1
|
Kim S, Thuy LT, Lee J, Choi JS. Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro. Molecules 2023; 28:7644. [PMID: 38005366 PMCID: PMC10674462 DOI: 10.3390/molecules28227644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Poly(amidoamine) (PAMAM) dendrimers have attracted considerable attention in the field of gene therapy due to their flexibility in introducing different functional moieties and reduced toxicity at low generations. However, their transfection efficiency remains a limitation. Therefore, an essential approach for improving their transfection efficiency as gene carriers involves modifying the structure of PAMAM by conjugating functional groups around their surface. In this study, we successfully conjugated an RRHRH oligopeptide to the surface of PAMAM generation 2 (PAMAM G2) to create RRHRH-PAMAM G2. This construction aims to condense plasmid DNA (pDNA) and facilitate its penetration into cell membranes, leading to its promising potential for gene therapy. RRHRH-PAMAM G2/pDNA complexes were smaller than 100 nm and positively charged. Nano-polyplexes can enter the cell and show a high transfection efficiency after 24 h of transfection. The RRHRH-PAMAM G2 was non-toxic to HeLa, NIH3T3, A549, and MDA-MB-231 cell lines. These results strongly suggest that RRHRH-PAMAM G2 holds promise as a gene carrier for gene therapy owing to its biocompatibility and ability to deliver genes to the cell.
Collapse
Affiliation(s)
| | | | | | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (S.K.); (L.T.T.); (J.L.)
| |
Collapse
|
2
|
Jiang Q, Guan S, Zhang Y, Sun Y, Jiang X. Targeted and fluorescence traceable multifunctional host-guest supramolecular gene delivery platform based on poly(cyclodextrin) and rhodamine conjugated disulfide-containing azobenzene-terminated branched polymer. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2029438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Shuyi Guan
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, P. R. China
| | - Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
3
|
Yuan Y, Liu J, Yu X, Liu X, Cheng Y, Zhou C, Li M, Shi L, Deng Y, Liu H, Wang G, Wang L, Wang Z. Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA. Acta Biomater 2021; 135:556-566. [PMID: 34496281 DOI: 10.1016/j.actbio.2021.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Multidrug resistance (MDR) is a major cause accounting for chemotherapy failure and recurrence of malignant tumors. A prominent mechanism underlying MDR is overexpression of P-glycoprotein (P-gp, a drug efflux pump). Promoting drug delivery efficacy by targeting tumor and concurrently suppressing drug efflux through down-regulating P-gp emerges as an effective strategy to enhance intracellular drug accumulation for combating MDR tumor. General Control Non-repressed 5 (GCN5), a histone acetyltransferase acting as an epigenetic regulator of multidrug resistance protein 1 (MDR1), positively regulates P-gp levels in drug-resistant cancer cells. Herein, a hyaluronic acid-coated, pH/redox dual-responsive nanosystem (HPMSNs) is fabricated for co-delivering doxorubicin (DOX) and GCN5 siRNA (siGCN5). This nanosystem can effectively encapsulate DOX and siRNA preventing premature leakage and releasing these therapeutics intracellularly via its pH/redox dual responsiveness. Through CD44-mediated targeting, DOX/siGCN5@HPMSNs increases drug internalization in CD44-overexpressing cancer cells, and markedly promotes DOX retention by down-regulating P-gp expression in drug-resistant cancers through silencing GCN5. Of note, in an MDR breast tumor model, DOX and siGCN5 co-delivered HPMSNs inhibits MDR tumor growth by 77%, abolishes P-gp-mediated drug resistance, and eliminates DOX's systemic toxicity. Thus, the tumor-targeting, stimuli-responsive nanosystem is an effective carrier for co-delivering anticancer drug and siRNA for combating cancer drug resistance. STATEMENT OF SIGNIFICANCE: We designed a tumor-targeting, pH/redox dual-responsive nanosystem (HPMSNs) for chemo-drug and siRNA co-delivery. This nanosystem efficiently co-delivered DOX and siGCN5 into drug-resistant cancer cells and significantly inhibited the tumor growth through: (1) HA shell enhanced the cellular internalization of loaded DOX and siGCN5 via CD44-mediated targeting; (2) the pH/redox dual-responsive nanosystem released the cargos in response to the intracellular environment; (3) the released siGCN5 downregulated P-gp epigenetically. In an MDR breast tumor model (MCF7/ADR), DOX and siGCN5 loaded HPMSNs markedly inhibited tumor growth, almost completely abolished P-gp expression, and minimized systemic toxicity of DOX.
Collapse
|
4
|
Nechikkattu R, Kong J, Lee YS, Moon HJ, Bae JH, Kim SH, Park SS, Ha CS. Tunable multi-responsive nano-gated mesoporous silica nanoparticles as drug carriers. Colloids Surf B Biointerfaces 2021; 208:112119. [PMID: 34571469 DOI: 10.1016/j.colsurfb.2021.112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Tunable multi-responsive mesoporous silica nanoparticles were prepared by post-condensation/surface modification of MCM-41 nanoparticles. Surface grafting of a poly(N,N-dimethylaminoethyl methacrylate)-based polymer containing disulfide bonds was achieved by a click reaction. Chemical modification, morphological characteristics, and textural properties of the nanoparticles were studied using multiple characterization techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, small-angle X-ray scattering, and nitrogen adsorption/desorption behavior. The nanoparticles retained the meso-structural integrity of MCM41 and particle size < 100 nm after grafting with the polymer. The pH and redox-responsive behavior of the nanoparticles were also studied. The nanoparticles possess excellent drug-loading capacity owing to their large surface area and 'closed gate' mechanism of the grafted polymer chains. The release profile of doxorubicin at two different pH (7.4 and 5.5) and in the presence of dithiothreitol showed a dual response behavior. The nano drug carrier device exhibited efficient intracellular uptake in cancer cells with suitable cytotoxicity and pharmacokinetic behavior, and may therefore be considered a good candidate for cancer therapy.
Collapse
Affiliation(s)
- Riyasudheen Nechikkattu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jungwon Kong
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Shin Lee
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyun-Jung Moon
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Ho Bae
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sung Soo Park
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Liu J, Ding X, Fu Y, Xiang C, Yuan Y, Zhang Y, Yu P. Cyclodextrins based delivery systems for macro biomolecules. Eur J Med Chem 2020; 212:113105. [PMID: 33385835 DOI: 10.1016/j.ejmech.2020.113105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Macro biomolecules are of vital importance in regulating the biofunctions in organisms, in which proteins (including peptides when mentioned below) and nucleic acids (NAs) are the most important. Therefore, these proteins and NAs can be applied as "drugs" to regulate the biofunctions from abnormal to normal. Either for proteins and NAs, the most challenging thing is to avoid the biodegradation or physicochemical degradation before they reach the targeted location, and then functions as complete functional structures. Hence, appropriate delivery systems are very important which can protect them from these degradations. Cyclodextrins (CDs) based delivery systems achieved mega successes due to their outstanding pharmaceutical properties and there have been several reviews on CDs based small molecule drug delivery systems recently. But for biomolecules, which are getting more and more important for modern therapies, however, there are very few reviews to systematically summarize and analyze the CDs-based macro biomolecules delivery systems, especially for proteins. In this review, there were some of the notable examples were summarized for the macro biomolecules (proteins and NAs) delivery based on CDs. For proteins, this review included insulin, lysozyme, bovine serum albumin (BSA), green fluorescent protein (GFP) and IgG's, etc. deliveries in slow release, stimulating responsive release or targeting release manners. For NAs, this review summarized cationic CD-polymers and CD-cluster monomers as NAs carriers, notably, including the multicomponents targeting CD-based carriers and the virus-like RNA assembly method siRNA carriers.
Collapse
Affiliation(s)
- Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Xin Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
6
|
Enzymatic synthesis of PEGylated lactide-diester-diol copolyesters for highly efficient targeted anticancer drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111125. [DOI: 10.1016/j.msec.2020.111125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 01/04/2023]
|
7
|
Sahoo S, Bera S, Dhara D. Histidine-Based Reduction-Sensitive Star-Polymer Inclusion Complex as a Potential DNA Carrier: Biophysical Studies Using Time-Resolved Fluorescence as an Important Tool. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11262-11273. [PMID: 32865419 DOI: 10.1021/acs.langmuir.0c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An ideal DNA carrier is one that is capable of effectively condensing DNA into complexes of optimum size and shape, preventing premature decomplexation in the bloodstream and efficiently releasing the DNA into affected cells. In this context, we have developed a novel β-cyclodextrin (β-CD)-based four-arm star-shaped polymer inclusion complex (IC) with arms made of a poly(l-histidine)-based cationic polymer. The polymer was well characterized by gel permeation chromatography, NMR, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We have also investigated its DNA complexation and release properties. Bisadamantane containing a disulfide bond was synthesized that linked two such poly(l-histidine)-containing β-CD units via guest-host interactions to prepare the presented IC. Besides using the conventional steady-state fluorescence spectroscopy, the ability of this IC to condense DNA to form polyplexes and their release behavior have been established by using the time-resolved fluorescence spectroscopy technique. Thiazole orange (TO) was used for the first time as a DNA-intercalating dye in the time-resolved fluorescence spectroscopic study. The superior DNA-condensing ability of the IC as compared to that of the precursor two-arm β-CD and linear poly(l-histidine) of a comparable molecular weight, as confirmed by dynamic light scattering, zeta potential, atomic force microscopy, and gel electrophoresis studies, could be attributed to a higher charge density. The IC-DNA polyplexes were found to be stable in a medium similar to an extracellular fluid but could efficiently release DNA in the presence of 10 mM glutathione, a concentration prevalent in the intracellular fluid of cancer cells. Hence, here, we have successfully demonstrated the synthesis of a novel biocompatible star-shaped IC with the potential to carry and release DNA in cancer cells and also established the feasibility of using the time-resolved fluorescence spectroscopic technique to study the complexation behavior of the polycation and DNA using TO as a DNA-intercalating dye.
Collapse
Affiliation(s)
- Satyagopal Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sharmita Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
Seidi F, Jin Y, Xiao H. Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydr Polym 2020; 242:116277. [PMID: 32564845 DOI: 10.1016/j.carbpol.2020.116277] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023]
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides with unique conical structure enabling host-guest inclusion complexes. However, virgin CDs sufferfrom low solubility, lack of functional groups and its inability to strong complexation with the guests. One of the most efficient ways to improve the properties of cyclodextrins is the synthesis of polycyclodextrins. Generally, there are two types of polycyclodextrins: 1) polymers containing CD units as parts of the main backbone; and 2) polymers with CD units as side chains. These polycyclodextrins are produced (i) from direct copolymerization of virgin cyclodextrins or cyclodextrins derivatives with various monomers including isocyanates, epoxides, carboxylic acids, anhydrides, acrylates, acrylamides and fluorinated aromatic compounds, or (ii) by post-functionalization of other polymers with CDs or CD derivatives.. By selecting the proper derivatives of CDs and controlling the polymerization, polycyclodextrins with linear, hyperbranched, and crosslinked structures have been synthesized. Polycyclodextrins have found significant applications in numerous areas, as adsorbents for removal of organic pollutants, carriers in gene/drug delivery, and for preparation of supramolecular based hydrogels. The focus of this review paper is placed on the synthesis, characterization, and applications of CDs so as to highlight challenges as well as the promising features of the future ahead of material developments based on CDs.
Collapse
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| |
Collapse
|
9
|
Escudero A, Carregal-Romero S, Miguel-Coello AB, Ruíz-Cabello J. Engineered polymeric nanovehicles for drug delivery. FRONTIERS OF NANOSCIENCE 2020:201-232. [DOI: 10.1016/b978-0-08-102828-5.00008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Muhammad K, Zhao J, Ullah I, Guo J, Ren XK, Feng Y. Ligand targeting and peptide functionalized polymers as non-viral carriers for gene therapy. Biomater Sci 2020; 8:64-83. [DOI: 10.1039/c9bm01112a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ligand targeting and peptide functionalized polymers serve as gene carriers for efficient gene delivery.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Jing Zhao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
11
|
Yao X, Huang P, Nie Z. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Midorikawa K, Kodama Y, Numata K. Vacuum/Compression Infiltration-mediated Permeation Pathway of a Peptide-pDNA Complex as a Non-Viral Carrier for Gene Delivery in Planta. Sci Rep 2019; 9:271. [PMID: 30670735 PMCID: PMC6342927 DOI: 10.1038/s41598-018-36466-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023] Open
Abstract
Non-viral gene carriers have been extensively investigated as alternatives to viral vectors for gene delivery systems into animal and plant cells. A non-viral gene carrier containing a cell-penetrating peptide and a cationic sequence was previously developed for use in intact plants and plant cells; however, the permeation pathway of the gene carrier into plant cells is yet to be elucidated, which would facilitate the improvement of the gene delivery efficiency. Here, we identified the vacuum/compression infiltration-mediated permeation pathway of a non-viral gene carrier into plant tissues and cells using a complex of plasmid DNA and a peptide-based gene carrier. This complex was taken up via the hydathodes in Arabidopsis thaliana, and from root hairs in Nicotiana benthamiana. Remarkably, these structurally weak tissues are also routes of bacterial invasion in nature, suggesting that peptide-pDNA complexes invade intact plants through similar pathways as bacterial pathogens.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yutaka Kodama
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan.
| | - Keiji Numata
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
13
|
Seidi F, Shamsabadi AA, Amini M, Shabanian M, Crespy D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00495e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin molecules are cyclic oligosaccharides that display a unique structure including an inner side and two faces on their outer sides.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | | | - Mojtaba Amini
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh
- Iran
| | - Meisam Shabanian
- Faculty of Chemistry and Petrochemical Engineering
- Standard Research Institute (SRI)
- Karaj
- Iran
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
14
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
15
|
Ahmadi Z, Jha D, Kumar B, Gautam HK, Kumar P. Bifunctionally engineered polyethylenimines as efficient DNA carriers and antibacterials against resistant pathogens. J Biomater Appl 2018; 33:363-379. [PMID: 30103671 DOI: 10.1177/0885328218792139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we have designed and developed two series of bifunctional conjugates by tethering polyethylenimine with streptomycin. By varying the amount of streptomycin, conjugates, polyethylenimine-streptomycin, have been synthesized and characterized spectroscopically. Gel electrophoresis assay revealed a slight decrease in the cationic charge density on the conjugates as these retarded the mobility of pDNA at higher w/w ratios. Further, transfection studies showed that both the series of conjugates transfected the mammalian cells efficiently with low-molecular weight polyethylenimine-streptomycin conjugates were more competent (∼9-fold enhancement with respect to native bPEI) exhibiting high cell viability too. Besides, both the series of conjugates displayed excellent antibacterial activity on pathogenic bacteria, even better than native streptomycin on resistant strains. Altogether, these results ensure the promising potential of the projected bifunctional conjugates as safe and efficient gene delivery vectors as well as antibacterials for future biomedical applications.
Collapse
Affiliation(s)
- Z Ahmadi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - D Jha
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - B Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - H K Gautam
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| |
Collapse
|
16
|
Zong W, Thingholm B, Itel F, Schattling PS, Brodszkij E, Mayer D, Stenger S, Goldie KN, Han X, Städler B. Phospholipid-Block Copolymer Hybrid Vesicles with Lysosomal Escape Ability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6874-6886. [PMID: 29776311 DOI: 10.1021/acs.langmuir.8b01073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The success of nanoparticulate formulations in drug delivery depends on various aspects including their toxicity, internalization, and intracellular location. Vesicular assemblies consisting of phospholipids and amphiphilic block copolymers are an emerging platform, which combines the benefits from liposomes and polymersomes while overcoming their challenges. We report the synthesis of poly(cholesteryl methacrylate)- block-poly(2-(dimethylamino) ethyl methacrylate) (pCMA- b-pDMAEMA) block copolymers and their assembly with phospholipids into hybrid vesicles. Their geometry, their ζ-potential, and their ability to adsorb onto polymer-coated surfaces were assessed. Giant unilamellar vesicles were employed to confirm the presence of both the phospholipids and the block copolymer in the same membrane. Furthermore, the cytotoxicity of selected hybrid vesicles was determined in RAW 264.7 mouse macrophages, primary rat Kupffer cells, and human macrophages. The internalization and lysosomal escape ability of the hybrid vesicles were confirmed using RAW 264.7 mouse macrophages. Taken together, our findings illustrate that the reported hybrid vesicles are a promising complementary drug delivery platform for existing liposomes and polymersomes.
Collapse
Affiliation(s)
- Wei Zong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , 92 West Da-Zhi Street , Harbin 150001 , China
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Bo Thingholm
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Philipp S Schattling
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Daniel Mayer
- Institute for Medical Microbiology and Infection Control , University Hospital Ulm , 89021 Ulm , Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Infection Control , University Hospital Ulm , 89021 Ulm , Germany
| | - Kenneth N Goldie
- Center for Cellular Imaging & Nano Analytics, Biozentrum , University of Basel , 4056 Basel , Switzerland
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , 92 West Da-Zhi Street , Harbin 150001 , China
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| |
Collapse
|
17
|
Liao R, Lv P, Wang Q, Zheng J, Feng B, Yang B. Cyclodextrin-based biological stimuli-responsive carriers for smart and precision medicine. Biomater Sci 2018; 5:1736-1745. [PMID: 28726855 DOI: 10.1039/c7bm00443e] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spurred on by recent progress in nanotechnology and precision medicine, smart drug carriers are entering an entirely new era. Smart drug carriers have been widely studied in recent years as a result of their ability to control drug release under different microenvironments (such as pH, redox, and enzyme) in vivo. Host-guest interactions based on cyclodextrins have proven to be an efficient tool for fabricating smart drug carriers. Because of the application of host-guest interactions, many kinds of biological molecules or supramolecular building blocks can combine into an organic whole at the molecular level. In this review, the features, mechanisms of action, and potent applications of biological stimuli-responsive drug carriers based on cyclodextrins are discussed. In addition, some personal perspectives on this field are presented.
Collapse
Affiliation(s)
- Rongqiang Liao
- Department of pharmacy, Chongqing Emergency Medical Center, Chongqing, 400014, P.R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Moyo B, Bloom K, Scott T, Ely A, Arbuthnot P. Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus and hepatitis C virus. Virus Res 2018; 244:311-320. [PMID: 28087399 DOI: 10.1016/j.virusres.2017.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/21/2022]
Abstract
Chronic infections with hepatitis B and hepatitis C viruses (HBV and HCV) account for the majority of cases of cirrhosis and hepatocellular carcinoma. Current therapies for the infections have limitations and improved efficacy is necessary to prevent complications in carriers of the viruses. In the case of HBV persistence, the replication intermediate comprising covalently closed circular DNA (cccDNA) is particularly problematic. Licensed therapies have little effect on cccDNA and HBV replication relapses following treatment withdrawal. Disabling cccDNA is thus key to curing HBV infections and application of gene editing technology, such as harnessing the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, has curative potential. Several studies have reported good efficacy when employing CRISPR/Cas technologies to disable HBV replication in cultured cells and in hydrodynamically injected mice. Recent advances with HCV drug development have revolutionized treatment of the infection. Nevertheless, individuals may be refractory to treatment. Targeting RNA from HCV with CRISPR/Cas isolated from Francisella novicida may have therapeutic utility. Although preclinical work shows that CRISPR/Cas technology has potential to overcome infection with HBV and HCV, significant challenges need to be met. Ensuring specificity for viral targets and efficient delivery of the gene editing sequences to virus-infected cells are particularly important. The field is at an interesting stage and the future of curative antiviral drug regimens, particularly for treatment of chronic HBV infection, may well entail use of combinations that include derivatives of CRISPR/Cas.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Associated Protein 9
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA Cleavage
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Endonucleases/genetics
- Endonucleases/metabolism
- Hepacivirus/genetics
- Hepacivirus/growth & development
- Hepacivirus/metabolism
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Hepatitis C, Chronic/therapy
- Hepatitis C, Chronic/virology
- Humans
- Molecular Targeted Therapy/methods
- Patient Safety
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Buhle Moyo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Tristan Scott
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa; Center for Gene Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
19
|
Zhang Y, Jiang Q, Bi B, Xu L, Liu J, Zhuo R, Jiang X. A bioreducible supramolecular nanoparticle gene delivery system based on cyclodextrin-conjugated polyaspartamide and adamantyl-terminated polyethylenimine. J Mater Chem B 2018; 6:797-808. [DOI: 10.1039/c7tb02170d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reduction degradable Pasp-SS-CD/Ad4-PEI/pDNA supramolecular nanoparticles via host–guest interaction exhibited improved cellular internalization and higher gene transfection efficiency with lower cytotoxicity.
Collapse
Affiliation(s)
- Yunti Zhang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Qimin Jiang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Bo Bi
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
20
|
Zhang Y, Jiang Q, Wojnilowicz M, Pan S, Ju Y, Zhang W, Liu J, Zhuo R, Jiang X. Acid-sensitive poly(β-cyclodextrin)-based multifunctional supramolecular gene vector. Polym Chem 2018. [DOI: 10.1039/c7py01847a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional host–guest supramolecular PCD-acetal-PGEA/Ad-PEG-FA polyplexes showing FA-targeting and acid-triggered intracellular gene release resulted in good transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Qimin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Marcin Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
21
|
Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs. Ther Deliv 2017; 8:215-232. [PMID: 28222660 DOI: 10.4155/tde-2016-0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the recent approval of some gene medicines and nucleic acid drugs, further improvement of delivery techniques for these drugs is strongly required. Several delivery technologies for these drugs have been developed, in other words, viral and two types of nonviral (lipofection and polyfection) vectors. Among the polyfection system, the potential use of various cyclodextrin (CyD) derivatives and CyD-appended polymers as carriers for gene and nucleic acid drugs has been demonstrated. The polyamidoamine dendrimer (G3) conjugates with α-CyD (α-CDE (G3)) have been reported to possess noteworthy properties as DNA and nucleic acid drugs carriers. This review will focus on the attempts to develop such cell-specific drug carriers by preparing polyethylene glycol, galactose, lactose, mannose, fucose and folic acid-appended α-CDEs as tissue and cell-selective carriers of gene and nucleic acid drugs.
Collapse
|
22
|
Sun YX, Zhu JY, Qiu WX, Lei Q, Chen S, Zhang XZ. Versatile Supermolecular Inclusion Complex Based on Host-Guest Interaction for Targeted Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42622-42632. [PMID: 29148707 DOI: 10.1021/acsami.7b14963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A facile and targeted gene delivery system was prepared by conjugating β-cyclodextrin modified polyethylenimine (PEI-CD) and adamantyl peptide (AdGRGDS) based on host-guest interaction. With the rational design between PEI-CD and AdGRGDS, the PEI-CD/AdGRGDS gene delivery system showed excellent DNA binding capability and exhibited good ability to compact DNA into uniform spherical nanoparticles. In vitro luciferase assay showed that gene expression transfected by PEI-CD/AdGRGDS was stronger than that by PEI-CD in HeLa cells, whereas gene expression transfected by PEI-CD/AdGRGDS and PEI-CD was similar to each other in COS7 cells. Internalization of complexes was qualitatively studied using a confocal laser scanning microscope (CLSM) and quantitatively analyzed by flow cytometry, respectively, and targeting specificity was also evaluated by CLSM. Results of CLSM and flow cytometry indicated that PEI-CD/AdGRGDS had good targeting specificity to tumor cells with integrin αvβ3 overexpression. To further evaluate the targeting specificity and transfection efficiency in vivo, a rat model with murine hepatic carcinoma cell line H22 was used. PEI-CD/AdGRGDS showed stronger gene expression efficiency than PEI-CD via in vivo transfection of pORF-LacZ and pGL-3 plasmids after subcutaneous injection. Interestingly, PEI-CD/AdGRGDS also showed high targeting specificity and transfection distribution to tumor xenograft after tail-vein injection. In vitro and in vivo assays highlighted the importance of GRGDS targeting specificity to tumor cells with integrin αvβ3 overexpression and demonstrated that the PEI-CD/AdGRGDS gene delivery system would have great potential for targeted tumor therapy.
Collapse
Affiliation(s)
- Yun-Xia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
23
|
Xiong XY, Pan X, Tao L, Cheng F, Li ZL, Gong YC, Li YP. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel. Int J Biol Macromol 2017; 103:1011-1018. [PMID: 28552723 DOI: 10.1016/j.ijbiomac.2017.05.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
Abstract
Targeted drug delivery systems have great potential to overcome the side effect and improve the bioavailability of conventional anticancer drugs. In order to further improve the antitumor efficacy of paclitaxel (PTX) loaded in folated Pluronic F87/poly(lactic acid) (FA-F87-PLA) micelles, D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS or Vitamin E TPGS) were added into FA-F87-PLA to form FA-F87-PLA/TPGS mixed micelles. The LE of PTX-loaded mixed micelles (13.5%) was highest in the mass ratio 5 to 3 of FA-F87-PLA to TPGS. The in vitro cytotoxicity assays indicated that the IC50 values for free PTX injections, PTX-loaded FA-F87-PLA micelles and PTX-loaded FA-F87-PLA/TPGS mixed micelles after 72h of incubation were 1.52, 0.42 and 0.037mg/L, respectively. The quantitative cellular uptake of coumarin 6-loaded FA-F87-PLA/TPGS and FA-F87-PLA micelles showed that the cellular uptake efficiency of mixed micelles was higher for 2 and 4h incubation, respectively. In vivo pharmacokinetic studies found that the AUC of PTX-loaded FA-F87-PLA/TPGS mixed micelles is almost 1.4 times of that of PTX-loaded FA-F87-PLA micelles. The decreased particle size and inhibition of P-glycoprotein effect induced by the addition of TPGS could result in enhancing the cellular uptake and improving the antitumor efficiency of PTX-loaded FA-F87-PLA/TPGS mixed micelles.
Collapse
Affiliation(s)
- Xiang Yuan Xiong
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Xiaoqian Pan
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Long Tao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yu Ping Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
24
|
Venault A, Huang YC, Lo JW, Chou CJ, Chinnathambi A, Higuchi A, Chen WS, Chen WY, Chang Y. Tunable PEGylation of branch-type PEI/DNA polyplexes with a compromise of low cytotoxicity and high transgene expression: in vitro and in vivo gene delivery. J Mater Chem B 2017; 5:4732-4744. [PMID: 32264316 DOI: 10.1039/c7tb01046j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although PEGylated polyplexes for gene delivery are widespread, there is a need for an in-depth investigation of the role of the PEGylation degree on the delivery efficiency of the systems. For this, a low-toxicity series of polymers for gene delivery were designed via Michael addition of poly(ethylene glycol)methyl ether methacrylate (PEGMA) onto branched polyethylenimine PEI. The goal was to finely tune the PEGylation degree in order to determine the system offering the best compromise between low cytotoxicity and high transfection efficiency under both in vitro and in vivo conditions. From dynamic light scattering tests, zeta potential measurements and gel retardation assay, it was found that nanoparticle assembly of PEI-g-PEGMA and DNA exhibited stable complex formation when the PEGylation degree was below 2.9%. In addition, complexes formed from polymers with a PEGylation degree of at least 1.67% (from PEI-g-PEGMA-6 to PEI-g-PEGMA-18) all showed very low hemolysis activity. Transfection efficiencies of the prepared complexes were determined using the pEGFP-C3 vector and β-galactosidase. Complexes made of PEI-g-PEGMA-6 and PEI-g-PEGMA-10 at a polymer nitrogen/DNA phosphorus weight ratio (Wn/Wp) of 5 led to the best transfection efficiencies. Moreover, PEGylation ensured low cytotoxicity of the complexes in particular at high Wn/Wp ratios. In vivo tests in a mouse model confirmed the in vitro results obtained for PEI-g-PEGMA-6-based complexes, at all Wn/Wp ratios tested, but also showed that a high PEGylation degree (5.2% for PEI-g-PEGMA-18), though inefficient in vitro could still lead to successful delivery in vivo, due to a prolonged contact time between the complex and the cells, and to the change in the biological environment. Overall, provided a fine tuning of the grafting density of PEGMA onto PEI and the polymer nitrogen/DNA phosphorus weight ratio, our results prove that PEI-g-PEGMA polymers constitute an efficient platform for successful in vitro and in vivo gene delivery, and ensure low cytotoxicity and prolonged cell viability.
Collapse
Affiliation(s)
- A Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Zhao J, Yang L, Tang Y, Yang Y, Yin Y. Supramolecular Chemistry-Assisted Electrochemical Method for the Assay of Endogenous Peptidylarginine Deiminases Activities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:152-158. [PMID: 27958698 DOI: 10.1021/acsami.6b13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peptidylarginine deiminase 4 (PAD4) is the only isoform of PADs located within the cell nucleus, which has been known to be related to several human diseases. In this work, we have proposed an electrochemical method for the assay of endogenous PAD4 activities as well as the studies of PAD4 inhibitors by making use of the supramolecular chemistry-assisted signal labeling. Specifically, peptide probes P1 and P2, which separately contain cysteine residues and tripeptides FGG (Phe-Gly-Gly), can be self-assembled onto the surface of the gold electrode and silver nanoparticles, respectively. In the meantime, the peptide probes can be connected together through cucurbit[8]uril-mediated host-guest interaction. Nevertheless, after trypsin-catalyzed digestion, FGG at the N-terminal of P1 will be removed from the electrode surface, thereby inhibiting the connection of P1 and P2. Since PAD4 catalyzes the citrullination of arginine residue within P1, trypsin-catalyzed digestion of P1 can be prohibited by the addition of PAD4. Consequently, an obvious change of the electrochemical response can be obtained from the silver nanoparticles (AgNPs) immobilized on the electrode surface. Experimental results have shown that our method can display an improved sensitivity and specificity for both PAD4 assay and inhibitor screening, which may effectively trace endogenous PAD4 and the inhibitors in the cancer cells. Therefore, our method may have great potential for the diagnosis and treatment of PAD4-related diseases in the future.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Lili Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Yingying Tang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Yucai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, P. R. China
| |
Collapse
|
27
|
Zhu JY, Wan SS, Zheng DW, Lei Q, Zhuo RX, Feng J, Zhang XZ. Propelled Transnuclear Gene Transport Achieved through Intracellularly Redox-Responsive and Acidity-Accelerative Decomposition of Supramolecular Florescence-Quenchable Vectors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:255-265. [PMID: 27966867 DOI: 10.1021/acsami.6b14730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Intracellularly biotriggered decomposition of gene vectors is generally thought to benefit transfection. However, the bioresponsiveness is far from satisfactory, and the exact role of biodecomposition in the transfection process remains unclear to date. To overcome the challenges, highly rapid bioresponse of vectors has to be achieved so as to greatly amplify the intracellular deviation compared with the noncontrolled pattern. To this end, a supramolecular polyrotaxane has been elaborately designed by integrating reversible dynamics of supramolecular assembly and chemically labile bonds, in order to effectively propel intracellular decomposition. Inside tumor cells, the redox-responsive bulk dissociation of the supramolecular vector readily took place and was further accelerated by the lysosomal-acidity-triggered terminal decomposition. Both the in vitro and in vivo experiments have demonstrated that this supramolecule could mediate considerably more rapid gene accumulation in nuclei than the nonresponsive controls including PEI25K, the gold standard of nonviral vectors. Along with the structural decomposition, the supramolecule simultaneously underwent the transition of fluorescence quenching, favoring the evaluation over the bioresponsiveness inside cells. Based on the resulting data, it is suggested that the biotriggered volume expansion of supramolecule/DNA complexes may be the major factor accounting for that dramatically accelerated transnuclear gene transport during cellular mitosis, thus affecting the transfection. This study offers an understanding of the intracellular gene transport from a new viewpoint.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Shuang-Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|