1
|
Sun W, Jang MS, Zhan S, Liu C, Sheng L, Lee JH, Fu Y, Yang HY. Tumor-targeting and redox-responsive photo-cross-linked nanogel derived from multifunctional hyaluronic acid-lipoic acid conjugates for enhanced in vivo protein delivery. Int J Biol Macromol 2025; 314:144444. [PMID: 40403518 DOI: 10.1016/j.ijbiomac.2025.144444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
The fabrication of a secure and efficacious nanosystem for intracellular protein delivery is greatly desired, which relies on coordination of the interactions among loading ability, systemic stability, precise tumor targeting, successful endo-lysosomal evasion, and on-demand release characteristics. Herein, we constructed tumor-targeting and redox-responsive photo-crosslinkable nanogels (TRNGs) via UV light-induced ring-opening polymerization (ROP) of lipoic acid moieties incorporated in the side chain of methoxy poly (ethylene glycol) and diethylenetriamine-modified hyaluronic acid (HA-g-mPEG/Deta-c-LA) to create disulfide cross-linked core for the in vivo delivery of cytochrome c (CC). The TRNGs had satisfactory stability for 48 h in physiological environments and high CC encapsulation efficiency via multi-physical interactions. In vivo and in vitro fluorescence imaging proved the preferential accumulation of CC-loaded TRNGs in tumor tissues of human lung tumor-bearing mice and these nanoparticles were efficiently taken up into the CD44-positive A549 cells through CD44-mediated endocytosis compared to CD44-negative HepG2 cells. In addition, the nanoparticles underwent swift exocytosis from the endo-lysosomal compartment, thus promoting the liberation of CC within a reducing intracellular environment. The in vitro therapeutic outcomes proved that empty TRNGs presented excellent biocompatibility and minimal cytotoxicity, whereas CC-loaded TRNGs demonstrated a superior capacity to kill A549 cells compared to free CC and exhibited low effect on CD44-negative HepG2 cells. Moreover, CC-loaded TRNGs also had enhanced antitumor activity without eliciting any adverse effects. Our study highlighted the potential of TRNGs as a novel nanoplatform for the treatment of protein-based cancers.
Collapse
Affiliation(s)
- Wei Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Siqi Zhan
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Li Sheng
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
2
|
Al Jayoush AR, Haider M, Khan SA, Hussain Z. Hyaluronic acid-functionalized nanomedicines for CD44-receptors-mediated targeted cancer therapy: A review of selective targetability and biodistribution to tumor microenvironment. Int J Biol Macromol 2025; 308:142486. [PMID: 40139601 DOI: 10.1016/j.ijbiomac.2025.142486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Cancer is a leading cause of death globally, driven by late diagnoses, aggressive progression, and multidrug resistance (MDR). Advances in nanotechnology are tackling these challenges, paving the way for transformative cancer treatments. Hyaluronic acid (HA)-based nanoparticles (NPs) have emerged as promising platforms due to their biocompatibility, biodegradability, and natural targeting capabilities via CD44 (cluster of differentiation 44) receptors. Functionalizing NPs with HA enhances cellular uptake through CD44, improves pharmacokinetics, tumor localization, and anticancer efficacy while reducing systemic toxicity. This review provides a comprehensive overview of HA-based NPs, highlighting their potential to address limitations in cancer treatment and inspire further innovation. The targeting efficiency of HA-based NPs can be further optimized by integrating passive (e.g., PEGylation), active (e.g., ligand conjugation), and stimuli-responsive mechanisms (e.g., pH, redox, light, enzyme activity, and temperature sensitivity). These NPs also enable therapeutic combinations, such as co-delivery of chemotherapeutics with gene therapies (e.g., siRNA) and integration of photothermal and photodynamic therapies, alongside immune checkpoint inhibitors, amplifying therapeutic synergy. Despite promising preclinical results, challenges such as scalability, stability, long-term safety, ethical and regulatory hurdles, and high costs persist. Nonetheless, HA-based NPs represent a cutting-edge approach, combining biocompatibility, precision targeting, and multimodal functionality to combat cancer effectively, while mitigating side effects.
Collapse
Affiliation(s)
- Alaa Raad Al Jayoush
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Saeed Ahmad Khan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Wang J, Jiang W, Liu W, Xu T, Xu W, Sheng H, Badaila R, Ma M, Zhang N. Cytosolic delivery of cytochrome c conjugates induces apoptosis at nanomolar levels through a caspase-3-dependent pathway. Chem Commun (Camb) 2024; 60:8764-8767. [PMID: 39073564 DOI: 10.1039/d4cc02371d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cytochrome c (CytC) is conjugated with a small molecule TG6 to give TG6-CytC, which is directly delivered into cytosol, triggering the release of endogenous CytC from mitochondria, and inducing a caspase-3-dependent apoptosis with an IC50 down to 2.4 nM. This work shows an efficient strategy for intracellular protein delivery.
Collapse
Affiliation(s)
- Jian Wang
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Wei Jiang
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Wenjuan Liu
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Tingting Xu
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Wenqian Xu
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Hongyang Sheng
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Raman Badaila
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Mingming Ma
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ning Zhang
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| |
Collapse
|
4
|
Cai J, Zhang M, Peng J, Wei Y, Zhu W, Guo K, Gao M, Wang H, Wang H, Wang L. Peptide-AIE Nanofibers Functionalized Sutures with Antimicrobial Activity and Subcutaneous Traceability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400531. [PMID: 38716716 DOI: 10.1002/adma.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Indexed: 05/18/2024]
Abstract
As one of the most widely used medical devices, sutures face challenges related to surgical site infections (SSIs) and lack of subcutaneous traceability. In the present study, a facile and effective approach using peptide-AIE nanofibers (NFs-K18) to create fluorescent-traceable antimicrobial sutures, which have been applied to four commercially available sutures is developed. The functionalized sutures of PGAS-NFs-K18 and PGLAS-NFs-K18 exhibit fluorescence with excellent penetration from 4 mm chicken breasts. They also demonstrate remarkable stability after 24 h of white light illumination and threading through chicken breasts 10 times. These sutures efficiently generate ROS, resulting in significant suppression of four clinical bacteria, with the highest antimicrobial rate of ≈100%. Moreover, the sutures exhibit favorable hemocompatibility and biocompatibility. In vivo experiments demonstrate that the optimized PGLAS-NFs-K18 suture displays potent antimicrobial activity against MRSA, effectively inhibiting inflammation and promoting tissue healing in both skin wound and abdominal wall wound models, outperforming the commercially available Coated VICRYL Plus Antibacterial suture. Importantly, PGLAS-NFs-K18 exhibits sensitive subcutaneous traceability, allowing for accurate in situ monitoring of its degradation. It is believed that this straightforward strategy offers a new pathway for inhibiting SSIs and monitoring the status of sutures.
Collapse
Affiliation(s)
- Junyi Cai
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Meng Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Jingqi Peng
- The Third General Surgery Department, Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Research Institute The Fourth Affiliated Hospital of Xinjiang Medical University), Urumqi, 830011, China
| | - Yingqi Wei
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Henan Provincial Key Laboratory of Radiation Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Kunzhong Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Huaiming Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
5
|
Ai S, Zhao P, Fang K, Cheng H, Cheng S, Liu Z, Wang C. Charge Conversional Biomimetic Nanosystem for Synergistic Photodynamic/Protein Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307193. [PMID: 38054765 DOI: 10.1002/smll.202307193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Cytochrome C (Cytc) has received considerable attention due to its ability to induce tumor apoptosis and generate oxygen to improve photodynamic therapy (PDT) efficiency. However, the damage to normal tissues caused by nonspecific accumulation of Cytc limits its application. Herein, in order to reduce its toxicity to normal tissues while retaining its activity, a charge conversional biomimetic nanosystem (CA/Ce6@MSN-4T1) is proposed to improve the tumor targeting ability and realize controlled release of Cytc in the tumor microenvironment. This nanosystem is constructed by coating tumor cell membrane on mesoporous silica nanoparticles coloaded with a photosensitizer (chlorin e6, Ce6) and the citraconic anhydride conjugated Cytc (CA) for synergistic photodynamic/protein therapy. The coating of the tumor cell membrane endows the nanoparticles with homologous targeting ability to the same cancer cells as well as immune escaping capability. CA undergoes charge conversion in the acidic environment of the tumor to achieve a controlled release of Cytc. The released Cytc can relieve cellular hypoxia to improve the PDT efficiency of Ce6 and can induce programmed cell death. Both in vitro and in vivo studies demonstrated that CA/Ce6@MSN-4T1 can efficiently inhibit the growth of tumors through synergistic photodynamic/protein therapy, and meanwhile show reduced side effects on normal tissues.
Collapse
Affiliation(s)
- Shulun Ai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Peisen Zhao
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Kaixuan Fang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Hemei Cheng
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Sixue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhihong Liu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Caixia Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
6
|
Li Y, Chen T, Chen L, Wu D, Hu J. Construction of hyaluronic acid-functionalized magnolol nanoparticles for ulcerative colitis treatment. Int J Biol Macromol 2024; 268:131920. [PMID: 38679261 DOI: 10.1016/j.ijbiomac.2024.131920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Oral targeted anti-inflammatory drugs have garnered significant interest in treating ulcerative colitis (UC) due to their potential in reducing medical costs and enhancing treatment efficacy. Magnolol (Mag), a natural anti-inflammatory compound, has demonstrated protective effects against UC. However, its application as an alternative therapeutic agent for UC is limited by poor gastrointestinal stability and inadequate accumulation at inflamed colonic lesions. This study introduces a novel nanoparticle (NPs) formulation based on Mag, functionalized with hyaluronic acid (HA) for targeted UC therapy. Bovine serum albumin (BSA) was modified with 2-thiamine hydrochloride to synthesize BSA·SH. Thiol-ene click reaction with Mag led to the formation of BSA·SH-Mag NPs, which were further modified with HA through dehydration condensation, regular spherical inflammation-targeting HA-BSA·SH-Mag nanoparticles with a charge of -23.6 mV and a particle size of 403 ± 4 nm were formed. In vitro studies revealed significant macrophage targeting and enhanced uptake by colon epithelial cells. Oral administration of HA-BSA·SH-Mag facilitated colon mucosal barrier repair by modulating pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), anti-inflammatory cytokines (IL-10), and tight junction proteins (ZO-1, Claudin, Occludin). Crucially, HA-BSA·SH-Mag was found to inhibit the JAK2/STAT3/NF-κB signaling pathway, reducing DSS-induced colon tissue inflammation. This research provides valuable insights into the oral use of natural compounds in UC therapy, highlighting the therapeutic potential of HA-BSA·SH-Mag NPs.
Collapse
Affiliation(s)
- Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Sarkar A, Sarkhel S, Bisht D, Jaiswal A. Cationic dextrin nanoparticles for effective intracellular delivery of cytochrome C in cancer therapy. RSC Chem Biol 2024; 5:249-261. [PMID: 38456040 PMCID: PMC10915965 DOI: 10.1039/d3cb00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/19/2023] [Indexed: 03/09/2024] Open
Abstract
Intracellular protein delivery shows promise as a selective and specific approach to cancer therapy. However, a major challenge is posed by delivering proteins into the target cells. Despite the development of nanoparticle (NP)-based approaches, a versatile and biocompatible delivery system that can deliver active therapeutic cargo into the cytosol while escaping endosome degradation remains elusive. In order to overcome these challenges, a polymeric nanocarrier was prepared using cationic dextrin (CD), a biocompatible and biodegradable polymer, to encapsulate and deliver cytochrome C (Cyt C), a therapeutic protein. The challenge of endosomal escape of the nanoparticles was addressed by co-delivering the synthesized NP construct with chloroquine, which enhances the endosomal escape of the therapeutic protein. No toxicity was observed for both CD NPs and chloroquine at the concentration tested in this study. Spectroscopic investigations confirmed that the delivered protein, Cyt C, was structurally and functionally active. Additionally, the delivered Cyt C was able to induce apoptosis by causing depolarization of the mitochondrial membrane in HeLa cells, as evidenced by flow cytometry and microscopic observations. Our findings demonstrate that an engineered delivery system using CD NPs is a promising platform in nanomedicine for protein delivery applications.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Deepali Bisht
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| |
Collapse
|
8
|
Myint SS, Laomeephol C, Thamnium S, Chamni S, Luckanagul JA. Hyaluronic Acid Nanogels: A Promising Platform for Therapeutic and Theranostic Applications. Pharmaceutics 2023; 15:2671. [PMID: 38140012 PMCID: PMC10747897 DOI: 10.3390/pharmaceutics15122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Hyaluronic acid (HA) nanogels are a versatile class of nanomaterials with specific properties, such as biocompatibility, hygroscopicity, and biodegradability. HA nanogels exhibit excellent colloidal stability and high encapsulation capacity, making them promising tools for a wide range of biomedical applications. HA nanogels can be fabricated using various methods, including polyelectrolyte complexation, self-assembly, and chemical crosslinking. The fabrication parameters can be tailored to control the physicochemical properties of HA nanogels, such as size, shape, surface charge, and porosity, enabling the rational design of HA nanogels for specific applications. Stimulus-responsive nanogels are a type of HA nanogels that can respond to external stimuli, such as pH, temperature, enzyme, and redox potential. This property allows the controlled release of encapsulated therapeutic agents in response to specific physiological conditions. HA nanogels can be engineered to encapsulate a variety of therapeutic agents, such as conventional drugs, genes, and proteins. They can then be delivered to target tissues with high efficiency. HA nanogels are still under development, but they have the potential to become powerful tools for a wide range of theranostic or solely therapeutic applications, including anticancer therapy, gene therapy, drug delivery, and bioimaging.
Collapse
Affiliation(s)
- Su Sundee Myint
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.M.); (S.C.)
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirikool Thamnium
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.M.); (S.C.)
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Yu L, Xie L, Chen Z, Guo H, Zhang Y, Wang H, Wang R, Zhou X, Lei Z, Lu D. Target Embolization Combined with Multimodal Thermal Ablation for Solid Tumors by Smart Poly(amino acid)s Nanocomposites. ACS Biomater Sci Eng 2023; 9:2683-2693. [PMID: 37083337 DOI: 10.1021/acsbiomaterials.2c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Noninterventional embolization does not require the use of a catheter, and the treatment of solid tumors in combination with thermal ablation can avoid some of the risks of the surgical procedure. Therefore, we developed an efficient tumor microenvironment-gelled nanocomposites with poly [(l-glutamic acid-ran-l-tyrosine)-b-l-serine-b-l-cysteine] (PGTSCs) coated-nanoparticles (Fe3O4&Au@PGTSCs), from which the prepared PGTSCs were given possession of pH response to an acidic tumor microenvironment. Fe3O4&Au@PGTSC in noninterventional embolization treatment not only achieved the smart targeted medicine delivery but also meshed with noninvasive multimodal thermal ablation therapy and multimodal imaging of solid tumors via intravenous injection. It was worth noting that the results of animal experiments in vivo demonstrated that Fe3O4&Au@PGTSCs have specific tumor accumulation and embolization and thermal ablation effects; at 10 days postinjection, only scars were found at the tumor site. After 20 days, the tumors of model mice completely disappeared. This device is easier to treat solid tumors based on the slightly acidic tumor environment.
Collapse
Affiliation(s)
- Lili Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Liyuan Xie
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhengpeng Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hongyun Guo
- Gansu Provincial Academic for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou 730070, P. R. China
| | - Yongdong Zhang
- Gansu Provincial Academic for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou 730070, P. R. China
| | - Haijun Wang
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Rong Wang
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Xing Zhou
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
10
|
Luo Y, Tan J, Zhou Y, Guo Y, Liao X, He L, Li D, Li X, Liu Y. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: A review. Int J Biol Macromol 2023; 231:123308. [PMID: 36669634 DOI: 10.1016/j.ijbiomac.2023.123308] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is not only a natural anionic polysaccharide with excellent biocompatibility, biodegradability, and moisturizing effect, but also an essential factor that can affect angiogenesis, inflammation, cell behavior, which has a wide range of applications in the biomedical field. Among them, HA-based hydrogels formed by various physical or chemical crosslinking strategies are particularly striking. They not only retain the physiological function of HA, but also have the skeleton function of hydrogel, which further expands the application of HA. However, HA-based natural hydrogels generally have problems such as insufficient mechanical strength and susceptibility to degradation by hyaluronidase, which limits their application to a certain extent. To solve such problems, researchers have prepared a variety of HA-based multifunctional hydrogels with remarkable properties in recent years by adopting various structural modification methods or novel crosslinking strategies, as well as introducing functionally reactive molecules or moieties, which have extended the application scope. This manuscript systematically introduced common crosslinking strategies of HA-based hydrogels and highlighted the development of novel HA-based hydrogels in anticancer drug delivery, cartilage repair, three-dimensional cell culture, skin dressing and other fields. We hope to provide some references for the subsequent development of HA-based hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Yuning Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Junyan Tan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Zhou
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuqiong Guo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dingxilei Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinxin Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226:535-553. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has influenced the advancements in biomedical and pharmaceutical fields. The design and formulation of stimuli-responsive nano-drug delivery systems, also called smart drug delivery systems, have attracted significant research worldwide and have been seen as a breakthrough in nanomedicines. The ability of these nanocarriers to respond to external and internal stimuli, such as pH, temperature, redox, electric and magnetic fields, enzymes, etc., has allowed them to deliver the cargo at targeted sites in a controlled fashion. The targeted drug delivery systems limit the harmful side effects on healthy tissue by toxic drugs and furnish spatial and temporal control drug delivery, improved patient compliance, and treatment efficiency. The polymeric nanogels (hydrogel nanoparticles) with stimuli-responsive characteristics have shown great potential in various biomedical, tissue engineering, and pharmaceutical fields. It is primarily because of their small size, biocompatibility, biodegradability, stimuli-triggered drug deliverability, high payload capacity, and tailored functionality. This comprehensive review deals distinctively with polymeric nanogels, their chemical, physical, and biological stimuli, the concepts of nanogels response to different stimuli, and recent advancements. This document will further improve the current understanding of stimuli-responsive materials and drug delivery systems and assist in exploring advanced potential applications of these intelligent materials.
Collapse
Affiliation(s)
- Sachin Bhaladhare
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India.
| | - Sulagna Bhattacharjee
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India
| |
Collapse
|
12
|
Zhou T, Yuan S, Qian P, Wu Y. Enzymes in Nanomedicine for Anti-tumor Therapy. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Li X, Xu X, Xu M, Geng Z, Ji P, Liu Y. Hydrogel systems for targeted cancer therapy. Front Bioeng Biotechnol 2023; 11:1140436. [PMID: 36873346 PMCID: PMC9977812 DOI: 10.3389/fbioe.2023.1140436] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
When hydrogel materials with excellent biocompatibility and biodegradability are used as excellent new drug carriers in the treatment of cancer, they confer the following three advantages. First, hydrogel materials can be used as a precise and controlled drug release systems, which can continuously and sequentially release chemotherapeutic drugs, radionuclides, immunosuppressants, hyperthermia agents, phototherapy agents and other substances and are widely used in the treatment of cancer through radiotherapy, chemotherapy, immunotherapy, hyperthermia, photodynamic therapy and photothermal therapy. Second, hydrogel materials have multiple sizes and multiple delivery routes, which can be targeted to different locations and types of cancer. This greatly improves the targeting of drugs, thereby reducing the dose of drugs and improving treatment effectiveness. Finally, hydrogel can intelligently respond to environmental changes according to internal and external environmental stimuli so that anti-cancer active substances can be remotely controlled and released on demand. Combining the abovementioned advantages, hydrogel materials have transformed into a hit in the field of cancer treatment, bringing hope to further increase the survival rate and quality of life of patients with cancer.
Collapse
Affiliation(s)
- Xinlin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Mengfei Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Ping Ji
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| |
Collapse
|
14
|
Cytochrome c in cancer therapy and prognosis. Biosci Rep 2022; 42:232225. [PMID: 36479932 PMCID: PMC9780037 DOI: 10.1042/bsr20222171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Cytochrome c (cyt c) is an electron transporter of the mitochondrial respiratory chain. Upon permeabilization of the mitochondrial outer membrane, cyt c is released into the cytoplasm, where it triggers the intrinsic pathway of apoptosis. Cytoplasmic cyt c can further reach the bloodstream. Apoptosis inhibition is one of the hallmarks of cancer and its induction in tumors is a widely used therapeutic approach. Apoptosis inhibition and induction correlate with decreased and increased serum levels of cyt c, respectively. The quantification of cyt c in the serum is useful in the monitoring of patient response to chemotherapy, with potential prognosis value. Several highly sensitive biosensors have been developed for the quantification of cyt c levels in human serum. Moreover, the delivery of exogenous cyt c to the cytoplasm of cancer cells is an effective approach for inducing their apoptosis. Similarly, several protein-based and nanoparticle-based systems have been developed for the therapeutic delivery of cyt c to cancer cells. As such, cyt c is a human protein with promising value in cancer prognosis and therapy. In addition, its thermal stability can be extended through PEGylation and ionic liquid storage. These processes could contribute to enhancing its therapeutic exploitation in clinical facilities with limited refrigeration conditions. Here, I discuss these research lines and how their timely conjunction can advance cancer therapy and prognosis.
Collapse
|
15
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
16
|
Wang J, Liu J, Lu DQ, Chen L, Yang R, Liu D, Zhang B. Diselenide-crosslinked carboxymethyl chitosan nanoparticles for doxorubicin delivery: Preparation and in vivo evaluation. Carbohydr Polym 2022; 292:119699. [PMID: 35725216 DOI: 10.1016/j.carbpol.2022.119699] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
In this paper, we report a simple approach to fabricate diselenide-crosslinked carboxymethyl chitosan nanoparticles (DSe-CMC NPs) for doxorubicin (DOX) delivery, with disulfide analogs (DS-CMC NPs) as control. DS-CMC NPs and DSe-CMC NPs featured a spherical morphology and narrow size distribution with the average size about 200 nm. Carboxymethyl chitosan (CMC) as the starting material not only improved the biocompatibility of the nanocarriers but also enhanced physiological stability. Due to electrostatic interactions between DOX and CMC, the nanoparticles had high drug encapsulation efficiency (∼25 %). The nanoparticles disintegration and drug release were accelerated by the cleavage of diselenide bonds through oxidation by H2O2 or reduction by GSH. In vitro cell experiments revealed that DOX-loaded DSe-CMC NPs possessed the highest drug accumulation and cytotoxicity in tumor cells. Moreover, DOX-loaded DSe-CMC NPs performed the enhanced growth inhibition in vivo than that of DS-CMC NPs. Thus, the diselenide-crosslinked nanoparticles possess great potentials for DOX delivery.
Collapse
Affiliation(s)
- Jun Wang
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China
| | - Justin Liu
- Department of Statistics, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Dao-Qiang Lu
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China
| | - Lijing Chen
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China
| | - Rujia Yang
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China.
| | - Bin Zhang
- Hospital of Chinese Traditional Medicine of Guangdong Province, Foshan 528000, Guangdong, PR China.
| |
Collapse
|
17
|
Chowdhury P, Banerjee A, Saha B, Bauri K, De P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:4207-4229. [PMID: 36054823 DOI: 10.1021/acsbiomaterials.2c00656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, 723133 Purulia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
18
|
Yang HY, Jang MS, Li Y, Du JM, Liu C, Lee JH, Fu Y. pH-responsive dynamically cross-linked nanogels with effective endo-lysosomal escape for synergetic cancer therapy based on intracellular co-delivery of photosensitizers and proteins. Colloids Surf B Biointerfaces 2022; 217:112638. [PMID: 35772354 DOI: 10.1016/j.colsurfb.2022.112638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Co-delivery of photosensitizers (PSs) and protein drugs represents great potentiality for enhancing the efficiency of synergistic cancer therapy. However, the intricate tumor-microenvironment and the lack of nanoplatforms to co-deliver both into cancer cells and activate their functions significantly hinder the clinical translation of this combined approach for cancer treatment. Herein, a chlorine e6 (Ce6)-functionalized and pH-responsive dynamically cross-linked nanogel (Ce6@NG) is fabricated by formation of benzoic imine linkages between Ce6-modified methoxy poly (ethyleneglycol)-block-poly (diethylenetriamine)-L-glutamate-Ce6 [MPEG-b-P(Deta)LG-Ce6] and terephthalaldehyde as cross-linkers for effective intracellular co-delivery of Ce6 and cytochrome c (CC), which could form a novel combination therapy system (CC/Ce6@NGs). The pH-sensitive benzoic imine bonds in the CC/Ce6@NGs endow them with excellent systemic stability under normal physiological environment while this nanosystem can be further cationized to enhance cell uptake in acidic extracellular environment. Upon cellular internalization, CC/Ce6@NGs can rapidly escape from the endo/lysosomal compartments and subsequently activate Ce6 to generate cytotoxic singlet oxygen upon laser irradiation and release of CC to induce programmed cell death by complete cleavage of benzoic imines at more acidic intracellular environments. Importantly, the catalase-like activity of CC can decompose H2O2 to produce O2 for hypoxia alleviation and improvement of the photodynamic therapy (PDT) of cancer. Moreover, this enhanced synergistic anticancer activity is confirmed both in vitro and in vivo. In view of the versatile chemical conjugation, this research offers a promising and smart nanosystem for intracellular co-delivery of PSs and therapeutic proteins.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, the Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China
| | - Jia Meng Du
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, the Republic of Korea.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
19
|
Zeng Q, Singh R, Ye Y, Cheng S, Kong F, Zeng Q. Anti‐breast‐cancer activity of self‐fermented
Bovistella sinensis Lloyd
extracts through the mitochondrial
ROS
‐induced apoptosis in vitro. J Food Biochem 2022; 46:e14218. [DOI: 10.1111/jfbc.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Qinghua Zeng
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei China
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Ragini Singh
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Yong Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei China
| | - Shuang Cheng
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Feng Kong
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Qingmei Zeng
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei China
| |
Collapse
|
20
|
Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11078-11091. [PMID: 35196008 PMCID: PMC9007418 DOI: 10.1021/acsami.1c21655] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/17/2022] [Indexed: 05/10/2023]
Abstract
Nanomedicines, while having been approved for cancer therapy, present many challenges such as low stability, rapid clearance, and nonspecificity leading to off-target toxicity. Cubosomes are porous lyotropic liquid crystalline nanoparticles that have shown great premise as drug delivery vehicles; however, their behavior in vivo is largely underexplored, hindering clinical translation. Here, we have engineered cubosomes based on the space group Im3m that are loaded with copper acetylacetonate as a model drug, and their surfaces are functionalized for the first time with Affimer proteins via copper-free click chemistry to actively target overexpressed carcinoembryonic antigens on LS174T colorectal cancer cells. Unlike nontargeted cubosomes, Affimer tagged cubosomes showed preferential accumulation in cancer cells compared to normal cells not only in vitro (2D monolayer cell culture and 3D spheroid models) but also in vivo in colorectal cancer mouse xenografts, while exhibiting low nonspecific absorption and toxicity in other vital organs. Cancerous spheroids had maximum cell death compared to noncancerous cells upon targeted delivery. Xenografts subjected to targeted drug-loaded cubosomes showed a 5-7-fold higher drug accumulation in the tumor tissue compared to the liver, kidneys, and other vital organs, a significant decrease in tumor growth, and an increased survival rate compared to the nontargeted group. This work encompasses the first thorough preclinical investigation of Affimer targeted cubosomes as a cancer therapeutic.
Collapse
Affiliation(s)
- Arindam Pramanik
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Zexi Xu
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Shazana H. Shamsuddin
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department
of Pathology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Yazan S. Khaled
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Nicola Ingram
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - Thomas Maisey
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Darren Tomlinson
- Biomedical
Health Research Centre, BioScreening Technology Group, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - P. Louise Coletta
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - David Jayne
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - Thomas A. Hughes
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Arwen I. I. Tyler
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Paul A. Millner
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
21
|
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Ran Mo
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| |
Collapse
|
22
|
Zhang X, Wang DY, Wu X, Zhao Y, Li X, Ma R, Huang F, Shi L. “Spear and Shield in One” Nanochaperone Enables Protein to Navigate Multiple Biological Barriers for Enhanced Tumor Synergistic Therapy. Biomater Sci 2022; 10:3575-3584. [DOI: 10.1039/d2bm00409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein therapeutics have been viewed as powerful candidates for cancer treatment by virtue of highly specific bioactivity and minimized adverse effects. However, the intracellular delivery of protein drugs remains enormously...
Collapse
|
23
|
Yang L, Ma H, Lin S, Zhu Y, Chen H, Zhang N, Feng X. Nucleus-selective codelivery of proteins and drugs for synergistic antitumor therapy. Chem Sci 2022; 13:10342-10348. [PMID: 36277647 PMCID: PMC9473504 DOI: 10.1039/d2sc03861g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Subcellular organelle targeted transport is of great significance for accurately delivering drugs to active sites for better pharmacological effects, but there are still a lot of challenges due to transport problems. In addition, the killing effect of one kind of drug on cells is limited. Therefore, it is necessary to develop a multifunctional nanoplatform that can co-deliver synergistic therapeutic agents. Here, we prepare a simple amphiphilic nanocarrier (LC) with rapid endosomal escape ability for nucleus-selective delivery of hydrophilic active protein deoxyribonuclease I (DNase I) and hydrophobic anticancer drug doxorubicin (DOX). LC has been applied to effectively encapsulate DNase I just by simply mixing their aqueous solutions together. In addition, DOX modified with adamantane groups via a redox-responsive linker is incorporated into the architecture of DNase I nanoformulations through host–guest interaction. This multi-component nanoplatform can quickly escape from the endolysosomes into the cytoplasm and make DNase I and DOX highly accumulate in the nucleus and consequently induce strong synergistic anticancer efficacy both in vitro and in vivo. This work illustrates a new platform for codelivery of proteins and drugs that target subcellular compartments for functions. An efficient nucleus-targeted co-delivery nanoplatform with high endosomal escape ability to transport proteins and drugs into nucleus was prepared for synergistically enhanced cancer therapy.![]()
Collapse
Affiliation(s)
- Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Huijie Ma
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shan Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yupeng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ning Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong 523710, P. R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
24
|
Deng S, Gigliobianco MR, Mijit E, Minicucci M, Cortese M, Campisi B, Voinovich D, Battistelli M, Salucci S, Gobbi P, Lupidi G, Zambito G, Mezzanotte L, Censi R, Di Martino P. Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox-Responsive Degradability for Intracellular Delivery. Pharmaceutics 2021; 13:pharmaceutics13122048. [PMID: 34959330 PMCID: PMC8708258 DOI: 10.3390/pharmaceutics13122048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions. The surface and core-shell morphology of the nanohydrogel were observed by scanning electron microscope, transmission electron microscopy, and further confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy from the standpoint of chemical composition. The redox-responsive biodegradability of the nanohydrogel in reducing environments was determined using glutathione as reducing agent. A nanohydrogel with particle size around 250 nm and polydispersity index around 0.1 is characterized by a thermosensitive shell which jellifies at body temperature and crosslinks at the interface of a redox-responsive hyaluronic acid core via the Michael addition reaction. The nanohydrogel showed good encapsulation efficiency for model macromolecules of different molecular weight (93% for cytochrome C, 47% for horseradish peroxidase, and 90% for bovine serum albumin), capacity to retain the peroxidase-like enzymatic activity (around 90%) of cytochrome C and horseradish peroxidase, and specific redox-responsive release behavior. Additionally, the nanohydrogel exhibited excellent cytocompatibility and internalization efficiency into macrophages. Therefore, the developed core-shell structure nanohydrogel can be considered a promising tool for the potential intracellular delivery of different pharmaceutical applications, including for cancer therapy.
Collapse
Affiliation(s)
- Siyuan Deng
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | | | - Emin Mijit
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (E.M.); (M.M.)
| | - Marco Minicucci
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (E.M.); (M.M.)
| | - Manuela Cortese
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | - Barbara Campisi
- Department of Economic, Business, Mathematic and Statistical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Science, University of Trieste, P. le Europa 1, 34127 Trieste, Italy;
| | - Michela Battistelli
- Institute of Morphological Sciences, University of Urbino, Via Ca’ le Suore 2, 61029 Urbino, Italy; (M.B.); (P.G.)
| | - Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Pietro Gobbi
- Institute of Morphological Sciences, University of Urbino, Via Ca’ le Suore 2, 61029 Urbino, Italy; (M.B.); (P.G.)
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (L.M.)
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (L.M.)
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
- Correspondence: ; Tel.: +39-0737-40-2231
| | - Piera Di Martino
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, Via dei Vestini, 1, 66100 Chieti, Italy;
| |
Collapse
|
25
|
Delinois LJ, De León-Vélez O, Vázquez-Medina A, Vélez-Cabrera A, Marrero-Sánchez A, Nieves-Escobar C, Alfonso-Cano D, Caraballo-Rodríguez D, Rodriguez-Ortiz J, Acosta-Mercado J, Benjamín-Rivera JA, González-González K, Fernández-Adorno K, Santiago-Pagán L, Delgado-Vergara R, Torres-Ávila X, Maser-Figueroa A, Grajales-Avilés G, Miranda Méndez GI, Santiago-Pagán J, Nieves-Santiago M, Álvarez-Carrillo V, Griebenow K, Tinoco AD. Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug. INORGANICS 2021; 9:83. [PMID: 35978717 PMCID: PMC9380692 DOI: 10.3390/inorganics9110083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.
Collapse
Affiliation(s)
- Louis J. Delinois
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Omar De León-Vélez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Adriana Vázquez-Medina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Alondra Vélez-Cabrera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Amanda Marrero-Sánchez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Daniela Alfonso-Cano
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Jael Rodriguez-Ortiz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Jemily Acosta-Mercado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kiara González-González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kysha Fernández-Adorno
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lisby Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Rafael Delgado-Vergara
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Xaiomy Torres-Ávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Andrea Maser-Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | | | - Javier Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Miguel Nieves-Santiago
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Vanessa Álvarez-Carrillo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
26
|
Della Sala F, Fabozzi A, di Gennaro M, Nuzzo S, Makvandi P, Solimando N, Pagliuca M, Borzacchiello A. Advances in Hyaluronic-Acid-Based (Nano)Devices for Cancer Therapy. Macromol Biosci 2021; 22:e2100304. [PMID: 34657388 DOI: 10.1002/mabi.202100304] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Antonio Fabozzi
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Stefano Nuzzo
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Pooyan Makvandi
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Nicola Solimando
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Maurizio Pagliuca
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
27
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
28
|
Schötz S, Reisbeck F, Schmitt AC, Dimde M, Quaas E, Achazi K, Haag R. Tunable Polyglycerol-Based Redox-Responsive Nanogels for Efficient Cytochrome C Delivery. Pharmaceutics 2021; 13:pharmaceutics13081276. [PMID: 34452237 PMCID: PMC8397965 DOI: 10.3390/pharmaceutics13081276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/11/2023] Open
Abstract
The sensitivity of therapeutic proteins is a challenge for their use in biomedical applications, as they are prone to degradation and opsonization, thus limiting their potential. This demands for the development of drug delivery systems shielding proteins and releasing them at the site of action. Here, we describe the synthesis of novel polyglycerol-based redox-responsive nanogels and report on their potential as nanocarrier systems for the delivery of cytochrome C (CC). This system is based on an encapsulation protocol of the therapeutic protein into the polymer network. NGs were formed via inverse nanoprecipitation using inverse electron-demand Diels–Alder cyclizations (iEDDA) between methyl tetrazines and norbornenes. Coprecipitation of CC led to high encapsulation efficiencies. Applying physiological reductive conditions of l-glutathione (GSH) led to degradation of the nanogel network, releasing 80% of the loaded CC within 48 h while maintaining protein functionality. Cytotoxicity measurements revealed high potency of CC-loaded NGs for various cancer cell lines with low IC50 values (up to 30 μg·mL−1), whereas free polymer was well tolerated up to a concentration of 1.50 mg·mL−1. Confocal laser scanning microscopy (CLSM) was used to monitor internalization of free and CC-loaded NGs and demonstrate the protein cargo’s release into the cytosol.
Collapse
|
29
|
Jiang T, Ma Y, Xu X, Ji Q, Feng M, Cheng C, Feng Y, He B, Mo R. Enzyme-instructed hybrid nanogel/nanofiber oligopeptide hydrogel for localized protein delivery. Acta Pharm Sin B 2021; 11:2070-2079. [PMID: 34386339 PMCID: PMC8343108 DOI: 10.1016/j.apsb.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
Enzyme-catalysis self-assembled oligopeptide hydrogel holds great interest in drug delivery, which has merits of biocompatibility, biodegradability and mild gelation conditions. However, its application for protein delivery is greatly limited by inevitable degradation of enzyme on the encapsulated proteins leading to loss of protein activity. Moreover, for the intracellularly acted proteins, cell membrane as a primary barrier hinders the transmembrane delivery of proteins. The internalized proteins also suffer from acidic and enzymatic degradation in endosomes and lysosomes. We herein develop a protease-manipulated hybrid nanogel/nanofiber hydrogel for localized delivery of intracellularly acted proteins. The embedded polymeric nanogels (CytoC/aNGs) preserve activity of cytochrome c (CytoC) that is an intracellular activator for cell apoptosis as a model protein against proteolysis, and do not affect the gelation properties of the protease-catalysis assembled hydrogels. The injectable hydrogel (CytoC/aNGs/Gel) serves as a reservoir to enhance intratumoral retention and realize sustainable release of CytoC/aNGs. The released CytoC/aNGs increase cellular uptake of CytoC and enhance its intracellular delivery to its target site, cytoplasm, resulting in favorable apoptosis-inducing and cytotoxic effects. We show that a single local administration of CytoC/aNGs/Gel efficiently inhibit the tumor growth in the breast tumor mouse model.
Collapse
|
30
|
Ai SL, Wang CX, Peng Y, Tu Y, Lei JJ, Xu C, Ren XH, Cheng SX. An Albumin-Based Therapeutic Nanosystem for Photosensitizer/Protein Co-Delivery to Realize Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4946-4952. [PMID: 35007043 DOI: 10.1021/acsabm.1c00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxygen-dependent photodynamic therapy (PDT) is hindered by the limited availability of endogenous oxygen in solid tumors and low tumor accumulation of photosensitizers. Herein, we developed a biocompatible cancer-targeted therapeutic nanosystem based on cRGD conjugated bovine serum albumin (CBSA) co-loaded with a photosensitizer (chlorin e6, Ce6) and a therapeutic protein (cytochrome c, Cytc) for synergistic photodynamic and protein therapy. The nanosystem (Ce6/Cytc@CBSA) can target αVβ3 integrin overexpressed cancer cells to improve tumor accumulation due to incorporation of cRGD. In the intracellular environment, Ce6 is released to produce toxic singlet oxygen upon near-infrared irradiation. At the same time, the therapeutic protein, Cytc, can induce programmed cell death by activating the downstream caspase pathway. Most importantly, Cytc with the catalase-like activity accelerates O2 generation by decomposing excess H2O2 in cancer cells, thereby relieving the PDT-induced hypoxia to enhance therapeutic efficacy. Both in vitro and in vivo studies reveal the significantly improved antitumor effects of the combined photodynamic/protein therapy, indicating that Ce6/Cytc@CBSA shows great potential in synergetic cancer treatments.
Collapse
Affiliation(s)
- Shu-Lun Ai
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Cai-Xia Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jin-Ju Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
31
|
Alkanawati MS, Machtakova M, Landfester K, Thérien-Aubin H. Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules 2021; 22:2976-2984. [PMID: 34129319 PMCID: PMC8278386 DOI: 10.1021/acs.biomac.1c00378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Responsive nanogel
systems are interesting for the drug delivery
of bioactive molecules due to their high stability in aqueous media.
The development of nanogels that are able to respond to biochemical
cues and compatible with the encapsulation and the release of large
and sensitive payloads remains challenging. Here, multistimuli-responsive
nanogels were synthesized using a bio-orthogonal and reversible reaction
and were designed for the selective release of encapsulated cargos
in a spatiotemporally controlled manner. The nanogels were composed
of a functionalized polysaccharide cross-linked with pH-responsive
hydrazone linkages. The effect of the pH value of the environment
on the nanogels was fully reversible, leading to a reversible control
of the release of the payloads and a “stop-and-go” release
profile. In addition to the pH-sensitive nature of the hydrazone network,
the dextran backbone can be degraded through enzymatic cleavage. Furthermore,
the cross-linkers were designed to be responsive to oxidoreductive
cues.
Disulfide groups, responsive to reducing environments, and thioketal
groups, responsive to oxidative environments, were integrated into
the nanogel network. The release of model payloads was investigated
in response to changes in the pH value of the environment or to the
presence of reducing or oxidizing agents.
Collapse
Affiliation(s)
| | - Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Dr, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
32
|
Zeng Q, Singh R, Ye Y, Cheng S, Fan C, Zeng Q. Calvatia Lilacina Extracts Exert Anti-Breast-Cancer Bioactivity through the Apoptosis Induction Dependent on Mitochondrial Reactive Oxygen Species and Caspase Activation. Nutr Cancer 2021; 74:1058-1070. [PMID: 34121543 DOI: 10.1080/01635581.2021.1936576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Puffballs are a class of fungi widely distributed worldwide and associated with various bioactivities. This research mainly showed the antitumor bioactivity of extracts from Calvatia lilacina (CL), which is a common variety of puffballs. NMR and high-performance liquid chromatography methods are used to characterize the extracts. Results showed that CL extracts obtained with petroleum ether, ethyl acetate, ethanol, and water elicited obvious inhibitory effects on the proliferation of A549, Caco-2, and MDA-MB-231. Among these extracts, petroleum ether extract demonstrated the highest performance. This extract was then separated into seven sub-fractions (SFs). Three of these SFs (3#, 6#, and 7#) induces a decrease in the viability of MDA-MB-231 cells in which 7# SF exhibited the highest cytotoxicity, where the major component was found to be ergosta-7,22-dien-3-one. Further tests revealed that 7# SF from petroleum ether extract could trigger severe cell death in human breast cancer cells (MDA-MB-231) by activating the apoptotic pathway dependent on mitochondrial reactive oxygen species and caspase activation. All these results in combination indicate that the mechanism of extract-potentiated apoptosis associates closely with ROS-dependent mitochondrial dysfunction events which further induces mitochondria-mediated intrinsic cytochrome C-caspase-related pathway of apoptosis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1936576.
Collapse
Affiliation(s)
- Qinghua Zeng
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China.,Department of Food Science and Engineering, College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Ragini Singh
- Department of Food Science and Engineering, College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Yong Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Shuang Cheng
- Department of Food Science and Engineering, College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Chen Fan
- Department of Food Science and Engineering, College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Qingmei Zeng
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
33
|
Charbaji R, Kar M, Theune LE, Bergueiro J, Eichhorst A, Navarro L, Graff P, Stumpff F, Calderón M, Hedtrich S. Design and Testing of Efficient Mucus-Penetrating Nanogels-Pitfalls of Preclinical Testing and Lessons Learned. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007963. [PMID: 33719187 DOI: 10.1002/smll.202007963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Mucosal surfaces pose a challenging environment for efficient drug delivery. Various delivery strategies such as nanoparticles have been employed so far; yet, still yielding limited success. To address the need of efficient transmucosal drug delivery, this report presents the synthesis of novel disulfide-containing dendritic polyglycerol (dPG)-based nanogels and their preclinical testing. A bifunctional disulfide-containing linker is coupled to dPG to act as a macromolecular crosslinker for poly-N-isopropylacrylamide (PNIPAM) and poly-N-isopropylmethacrylamide (PNIPMAM) in a precipitation polymerization process. A systematic analysis of the polymerization reveals the importance of a careful polymer choice to yield mucus-degradable nanogels with diameters between 100 and 200 nm, low polydispersity, and intact disulfide linkers. Absorption studies in porcine intestinal tissue and human bronchial epithelial models demonstrate that disulfide-containing nanogels are highly efficient in overcoming mucosal barriers. The nanogels efficiently degrade and deliver the anti-inflammatory biomacromolecule etanercept into epithelial tissues yielding local anti-inflammatory effects. Over the course of this work, several problems are encountered due to a limited availability of valid test systems for mucosal drug-delivery systems. Hence, this study also emphasizes how critical a combined and multifaceted approach is for the preclinical testing of mucosal drug-delivery systems, discusses potential pitfalls, and provides suggestions for solutions.
Collapse
Affiliation(s)
- Rawan Charbaji
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Mrityunjoy Kar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
| | - Loryn E Theune
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
| | - Julián Bergueiro
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
| | - Anne Eichhorst
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Lucila Navarro
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Patrick Graff
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Sarah Hedtrich
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, V6T1Z3, Canada
| |
Collapse
|
34
|
Zhang Q, Zhang J, Song J, Liu Y, Ren X, Zhao Y. Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS NANO 2021; 15:8001-8038. [PMID: 33900074 DOI: 10.1021/acsnano.1c00476] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteins, a type of natural biopolymer that possess many prominent merits, have been widely utilized to engineer nanomedicine for fighting against cancer. Motivated by their ever-increasing attention in the scientific community, this review aims to provide a comprehensive showcase on the current landscape of protein-based nanomedicine for cancer therapy. On the basis of role differences of proteins in nanomedicine, protein-based nanomedicine engineered with protein therapeutics, protein carriers, enzymes, and composite proteins is introduced. The cancer therapeutic benefits of the protein-based nanomedicine are also discussed, including small-molecular therapeutics-mediated therapy, macromolecular therapeutics-mediated therapy, radiation-mediated therapy, reactive oxygen species-mediated therapy, and thermal effect-mediated therapy. Lastly, future developments and potential challenges of protein-based nanomedicine are elucidated toward clinical translation. It is believed that protein-based nanomedicine will play a vital role in the battle against cancer. We hope that this review will inspire extensive research interests from diverse disciplines to further push the developments of protein-based nanomedicine in the biomedical frontier, contributing to ever-greater medical advances.
Collapse
Affiliation(s)
- Qiuhong Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yizhen Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
35
|
Xiao T, Hu W, Fan Y, Shen M, Shi X. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics 2021; 11:7057-7071. [PMID: 34093871 PMCID: PMC8171075 DOI: 10.7150/thno.60427] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Rationale: Development of nanosystems that can be integrated with macrophages (MAs), an emerging carrier system, for effective tumor therapy remains to be challenging. We report here the development of MAs specifically loaded with hyaluronic acid (HA) nanogels (NGs) encapsulated with a photothermal agent of polypyrrole (PPy) and anticancer drug doxorubicin (DOX) (HA/DOX@PPy NGs) for tumor homing and combination photothermo-chemotherapy. Methods: Cystamine dihydrochloride-crosslinked HA NGs were first prepared through a double emulsification method, then loaded with PPy via an in-situ oxidization polymerization and physically encapsulated with DOX. The created HA/DOX@PPy NGs were well characterized and subjected to be endocytosed by MAs (MAs-NGs). The MAs-mediated tumor-homing property, phenotype changes and photothermal performance of MAs-NGs were investigated in vitro, and a subcutaneous tumor model was also established to confirm their targeting capability and enhanced antitumor therapy effect in vivo. Results: The generated hybrid NGs possess a size around 77 nm and good colloidal stability, and can be specifically endocytosed by MAs without appreciably affecting their normal biofunctionalities. In particular, NG-loaded MAs display excellent in-vitro cancer cell and in-vivo tumor homing property. Systemic administration of the MAs-NGs leads to the significant inhibition of a subcutaneous tumor model through combination photothermo-chemotherapy under laser irradiation. Conclusions: The developed hybrid HA-based NG nanosystem incorporated with PPy and DOX fully integrates the coordination and heating property of PPy to regulate the optimized DOX release in the tumor region with the assistance of MA-mediated tumor homing, providing a promising cell therapy strategy for enhanced antitumor therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
36
|
Zhang L, Li X, Zhao H, Li M, Li Z. Influence of glutathione responsive tumor-targeted camptothecin nanoparticles on glioma based on oxidative stress. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 42:100423. [DOI: 10.1016/j.colcom.2021.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Biomaterial-Modified Magnetic Nanoparticles γ-Fe2O3, Fe3O4 Used to Improve the Efficiency of Hyperthermia of Tumors in HepG2 Model. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main treatments for cancer recorded to date include chemotherapy, radiotherapy, and surgery. Although we have achieved great success in treating certain types of tumors, there are still many incurable even with the help of modern treatments. Currently, the principles of magnetic-induction hyperthermia in magnetic nanoparticle hyperthermia are considered an effective treatment for cancer cells. As reported in previous articles, these nanoparticles generate a lot of heat that raises the temperatures of tumors, hence treating the cancer cells. The other significant potential of magnetic nanoparticles is the ability to combine heat and drug release for cancer treatment. However, within the biologically safe range of AC magnetic fields, the lack of induction heating power and the high criteria for biocompatibility in superparamagnetic-nanoparticle hyperthermia agents still make up the key challenges for the successful clinical application of magnetic hyperthermia. In this study, two different types of iron oxide nanoparticles (γ-Fe2O3, Fe3O4) were modified with whey protein isolate (WPI) to form bio-modified superparamagnetic nanoparticles with spherical or diamond-shaped structures and diameters between 20 and 100 nm, which demonstrate excellent stability under different conditions. Adriamycin (ADM) has also been successfully loaded onto these nanoparticles and used in this experiment. In vitro and in vivo experimental studies were performed using these WPI-modified nanoparticles on HepG2 tumor models and mice to assess their bioavailability and biological feasibility. The results prove that these WPI-modified nanoparticles perform satisfactorily in conjunction with hyperthermia to cure tumors completely.
Collapse
|
38
|
Laurano R, Boffito M, Abrami M, Grassi M, Zoso A, Chiono V, Ciardelli G. Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds. Bioact Mater 2021; 6:3013-3024. [PMID: 34258478 PMCID: PMC8233160 DOI: 10.1016/j.bioactmat.2021.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
The design of multi-stimuli-responsive vehicles for the controlled and localized release of drugs is a challenging issue increasingly catching the attention of many research groups working on the advanced treatment of hard-to-close wounds. In this work, a thermo- and pH-responsive hydrogel (P-CHP407) was prepared from an ad hoc synthesized amphiphilic poly(ether urethane) (CHP407) exposing a significant amount of –COOH groups (8.8 ± 0.9 nmol/gpolymer). The exposure of acid moieties in P-CHP407 hydrogel led to slightly lower initial gelation temperature (12.1 °C vs. 14.6 °C, respectively) and gelation rate than CHP407 hydrogel, as rheologically assessed. Nanoscale hydrogel characterization by Low Field NMR (LF-NMR) spectroscopy suggested that the presence of carboxylic groups in P-CHP407 caused the formation of bigger micelles with a thicker hydrated shell than CHP407 hydrogels, as further proved by Dynamic Light Scattering analyses. In addition, P-CHP407 hydrogel showed improved capability to change its internal pH compared to CHP407 one when incubated with an alkaline buffer (pH 8) (e.g., pHchange_5min = 3.76 and 1.32, respectively). Moreover, LF-NMR characterization suggested a stronger alkaline-pH-induced interaction of water molecules with micelles exposing –COOH groups. Lastly, the hydrogels were found biocompatible according to ISO 10993 and able to load and release Ibuprofen: delivery kinetics of Ibuprofen was enhanced by P-CHP407 hydrogels at alkaline pH, suggesting their potential use as smart delivery systems in the treatment of chronic infected wounds. Chronic infected wounds are characterized by the production of alkaline exudate. Multi-stimuli-responsive hydrogels are powerful tools to design smart drug carriers. Alkaline wound exudate can successfully guide drug release kinetics. Hydrogel thermosensitivity allows easy injectability in the wound site. LF-NMR describes nano-scale hydrogel structural changes in an alkaline environment.
Collapse
Affiliation(s)
- Rossella Laurano
- Politecnico di Torino, Mechanical and Aerospace Engineering Department, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Monica Boffito
- Politecnico di Torino, Mechanical and Aerospace Engineering Department, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Michela Abrami
- Università degli Studi di Trieste, Department of Engineering and Architecture, Via Alfonso Valerio 6/1, 34127, Trieste, Italy
| | - Mario Grassi
- Università degli Studi di Trieste, Department of Engineering and Architecture, Via Alfonso Valerio 6/1, 34127, Trieste, Italy
| | - Alice Zoso
- Politecnico di Torino, Mechanical and Aerospace Engineering Department, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Valeria Chiono
- Politecnico di Torino, Mechanical and Aerospace Engineering Department, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino, Mechanical and Aerospace Engineering Department, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
39
|
Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angew Chem Int Ed Engl 2021; 60:14760-14778. [PMID: 31591803 DOI: 10.1002/anie.201911048] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Dengyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Wei Chen
- Department of Pharmaceutical Engineering School of Engineering China Pharmaceutical University Nanjing 211198 P.R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
40
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
41
|
Ding L, Lin X, Lin Z, Wu Y, Liu X, Liu J, Wu M, Zhang X, Zeng Y. Cancer Cell-Targeted Photosensitizer and Therapeutic Protein Co-Delivery Nanoplatform Based on a Metal-Organic Framework for Enhanced Synergistic Photodynamic and Protein Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36906-36916. [PMID: 32706242 DOI: 10.1021/acsami.0c09657] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient and cancer cell-targeted delivery of photosensitizer (PS) and therapeutic protein has great potentiality for improving the anticancer effects. Herein, zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, one of the most attractive metal-organic framework materials, were used for coencapsulating the chlorin e6 (Ce6, a potent PS) and cytochrome c (Cyt c, a protein apoptosis inducer); then the nanoparticle was subsequently decorated with the hyaluronic acid (HA) shell to form cancer cell-active targeted nanoplatform (Ce6/Cyt c@ZIF-8/HA). The in vitro and in vivo experiments show the cancer cell targeting capability and pH-responsive decomposition and the release behavior of Ce6/Cyt c@ZIF-8/HA. Upon light irradiation, the released Ce6 produced cytotoxic reactive oxygen species for photodynamic therapy. Meanwhile, the released Cyt c-induced programmed cell death for protein therapy. Furthermore, the Cyt c worked normally under hypoxia conditions and could decompose H2O2 to O2 (with peroxidase-/catalase-like activity), resulting in synergistically improved therapeutic efficiency. These small molecules and protein codelivery nanoplatforms would promote the development of complementary and synergetic modes for biomedical applications.
Collapse
Affiliation(s)
- Lei Ding
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Xiao Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Yanni Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Ming Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yongyi Zeng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| |
Collapse
|
42
|
Abd Kadir E, Lim V. Redox‐Responsive Disulphide Bioadhesive Polymeric Nanoparticles for Colon‐Targeted Drug Delivery. BIOADHESIVES IN DRUG DELIVERY 2020:123-145. [DOI: 10.1002/9781119640240.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
43
|
Li S, Qiu M, Guo J, Zhao X, Zhong Z, Deng C. Coating‐Sheddable CD44‐Targeted Poly(
d
,
l
‐lactide‐
co
‐glycolide) Nanomedicines Fabricated by Using Photoclick‐Crosslinkable Surfactant. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Li
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Min Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jiakun Guo
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
44
|
Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Mol Pharm 2020; 17:373-391. [PMID: 31877054 DOI: 10.1021/acs.molpharmaceut.9b01020] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an emerging drug carrier, hydrogels have been widely used for tumor drug delivery. A hydrogel drug carrier can cause less severe side effects than systemic chemotherapy and can achieve sustained delivery of a drug at tumor sites. In addition, hydrogels have excellent biocompatibility and biodegradability and lower toxicity than nanoparticle carriers. Smart hydrogels can respond to stimuli in the environment (e.g., heat, pH, light, and ultrasound), enabling in situ gelation and controlled drug release, which greatly enhance the convenience and efficiency of drug delivery. Here, we summarize the different sizes of hydrogels used for cancer treatment and their related delivery routes, discuss the design strategies for stimuli-responsive hydrogels, and review the research concerning smart hydrogels reported in the past few years.
Collapse
Affiliation(s)
- Zhaoyi Sun
- School of Chemistry and Chemical Engineering , Nanjing University , 210046 Nanjing , China
| | - Chengjun Song
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China.,Jiangsu Key Laboratory for Nano Technology , Nanjing University , 210093 Nanjing , China.,Institute of Drug R&D , Medical School of Nanjing University , 210093 Nanjing , China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China.,Jiangsu Key Laboratory for Nano Technology , Nanjing University , 210093 Nanjing , China.,Institute of Drug R&D , Medical School of Nanjing University , 210093 Nanjing , China
| |
Collapse
|
45
|
Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydr Polym 2019; 224:115174. [DOI: 10.1016/j.carbpol.2019.115174] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
|
46
|
Chen X, Zhu Q, Xu X, Shen S, Zhang Y, Mo R. Sequentially Site-Specific Delivery of Apoptotic Protein and Tumor-Suppressor Gene for Combination Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902998. [PMID: 31441204 DOI: 10.1002/smll.201902998] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Nanocarrier-mediated codelivery of multiple anticancer drugs is a potential strategy for enhanced efficacy of combination cancer treatment by unifying differential pharmacokinetic properties and maintaining an optimal ratio of drug cargoes. However, a programmable codelivery system is highly desired to deliver different therapeutics to their specific sites of action to pursue maximized combinational effect. Herein a liposome-based nanoassembly (p53/C-rNC/L-FA) is developed for intracellular site-specific delivery of an apoptotic protein cytochrome c (CytoC) and a plasmid DNA encoding tumor-suppressing p53 protein (p53 DNA). p53/C-rNC/L-FA consists of an acid-activated fusogenic liposomal membrane shell modified with folic acid (L-FA) and a DNA/protein complex core assembled by the p53 DNA, protamine and CytoC-encapsulated redox-responsive nanocapsule (C-rNC). Intratumoral and intraendosomal acidities promote membrane fusion between liposome and biomembrane, resulting in release of the encapsulated p53/C-rNC complex into the cytoplasm. The cytoplasmic reduction causes degradation of C-rNC with release of CytoC that induces tumor cell apoptosis. The p53 DNA is transported into the nucleus by the aid of the cationic protamine and thus generates expression of the p53 protein that enhances apoptosis combined with CytoC. p53/C-rNC/L-FA is demonstrated to significantly induce tumor cell apoptosis and inhibit tumor growth in the orthotopic breast tumor mouse model.
Collapse
Affiliation(s)
- Xiaojie Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuwen Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
47
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
48
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
49
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
50
|
Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: A review. Colloids Surf B Biointerfaces 2019; 180:202-211. [DOI: 10.1016/j.colsurfb.2019.04.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
|