-ray photoelectron spectroscopy analysis, thus confirming the successful synthesis of this composite and its physical features. The modified AuNP@rGO/PPyNT electrode was examined through cyclic voltammetry and differential pulse voltammetry (DPV) methods in pH 7.0 for the determination of FU and FLT in individual, simultaneous, and mixed systems. The fabricated sensor showed wide linear responses (0.01-1080.11 μM and 0.01-1214.11 μM) of analytes, with the lower limits of detection of 2.3 and 2.45 nM and higher sensitivity of 53.75 and 50.06 μA μM-1 cm-2, respectively. Furthermore, the constructed sensor demonstrates higher stability, reproducibility, and repeatability, and is effectively applied for the analysis of FU and FLT content in the human serum sample analysis with satisfactory recovery.
Collapse
Affiliation(s)
- Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Venkatachalam Vinothkumar
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei,10617, Taiwan, ROC
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei,10617, Taiwan, ROC
| |
Collapse
|
15
|
Peng J, Wei L, Liu Y, Zhuge W, Huang Q, Huang W, Xiang G, Zhang C. Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection. RSC Adv 2020; 10:36828-36835. [PMID: 35517930 PMCID: PMC9057021 DOI: 10.1039/d0ra06783k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Vanillin is widely used as a flavor enhancer and is known to have numerous other interesting properties, including antidepressant, anticancer, anti-inflammatory, and antioxidant effects. However, as excess vanillin consumption can affect liver and kidney function, simple and rapid detection methods for vanillin are required. Herein, a novel electrochemical sensor for the sensitive determination of vanillin was fabricated using an iron phthalocyanine (FePc)-based metal-organic framework (MOF). Scanning electron microscopy and transmission electron microscopy showed that the FePc MOF has a hollow porous structure and a large surface area, which impart this material with high adsorption performance. A glassy carbon electrode modified with the FePc MOF exhibited good electrocatalytic performance for the detection of vanillin. In particular, this vanillin sensor had a wide linear range of 0.22-29.14 μM with a low detection limit of 0.05 μM (S/N = 3). Moreover, the proposed sensor was successfully applied to the determination of vanillin in real samples such as vanillin tablets and human serum.
Collapse
Affiliation(s)
- Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Liying Wei
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
- School of Pharmacy, Henan University of Traditional Chinese Medicine Zhengzhou 450046 China
| | - Yuxia Liu
- College of Physics and Electronic Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China
| | - Wenfeng Zhuge
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Qing Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Gang Xiang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Cuizhong Zhang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| |
Collapse
|
16
|
Palladium Catalysts Based on Porous Aromatic Frameworks, Modified with Ethanolamino-Groups, for Hydrogenation of Alkynes, Alkenes and Dienes. Catalysts 2020. [DOI: 10.3390/catal10101106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current work describes an attempt to synthesize hybrid materials combining porous aromatic frameworks (PAFs) and dendrimers and use them to obtain novel highly active and selective palladium catalysts. PAFs are carbon porous materials with rigid aromatic structure and high stability, and the dendrimers are macromolecules which can effectively stabilize metal nanoparticles and tune their activity in catalytic reactions. Two porous aromatic frameworks, PAF-20 and PAF-30, are modified step-by-step with diethanolamine and hydroxyl groups at the ends of which are replaced by new diethanolamine molecules. Then, palladium nanoparticles are applied to the synthesized materials. Properties of the obtained materials and catalysts are investigated using X-ray photoelectron spectroscopy, transmission electron microscopy, solid state nuclear magnetic resonance spectroscopy, low temperature N2 adsorption and elemental analysis. The resulting catalysts are successfully applied as an efficient and recyclable catalyst for selective hydrogenation of alkynes to alkenes at very high (up to 90,000) substrate/Pd ratios.
Collapse
|
17
|
Feng PQ, Wu XQ, Guo ZQ, Wei XH, Wang T, Li XY. Co-MOFs with high selectivity and excellent sensitivity for distinguishing isomeric aromatic derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Abstract
Porous aromatic frameworks (PAFs) represent an important category of porous solids. PAFs possess rigid frameworks and exceptionally high surface areas, and, uniquely, they are constructed from carbon-carbon-bond-linked aromatic-based building units. Various functionalities can either originate from the intrinsic chemistry of their building units or are achieved by postmodification of the aromatic motifs using established reactions. Specially, the strong carbon-carbon bonding renders PAFs stable under harsh chemical treatments. Therefore, PAFs exhibit specificity in their chemistry and functionalities compared with conventional porous materials such as zeolites and metal organic frameworks. The unique features of PAFs render them being tolerant of severe environments and readily functionalized by harsh chemical treatments. The research field of PAFs has experienced rapid expansion over the past decade, and it is necessary to provide a comprehensive guide to the essential development of the field at this stage. Regarding research into PAFs, the synthesis, functionalization, and applications are the three most important topics. In this thematic review, the three topics are comprehensively explained and aptly exemplified to shed light on developments in the field. Current questions and a perspective outlook will be summarized.
Collapse
Affiliation(s)
- Yuyang Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
19
|
Porous organic polymer derived metal-free carbon composite as an electrocatalyst for CO2 reduction and water splitting. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Calam TT, Uzun D. Rapid and Selective Determination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropolymerized with 3‐Amino‐1,2,4‐triazole‐5‐thiol. ELECTROANAL 2019. [DOI: 10.1002/elan.201900328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tuğba Tabanlıgil Calam
- Gazi UniversityTechnical Sciences Vocational High School, Department of Chemical Technology 06500 Ankara Turkey
| | - Demet Uzun
- Gazi University, Science FacultyDepartment of Chemistry 06500 Ankara Turkey
| |
Collapse
|
21
|
Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Anal Chim Acta 2019; 1083:101-109. [PMID: 31493800 DOI: 10.1016/j.aca.2019.07.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
In this work, a facile ratiometric electrochemical aptasensor was developed towards sensitive and selective detection of vanillin, based on Ketjen black/ferrocene dual-doped zeolite-like MOFs (Fc-KB/ZIF-8) and electrodeposited gold nanoparticles (AuNPs) coupling with DNA aptamer. Fc-KB/ZIF-8 composites were prepared via one-pot solvothermal reaction and drop-coated on glassy carbon electrode (GCE) surface to form Fc-KB/ZIF-8@GCE. AuNPs were in-situ electro-deposited on the modified GCE. 5'-SH terminated aptamer of vanillin was combined with AuNPs via Au-S coupling to form aptamer-AuNPs/Fc-KB/ZIF-8@GCE as a new sensing platform. Under optimal conditions, electrochemical (square wave voltammetry) curves of this sensing platform were measured in electrolyte solutions containing vanillin. With increase of vanillin concentration (Cvan), vanillin had an increased peak current intensity (Ivan, as response signal). Fc doped into ZIF-8 had slight changes in its peak current intensity (IFc, as reference signal). There is a well plotting linear relationship between Ivan/IFc and the logarithm of Cvan ranging from 10 nM to 0.2 mM, with a low limit of detection of 3 nM. The aptamer-AuNPs/Fc-KB/ZIF-8@GCE was applied as a ratiometric electrochemical aptasensor of vanillin. This aptasensor had sensitive and selective electrochemical signal responses on vanillin, over potential interferents. This aptasensor enabled vanillin detection in real food samples, showing high detection performance. Experimental results testified that this aptasensor had high reliability and practicability for vanillin determination in real samples.
Collapse
|
22
|
Wang W, Li Z, Zhang S, Yang X, Wang C, Wang Z. From porous aromatic frameworks to nanoporous carbons: A novel solid-phase microextraction coating. Talanta 2018; 190:327-334. [DOI: 10.1016/j.talanta.2018.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
|
23
|
Voltammetric determination of ethylvanillin and methylvanillin sum at carbon paste electrode modified by sodium dodecyl sulfate in selected foodstuffs. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Bhanja P, Ghosh K, Islam S, Islam S, Bhaumik A. Pd NP-Decorated N-Rich Porous Organic Polymer as an Efficient Catalyst for Upgradation of Biofuels. ACS OMEGA 2018; 3:7639-7647. [PMID: 31458914 PMCID: PMC6644363 DOI: 10.1021/acsomega.8b00892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/28/2018] [Indexed: 06/10/2023]
Abstract
Hydrodeoxygenation process is a potential route for upgrading biofuel intermediates, like vanillin, which is obtained in huge quantities through the chemical treatment of the abundant lignocellulosic biomass resources of nature, and this is attracting increasing attentions over the years. Herein, we report the grafting of palladium nanoparticles at the surface of porous organic polymer Pd-PDVTTT-1 synthesized through the co-condensation of 1,3,5-triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione and divinylbenzene in the presence of radical initiator under solvothermal reaction conditions. The Pd-PDVTTT-1 material has been characterized thoroughly by powder X-ray diffraction, nitrogen sorption, ultra-high-resolution transmission electron Microscopy, Fourier-transform infrared spectroscopy, 13C MAS NMR, and X-ray photoelectron spectroscopy analyses. High surface area together with good thermal stability of the Pd-PDVTTT-1 material has motivated us to explore its potential as heterogeneous catalyst in the hydrodeoxygenation of vanillin for the production of upgraded biofuel 2-methoxy-4-methylphenol in almost quantitative yield and high selectivity (94%).
Collapse
Affiliation(s)
- Piyali Bhanja
- Department
of Materials Science, Indian Association
for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur 700032, West Bengal, India
| | - Kajari Ghosh
- Department
of Chemistry, University of Burdwan, Golapbag Campus, Bardhaman 713104, West Bengal, India
| | - Sk Safikul Islam
- Department
of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Sk Manirul Islam
- Department
of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Asim Bhaumik
- Department
of Materials Science, Indian Association
for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur 700032, West Bengal, India
| |
Collapse
|
25
|
Vilian ATE, Sivakumar R, Huh YS, Youk JH, Han YK. Palladium Supported on an Amphiphilic Triazine-Urea-Functionalized Porous Organic Polymer as a Highly Efficient Electrocatalyst for Electrochemical Sensing of Rutin in Human Plasma. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19554-19563. [PMID: 29790734 DOI: 10.1021/acsami.8b00579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal nanoparticle-containing porous organic polymers have gained great interest in chemical and pharmaceutical applications owing to their high reactivity and good recyclability. In the present work, a palladium nanoparticle-decorated triazine-urea-based porous organic polymer (Pd@TU-POP) was designed and synthesized using 1,3-bis(4-aminophenyl)urea with cyanuric chloride and palladium acetate. The porous structure and physicochemical properties of the electrode material Pd@TU-POP were observed using a range of standard techniques. The Pd@TU-POP material on the electrode surface showed superior sensing ability for rutin (RT) because the Pd dispersion facilitated the electrocatalytic performance of TU-POP by reducing the overpotential of RT oxidation dramatically and improving the stability significantly. Furthermore, TU-POP provides excellent structural features for loading Pd nanoparticles, and the resulting Pd@TU-POP exhibited enhanced electron transfer and outstanding sensing capability in a linear range between 2 and 200 pM having a low detection value of 5.92 × 10-12 M (S/N = 3). The abundant porous structure of Pd@TU-POP not only provides electron transport channels for RT diffusion but also offers a facile route for quantification sensing of RT with satisfactory recoveries in aqueous electrolyte containing human plasma and red wine. These data reveal that the synthetic Pd@TU-POP is an excellent potential platform for the detection of RT in biological samples.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering , Dongguk University , Seoul 04620 , Republic of Korea
| | | | | | | | - Young-Kyu Han
- Department of Energy and Materials Engineering , Dongguk University , Seoul 04620 , Republic of Korea
| |
Collapse
|
26
|
Chen Y, Zhang W, Zhang Y, Deng Z, Zhao W, Du H, Ma X, Yin D, Xie F, Chen Y, Zhang S. In situ preparation of core–shell magnetic porous aromatic framework nanoparticles for mixed–mode solid–phase extraction of trace multitarget analytes. J Chromatogr A 2018; 1556:1-9. [DOI: 10.1016/j.chroma.2018.04.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 01/08/2023]
|
27
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Pd(OAc)2 immobilized on imine-functionalized microporous covalent triazine polymer as efficient heterogeneous catalyst for Mizoroki–Heck cross-coupling reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3265-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Wang W, Li Z, Wang W, Zhang L, Zhang S, Wang C, Wang Z. Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework. Mikrochim Acta 2017; 185:20. [PMID: 29594554 DOI: 10.1007/s00604-017-2577-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/17/2017] [Indexed: 11/27/2022]
Abstract
A porous aromatic framework of type PAF-6 was synthesized and explored as a coating onto a steel wire for using in solid-phase microextraction of polycyclic aromatic hydrocarbons (PAHs), phthalate plasticizers, and n-alkanes. The extraction temperature, extraction time, salt concentration, agitation speed, desorption temperature, and desorption time were optimized. This method for SPME resulted in the enrichment factors ranging from 122 to 1090 for PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene), from 122 to 271 for plasticizers (diisobutyl phthalate, dibutyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate), and from 9 to 113 for n-alkanes (n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-octadecane and n-eicosane). The good extraction of the PAHs is assumed to be due to their π-stacking interaction and hydrophobic effect. The PAF-6 coated fibers are durable and can be reused more than 100 times without significant loss of extraction performance. In combination with GC-MS detection, the method has limits of detection in the range from 0.8 to 4.2 ng L-1 in case of PAHs. The relative standard deviations for five replicate determinations of the PAHs by using one fiber are in the range from 5.2 to 8.5%. When using different fibers, they range from 7.1 to 9.6%. The recoveries of PAHs from water samples at a spiking level of 20 ng L-1 are in the range from 89.5 to 103.1%, with relative standard deviations ranging from 4.0 to 9.3%. Graphical abstract A porous aromatic framework of type PAF-6 was synthesized and used as a novel coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by gas chromatography with mass spectrometric detection.
Collapse
Affiliation(s)
- Wenchang Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Wenjin Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lihong Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China. .,College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
30
|
Kuznetsov A, Komarova N, Andrianova M, Grudtsov V, Kuznetsov E. Aptamer based vanillin sensor using an ion-sensitive field-effect transistor. Mikrochim Acta 2017; 185:3. [DOI: 10.1007/s00604-017-2586-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
|
31
|
A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2513-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Karakhanov E, Maximov A, Boronoev M, Kulikov L, Terenina M. Mesoporous organo-inorganic hybrid materials as hydrogenation catalysts. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe paper concerns application of two types of organic materials – porous aromatic frameworks (PAFs) with diamond-like structure and the ordered mesoporous phenol-formaldehyde polymers (MPFs) – as supports for metal and metal sulfide nanoparticles. The obtained hybrid materials were tested in hydrogenation of various unsaturated and aromatic compounds. Ruthenium catalyst, based on PAF (Ru-PAF-30), possessed high activity in exhaustive hydrogenation of phenol into cyclohexanol with TOF value of 2700 h−1. Platinum catalyst, based on modified with sulfo-groups MPF (MPF-SO3H-Pt), was selective in semi-hydrogenation of terpenes, [α-terpinene, γ-terpinene, terpinolene, (s)-limonene]. Bimetallic Ni–W sulfide catalysts, prepared by in situ decomposition of [(n-Bu)4N]2Ni(WS4)2 within the pores of MPFs and PAFs, possessed high efficiency in hydrogenation-hydrocracking of naphthalenes as model substrates.
Collapse
Affiliation(s)
- Eduard Karakhanov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| | - Anton Maximov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
- Institute of Petrochemical Synthesis RAS, 119991 Moscow, Russia
| | - Maksim Boronoev
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| | - Leonid Kulikov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| | - Maria Terenina
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
33
|
Square voltammetric sensing of mercury at very low working potential by using oligomer-functionalized Ag@Au core-shell nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2372-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Li Y, Xu L, Xu B, Mao Z, Xu H, Zhong Y, Zhang L, Wang B, Sui X. Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17155-17162. [PMID: 28471160 DOI: 10.1021/acsami.7b03600] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Robust and flexible cellulose sponges were prepared by dual-cross-linking cellulose nanofiber (CNF) with γ-glycidoxypropyltrimethoxysilane (GPTMS) and polydopamine (PDA) and used as carriers of metal nanoparticles (NPs), such as palladium (Pd). In situ growth of Pd NPs on the surface of CNF was achieved in the presence of polydopamine (PDA). The modified sponges were characterized with FT-IR, XRD, EDX, SEM, TEM, and TGA. XRD, EDX, and TEM results revealed that the Pd NPs were homogeneously dispersed on the surface of CNF with a narrow size distribution. The catalysts could be successfully applied to heterogeneous Suzuki and Heck cross-coupling reactions. Leaching of Pd was negligible and the catalysts could be conveniently separated from the products and reused.
Collapse
Affiliation(s)
- Yingzhan Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, Donghua University , Shanghai 201620, People's Republic of China
| | - Lei Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, Donghua University , Shanghai 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, Donghua University , Shanghai 201620, People's Republic of China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, Donghua University , Shanghai 201620, People's Republic of China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, Donghua University , Shanghai 201620, People's Republic of China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, Donghua University , Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, Donghua University , Shanghai 201620, People's Republic of China
| |
Collapse
|
35
|
Kalaiyarasi J, Meenakshi S, Pandian K, Gopinath SCB. Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2161-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Sadhasivam V, Balasaravanan R, Chithiraikumar C, Siva A. Incorporating Pd(OAc)2on Imine Functionalized Microporous Covalent Organic Frameworks: A Stable and Efficient Heterogeneous Catalyst for Suzuki-Miyaura Coupling in Aqueous Medium. ChemistrySelect 2017. [DOI: 10.1002/slct.201601440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Velu Sadhasivam
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry; Madurai Kamaraj University; Madurai-625021, Tamil Nadu India
| | - Rajendiran Balasaravanan
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry; Madurai Kamaraj University; Madurai-625021, Tamil Nadu India
| | - Chinnadurai Chithiraikumar
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry; Madurai Kamaraj University; Madurai-625021, Tamil Nadu India
| | - Ayyanar Siva
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry; Madurai Kamaraj University; Madurai-625021, Tamil Nadu India
| |
Collapse
|
37
|
Abstract
The synthesis and photophysical properties of two subphthalocyanine-based porous organic polymers (SubPc-POPs) are reported.
Collapse
Affiliation(s)
- Grace M. Eder
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Benjamin R. Walker
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Psaras L. McGrier
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
38
|
Yang J, Yang L, Ye H, Zhao F, Zeng B. Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH 2 metal-organic framework for the detection of nitrite. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.071] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Vilian AE, Puthiaraj P, Kwak CH, Choe SR, Huh YS, Ahn WS, Han YK. Electrochemical determination of quercetin based on porous aromatic frameworks supported Au nanoparticles. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Yang J, Ye H, Zhao F, Zeng B. A Novel CuxO Nanoparticles@ZIF-8 Composite Derived from Core-Shell Metal-Organic Frameworks for Highly Selective Electrochemical Sensing of Hydrogen Peroxide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20407-14. [PMID: 27434730 DOI: 10.1021/acsami.6b06436] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A novel core-shell heterostructure of CuxO nanoparticles@zeolitic imidazolate framework (CuxO NPs@ZIF-8) was successfully prepared through facile pyrolysis of a nanocrystalline copper-based metal-organic framework [nHKUST-1, i.e., Cu3(BTC)2 (BTC = 1,3,5-benzene-tricarboxylate)]@ZIF-8, based on the different thermal stability of the two metal-organic frameworks (MOFs). The small CuxO NPs derived from nHKUST-1 were uniformly dispersed inside the host material and provided active sites, while ZIF-8 kept the original structure as the molecular sieving shell. Owing to the proper pore shape and pore size of ZIF-8, H2O2 could diffuse through the shell, but bigger molecules could not pass. Thus, the composite material exhibited high selectivity when it was used to construct a H2O2 sensor. In addition, the sensor showed an extended linear detection range (from 1.5 to 21442 μM), low detection limit (0.15 μM), and high sensitivity, due to the good electrocatalysis of CuxO NPs and the synergistic effect of the core-shell structure.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, Hubei Province, P. R. China
| | - Huili Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, Hubei Province, P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, Hubei Province, P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, Hubei Province, P. R. China
| |
Collapse
|