1
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Budiman A, Rusdin A, Wardhana YW, Puluhulawa LE, Cindana Mo’o FR, Thomas N, Gazzali AM, Aulifa DL. Exploring the Transformative Potential of Functionalized Mesoporous Silica in Enhancing Antioxidant Activity: A Comprehensive Review. Antioxidants (Basel) 2024; 13:936. [PMID: 39199182 PMCID: PMC11352074 DOI: 10.3390/antiox13080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Antioxidants are essential for reducing oxidative stress, protecting cells from damage, and supporting overall well-being. Functionalized mesoporous silica materials have garnered interest due to their flexible uses in diverse domains, such as drug delivery systems. This review aims to thoroughly examine and evaluate the progress made in utilizing functionalized mesoporous silica materials as a possible approach to enhancing antioxidant activity. The authors performed a thorough search of reliable databases, including Scopus, PubMed, Google Scholar, and Clarivate Web of Science, using precise keywords linked to functionalized mesoporous silica nanoparticles and antioxidants. The identified journals serve as the major framework for the main discussion in this study. Functionalized mesoporous silica nanoparticles have been reported to greatly enhance antioxidant activity by allowing for an increased loading capacity, controlled release behavior, the targeting of specific drugs, improved biocompatibility and safety, and enhanced penetration. The results emphasize the significant capacity of functionalized mesoporous silica (FSM) to bring about profound changes in a wide range of applications. FSM materials can be designed as versatile nanocarriers, integrating intrinsic antioxidant capabilities and augmenting the efficacy of current drugs, offering substantial progress in antioxidant therapies and drug delivery systems, as well as enhanced substance properties in the pharmaceutical field. Functionalized mesoporous silica materials are a highly effective method for enhancing antioxidant activity. They provide new opportunities for the advancement of cutting-edge treatments and materials in the field of antioxidant research. The significant potential of FSM materials to change drug delivery methods and improve substance properties highlights their crucial role in future breakthroughs in the pharmaceutical field and antioxidant applications.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Lisa Efriani Puluhulawa
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Faradila Ratu Cindana Mo’o
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Nurain Thomas
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Amirah Mohd Gazzali
- Department Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, P. Penang, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| |
Collapse
|
3
|
Ogurlu B, Hamelink TL, Van Tricht IM, Leuvenink HGD, De Borst MH, Moers C, Pool MBF. Utilizing pathophysiological concepts of ischemia-reperfusion injury to design renoprotective strategies and therapeutic interventions for normothermic ex vivo kidney perfusion. Am J Transplant 2024; 24:1110-1126. [PMID: 38184242 DOI: 10.1016/j.ajt.2024.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Normothermic machine perfusion (NMP) has emerged as a promising tool for the preservation, viability assessment, and repair of deceased-donor kidneys prior to transplantation. These kidneys inevitably experience a period of ischemia during donation, which leads to ischemia-reperfusion injury when NMP is subsequently commenced. Ischemia-reperfusion injury has a major impact on the renal vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis. With an increased understanding of the underlying pathophysiological mechanisms, renoprotective strategies and therapeutic interventions can be devised to minimize additional injury during normothermic reperfusion, ensure the safe implementation of NMP, and improve kidney quality. This review discusses the pathophysiological alterations in the vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis of deceased-donor kidneys and delineates renoprotective strategies and therapeutic interventions to mitigate renal injury and improve kidney quality during NMP.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isa M Van Tricht
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin H De Borst
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
5
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
6
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
7
|
Zangi AR, Amiri A, Borzouee F, Bagherifar R, Pazooki P, Hamishehkar H, Javadzadeh Y. Immobilized nanoparticles-mediated enzyme therapy; promising way into clinical development. DISCOVER NANO 2023; 18:55. [PMID: 37382752 PMCID: PMC10409955 DOI: 10.1186/s11671-023-03823-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 06/30/2023]
Abstract
Enzyme (Enz)-mediated therapy indicated a remarkable effect in the treatment of many human cancers and diseases with an insight into clinical phases. Because of insufficient immobilization (Imb) approach and ineffective carrier, Enz therapeutic exhibits low biological efficacy and bio-physicochemical stability. Although efforts have been made to remove the limitations mentioned in clinical trials, efficient Imb-destabilization and modification of nanoparticles (NPs) remain challenging. NP internalization through insufficient membrane permeability, precise endosomal escape, and endonuclease protection following release are the primary development approaches. In recent years, innovative manipulation of the material for Enz immobilization (EI) fabrication and NP preparation has enabled nanomaterial platforms to improve Enz therapeutic outcomes and provide low-diverse clinical applications. In this review article, we examine recent advances in EI approaches and emerging views and explore the impact of Enz-mediated NPs on clinical therapeutic outcomes with at least diverse effects.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Borzouee
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran.
| |
Collapse
|
8
|
de Oliveira MC, Assis M, Simões LG, Minozzi DT, Ribeiro RAP, Andrés J, Longo E. Unraveling the Intrinsic Biocidal Activity of the SiO 2-Ag Composite against SARS-CoV-2: A Joint Experimental and Theoretical Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6548-6560. [PMID: 36696256 PMCID: PMC9888415 DOI: 10.1021/acsami.2c21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic has emerged as an unprecedented global healthcare emergency, demanding the urgent development of effective materials to inactivate the SARS-CoV-2 virus. This research was planned to disclose the remarkable biocidal activity of SiO2-Ag composites incorporated into low-density polyethylene. For this purpose, a joint experimental and theoretical [based on first-principles calculations at the density functional theory (DFT) level] study is performed. Biological assays showed that this material eliminatesStaphylococcus aureusand SARS-CoV-2 virus in just 2 min. Here, we investigate a previously unexplored process that we postulate may occur along the O2 and H2O adsorption and activation processes of pure and defective SiO2-Ag surfaces for the generation of reactive oxygen species (ROS). The obtained results help us to predict the nature of ROS: superoxide anion radicals, •O2-, hydroxyl radicals, •OH, and hydroperoxyl radicals, •HO2, that destroy and degrade the structure of the SARS-COV-2 virus. This is consistent with the DFT studies, where the energetic, electronic, and magnetic properties of the intermediates show a feasible formation of ROS. Present findings are expected to provide new insights into the relationship among the structure, property, and biocidal activity of semiconductor/metal SiO2-Ag composites.
Collapse
Affiliation(s)
- Marisa Carvalho de Oliveira
- Functional Materials Development Center (CDMF),
Federal University of São Carlos—UFSCar,
13565-905São Carlos, São Paulo, Brazil
| | - Marcelo Assis
- Department of Physical and Analytical Chemistry,
University Jaume I—UJI, 12071Castelló de la
Plana, Spain
| | | | | | - Renan A. P. Ribeiro
- Department of Natural Science, Minas
Gerais State University—UEMG, Av. Paraná, 3001, CEP,
35501-170Divinópolis, Minas Gerais, Brazil
| | - Juan Andrés
- Department of Physical and Analytical Chemistry,
University Jaume I—UJI, 12071Castelló de la
Plana, Spain
| | - Elson Longo
- Functional Materials Development Center (CDMF),
Federal University of São Carlos—UFSCar,
13565-905São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
Szerlauth A, Varga Á, Madácsy T, Sebők D, Bashiri S, Skwarczynski M, Toth I, Maléth J, Szilagyi I. Confinement of Triple-Enzyme-Involved Antioxidant Cascade in Two-Dimensional Nanostructure. ACS MATERIALS LETTERS 2023; 5:565-573. [PMID: 36776691 PMCID: PMC9906813 DOI: 10.1021/acsmaterialslett.2c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Application of antioxidant enzymes in medical or industrial processes is limited due to their high sensitivity to environmental conditions. Incorporation of such enzymes in nanostructures provides a promising route to obtain highly efficient and robust biocatalytic system to scavenge reactive oxygen species (ROS). Here, this question was addressed by confinement of superoxide dismutase (SOD), horseradish peroxidase (HRP), and catalase (CAT) enzymes into nanostructures containing polyelectrolyte building blocks (alginate (Alg) and trimethyl chitosan (TMC)) and delaminated layered double hydroxide (dLDH) nanoparticle support. The nanocomposite possessed excellent structural and colloidal stability, while antioxidant tests revealed that the enzymes remained active upon immobilization and the developed composite greatly reduced intracellular oxidative stress in two-dimensional cell cultures. Moreover, it effectively prevented hydrogen peroxide-induced double stranded DNA breaks, which is a common consequence of oxidative stress. The results provide important tools to design complex nanostructures with multienzymatic antioxidant activities for ROS scavenging.
Collapse
Affiliation(s)
- Adel Szerlauth
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Árpád Varga
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Tamara Madácsy
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Dániel Sebők
- Department
of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Sahra Bashiri
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - Mariusz Skwarczynski
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - Istvan Toth
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - József Maléth
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
10
|
Gándara Z, Rubio N, Castillo RR. Delivery of Therapeutic Biopolymers Employing Silica-Based Nanosystems. Pharmaceutics 2023; 15:pharmaceutics15020351. [PMID: 36839672 PMCID: PMC9963032 DOI: 10.3390/pharmaceutics15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The use of nanoparticles is crucial for the development of a new generation of nanodevices for clinical applications. Silica-based nanoparticles can be tailored with a wide range of functional biopolymers with unique physicochemical properties thus providing several advantages: (1) limitation of interparticle interaction, (2) preservation of cargo and particle integrity, (3) reduction of immune response, (4) additional therapeutic effects and (5) cell targeting. Therefore, the engineering of advanced functional coatings is of utmost importance to enhance the biocompatibility of existing biomaterials. Herein we will focus on the most recent advances reported on the delivery and therapeutic use of silica-based nanoparticles containing biopolymers (proteins, nucleotides, and polysaccharides) with proven biological effects.
Collapse
Affiliation(s)
- Zoila Gándara
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Noelia Rubio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Rafael R. Castillo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| |
Collapse
|
11
|
Dembélé J, Liao JH, Liu TP, Chen YP. Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:432-451. [PMID: 36562665 PMCID: PMC9896485 DOI: 10.1021/acsami.2c17544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Intracellular delivery of therapeutic proteins has increased advantages over current small-molecule drugs and gene therapies, especially in therapeutic efficacies for a broad spectrum of diseases. Hence, developing the protein therapeutics approach provides a needed alternative. Here, we designed a mesoporous silica nanoparticle (MSN)-mediated protein delivery approach and demonstrated effective intracellular delivery of the denatured superoxide dismutase (SOD) protein, overcoming the delivery challenges and achieving higher enzymatic activity than native SOD-conjugated MSNs. The denatured SOD-conjugated MSN delivery strategy provides benefits of reduced size and steric hindrance, increased protein flexibility without distorting its secondary structure, exposure of the cell-penetrating peptide transactivator of transcription for enhanced efficient delivery, and a change in the corona protein composition, enabling cytosolic delivery. After delivery, SOD displayed a specific activity around threefold higher than in our previous reports. Furthermore, the in vivo biosafety and therapeutic potential for neuron therapy were evaluated, demonstrating the biocompatibility and the effective antioxidant effect in Neuro-2a cells that protected neurite outgrowth from paraquat-induced reactive oxygen species attack. This study offers an opportunity to realize the druggable possibility of cytosolic proteins using MSNs.
Collapse
Affiliation(s)
- Julien Dembélé
- Graduate
Institute of Biomedical Materials & Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
- Laboratory
of Toxicology, Environment and Health, Doctorate School of Health, University Joseph Ki-Zerbo, Ouaga 03 BP 7021, Burkina Faso
| | - Jou-Hsuan Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tsang-Pai Liu
- Department
of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Zhou W, Ma H, Dai Y, Du Y, Guo C, Wang J. Architecture of Nanoantioxidant Based on Mesoporous Organosilica Trp-Met-PMO with Dipeptide Skeleton. MATERIALS (BASEL, SWITZERLAND) 2023; 16:638. [PMID: 36676376 PMCID: PMC9863312 DOI: 10.3390/ma16020638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
A nanoantioxidant of mesoporous organosilica (Trp-Met-PMO) based on the framework of tryptophan-methionine dipeptide was first designed and constructed by condensation between self-created dipeptide organosilica precursor (Trp-Met-Si) and tetraethyl orthosilicate (TEOS) in alkaline conditions under the template hexadecyl trimethyl ammonium bromide (CTAB). Trp-Met-Si was prepared by the reaction between dipeptide Trp-Met and conventional organosilicon coupling agent isocyanatopropyltriethoxysilane (IPTES) via a multiple-step reaction method. The material Trp-Met-PMO was confirmed by XRD, FT-IR and N2 adsorption-desorption analysis. The material Trp-Met-5-PMO with low amounts of organosilica precursor remained a mesoporous material with well-ordered 2D hexagonal (P6mm) structure. With increasing amounts of organosilica precursor, a mesoporous structure was still formed, as shown in the material Trp-Met-100-PMO with the highest amounts of organosilica precursor. Moreover, pore size distribution, surface area and porosity of Trp-Met-PMO are regulated with different amounts of organosilica precursor Trp-Met-Si. The antioxidant activity of Trp-Met-PMO was evaluated by ABTS free radical-scavenging assay. The results showed that antioxidant activity was largely enhanced with increasing contents of organosilica precusor Trp-Met-Si in the skeleton. The material Trp-Met-40-PMO exhibited maximum scavenging capacity of ABTS free radicals, the inhibition percent was 5.88%. This study provides a design strategy for nanoantioxidant by immobilizing short peptides within the porous framework of mesoporous material.
Collapse
|
13
|
Liang X, Wen K, Chen Y, Fang G, Yang S, Li Q. Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease. Int J Nanomedicine 2022; 17:4843-4860. [PMID: 36262191 PMCID: PMC9574266 DOI: 10.2147/ijn.s378073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Oral administration of proteins/peptides is challenging in clinical application due to their instability and susceptibility in the gastrointestinal tract. MATERIALS AND METHODS The in situ polymerization on the surface of enzymes was used to encapsulate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) in polymeric shells, and the reactive oxygen species (ROS) scavenging ability was monitored based on DCFH-DA probe using flow cytometry and confocal laser scanning microscopy. The mRNA expression level of pro-inflammatory factors was assessed by real-time qPCR, using lipopolysaccharide-induced RAW264.7 cells as a model. Finally, the enzyme capsules were orally administered for the treatment of inflammatory bowel disease using dextran sodium sulfate (DSS)-induced colitis mice as a model, based on the evaluation of the disease-associated index, ROS level and pro-inflammatory cytokines' expression. RESULTS The enzyme capsules could effectively scavenge the intracellular reactive oxygen species (ROS) through the cascade catalysis of SOD and CAT, and thus protect the cells from ROS-induced oxidative damage. Meanwhile, the enzyme capsules could inhibit the secretion of pro-inflammatory cytokines from macrophages, thereby achieving favorable anti-inflammation effect. Oral administration of enzyme capsules could facilitate the accumulation of enzymes in the inflamed colon tissues of DSS-induced colitis mice. Moreover, the oral delivery of enzyme capsules could effectively alleviate the symptoms associated with colitis, attributing to the excellent ROS scavenging ability and the inhibition of pro-inflammatory cytokines' level. CONCLUSION In summary, our findings provided a promising approach to construct enzyme-based nano-formulations with favorable therapeutic efficacy and biocompatibility, exhibiting great potential in the treatment of gastrointestinal diseases in an oral administration manner.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Yingxuan Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Guangxu Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Shengcai Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China,Correspondence: Quanshun Li; Shengcai Yang, Tel/Fax +86-431-85155200, Email ;
| |
Collapse
|
14
|
Chen YP, Chou CM, Chang TY, Ting H, Dembélé J, Chu YT, Liu TP, Changou CA, Liu CW, Chen CT. Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier. Front Chem 2022; 10:931584. [PMID: 35880111 PMCID: PMC9307501 DOI: 10.3389/fchem.2022.931584] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/05/2022] Open
Abstract
The blood–brain barrier (BBB) is a highly selective cellular barrier that tightly controls the microenvironment of the central nervous system to restrict the passage of substances, which is a primary challenge in delivering therapeutic drugs to treat brain diseases. This study aimed to develop simple surface modifications of mesoporous silica nanoparticles (MSNs) without external stimuli or receptor protein conjugation, which exhibited a critical surface charge and size allowing them to cross the BBB. A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. Confocal microscopic results showed that 50 nm of strongly negatively charged N4-RMSN50@PEG/THPMP (∼−40 mV) could be significantly observed outside blood vessels of the brain in Tg(zfli1:EGFP) transgenic zebrafish embryos superior to the other negatively charged MSNs. However, very few positively charged MSNs were found in the brain, indicating that negatively charged MSNs could successfully penetrate the BBB. The data were confirmed by high-resolution images of 3D deconvoluted confocal microscopy and two-photon microscopy and zebrafish brain tissue sections. In addition, while increasing the size to 200 nm but maintaining the similar negative charge (∼40 mV), MSNs could not be detected in the brain of zebrafish, suggesting that transport across the BBB based on MSNs occurred in charge- and size-dependent manners. No obvious cytotoxicity was observed in the CTX-TNA2 astrocyte cell line and U87-MG glioma cell line treated with MSNs. After doxorubicin (Dox) loading, N4-RMSN50@PEG/THPMP/Dox enabled drug delivery and pH-responsive release. The toxicity assay showed that N4-RMSN50@PEG/THPMP could reduce Dox release, resulting in the increase of the survival rate in zebrafish. Flow cytometry demonstrated N4-RMSN50@PEG/THPMP had few cellular uptakes. Protein corona analysis revealed three transporter proteins, such as afamin, apolipoprotein E, and basigin, could contribute to BBB penetration, validating the possible mechanism of N4-RMSN50@PEG/THPMP crossing the BBB. With this simple approach, MSNs with critical negative charge and size could overcome the BBB-limiting characteristics of therapeutic drug molecules; furthermore, their use may also cause drug sustained-release in the brain, decreasing peripheral toxicity.
Collapse
Affiliation(s)
- Yi-Ping Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsu-Yuan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hao Ting
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Julien Dembélé
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - You-Tai Chu
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsang-Pai Liu
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chun A. Changou
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Wei Liu
- Department of Information Management, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan, Taiwan
| | - Chien-Tsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Chien-Tsu Chen,
| |
Collapse
|
15
|
Matsuura SI, Ikeda T, Hiyoshi N, Chiba M, Yamaguchi A. Assemblies of two multimeric enzymes using mesoporous silica microspheres toward cascade reaction fields. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Ade C, Qian X, Brodszkij E, De Dios Andres P, Spanjers J, Westensee IN, Städler B. Polymer Micelles vs Polymer-Lipid Hybrid Vesicles: A Comparison Using RAW 264.7 Cells. Biomacromolecules 2022; 23:1052-1064. [PMID: 35020375 PMCID: PMC8924860 DOI: 10.1021/acs.biomac.1c01403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer-lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.
Collapse
Affiliation(s)
- Carina Ade
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Järvi Spanjers
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
17
|
Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10:1166-1192. [DOI: 10.1039/d1bm01658j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since its discovery, the CRISPR/Cas technology has rapidly become an essential tool in modern biomedical research. The opportunities to specifically modify and correct genomic DNA has also raised big hope...
Collapse
|
18
|
Szerlauth A, Szalma L, Muráth S, Sáringer S, Varga G, Li L, Szilágyi I. Nanoclay-based sensor composites for the facile detection of molecular antioxidants. Analyst 2022; 147:1367-1374. [DOI: 10.1039/d1an02352g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A paper-based sensor containing nanoclay particles, a polyelectrolyte and a metal complex as sensing elements was developed for the facile detection of molecular antioxidants.
Collapse
Affiliation(s)
- Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Lilla Szalma
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Szabolcs Muráth
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Varga
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD-4072, Australia
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
19
|
Yadav N, Dahiya T, Chhillar AK, Rana JS, Mohan H. Promising Applications of Nanotechnology in Cancer Diagnostics and Therapeutics. Curr Pharm Biotechnol 2021; 23:1556-1568. [PMID: 34951360 DOI: 10.2174/1389201023666211222165508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by the accumulation of genetic mutations in cells by different types of mutagens such as physical, chemical, and biological. Consequently, normal cell cycles get interrupted. Conventional techniques used for diagnosis include. Various conventional techniques used for cancer diagnosis include immunological assays, histopathogical tests, polymerase chain reaction, computed tomography, magnetic resonance, radiation therapy, and many more. These techniques are expensive, time consuming, tedious, adverse effects to healthy cells and requirement of skilled personnel for their operation. Therefore nanomaterials based biosensors have been used for the sensitive, selective, economic and quick detection of cancer biomarkers. Electrochemical biosensors have shown profound impact in efficient diagnosis of cancers that facilitate the effective treatment of patient in acute stage. Nanomaterials including inorganic, organic and polymeric nanomaterials have been used in the treatment of different types of cancers. Nanoapproaches have offered several merits including site-specific, require traces amount of therapeutic molecules, limited toxicity, avoid drug resistance, more efficient, sensitive and reliable than conventional chemotherapeutics and radiation therapies. Therefore, future research should be focussed on development of highly inventive nanotools for the diagnosis and therapeutics of cancers.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, -131039, Haryana. India
| | - Twinkle Dahiya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, -131039, Haryana. India
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, -131039, Haryana. India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| |
Collapse
|
20
|
Bhattacharya U, Jhou JF, Zou YF, Abrigo G, Lin SW, Chen YH, Chien FC, Tai HC. Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization. Sci Rep 2021; 11:18583. [PMID: 34545174 PMCID: PMC8452691 DOI: 10.1038/s41598-021-98142-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities.
Collapse
Affiliation(s)
| | - Jia-Fong Jhou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Fong Zou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Gerald Abrigo
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Shu-Wei Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Hsuan Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
21
|
Chauhan K, Zárate‐Romero A, Sengar P, Medrano C, Vazquez‐Duhalt R. Catalytic Kinetics Considerations and Molecular Tools for the Design of Multienzymatic Cascade Nanoreactors. ChemCatChem 2021. [DOI: 10.1002/cctc.202100604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kanchan Chauhan
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Andrés Zárate‐Romero
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
- Cátedra Consejo Nacional de Ciencia y Tecnología CNyN-UNAM Ensenada Baja California 22860 Mexico
| | - Prakhar Sengar
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Carlos Medrano
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Rafael Vazquez‐Duhalt
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| |
Collapse
|
22
|
Liu L, Liang X, Xu X, Zhang X, Wen J, Chen K, Su X, Teng Z, Lu G, Xu J. Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer. Acta Biomater 2021; 130:374-384. [PMID: 34082098 DOI: 10.1016/j.actbio.2021.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug loading, and imaging properties have not yet been constructed. Herein, we report a new magnetic mesoporous embolic microsphere that can simultaneously be loaded with doxorubicin (Dox), block vessels, and be observed by magnetic resonance imaging (MRI). The microspheres were prepared by decorating magnetic polystyrene/Fe3O4 particles with mesoporous organosilica microparticles (denoted as PS/Fe3O4@MONs). The PS/Fe3O4@MONs were uniformly spherical and large (50 µm), with a high specific surface area, uniform mesopores, and a Dox loading capacity of 460.8 µg mg-1. Dox-loaded PS/Fe3O4@MONs (PS/Fe3O4@MON@Dox) effectively inhibited liver cancer cell growth. A VX2 rabbit liver tumor model was constructed to study the efficacy of TACE with PS/Fe3O4@MON@Dox. In vivo, PS/Fe3O4@MON@Dox could be smoothly delivered through an arterial catheter to achieve chemoembolization. Moreover, PS/Fe3O4@MON@Dox and residual tumor parenchyma could be distinguished on MRI, which is of great significance for evaluating the efficacy of TACE. Histopathology showed that PS/Fe3O4@MON@Dox could be deposited in the tumor vessels, completely blocking the blood supply. Overall, PS/Fe3O4@MON@Dox showed good drug loading, embolization and imaging performance as well as potential for use in TACE. STATEMENT OF SIGNIFICANCE: Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug-loading, and imaging properties have not yet been constructed. In this work, we prepared magnetic mesoporous microspheres as a new embolic agent that can simultaneously load doxorubicin (Dox), block blood vessels and enable magnetic resonance imaging. Overall, this new embolic microsphere-mediated TACE strategy for liver cancer showed good therapeutic effects, and the PS/Fe3O4@MON@Dox embolic microspheres provide a new avenue for improving the efficacy of TACE for liver cancer and postoperative evaluation.
Collapse
|
23
|
Kretzmann JA, Luther DC, Evans CW, Jeon T, Jerome W, Gopalakrishnan S, Lee YW, Norret M, Iyer KS, Rotello VM. Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture. J Am Chem Soc 2021; 143:4758-4765. [PMID: 33705125 PMCID: PMC10613456 DOI: 10.1021/jacs.1c00258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular protein delivery enables selective regulation of cellular metabolism, signaling, and development through introduction of defined protein quantities into the cell. Most applications require that the delivered protein has access to the cytosol, either for protein activity or as a gateway to other organelles such as the nucleus. The vast majority of delivery vehicles employ an endosomal pathway however, and efficient release of entrapped protein cargo from the endosome remains a challenge. Recent research has made significant advances toward efficient cytosolic delivery of proteins using polymers, but the influence of polymer architecture on protein delivery is yet to be investigated. Here, we developed a family of dendronized polymers that enable systematic alterations of charge density and structure. We demonstrate that while modulation of surface functionality has a significant effect on overall delivery efficiency, the endosomal release rate can be highly regulated by manipulating polymer architecture. Notably, we show that large, multivalent structures cause slower sustained release, while rigid spherical structures result in rapid burst release.
Collapse
Affiliation(s)
- Jessica A. Kretzmann
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Cameron W. Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road., Amherst, MA 01003, USA
| | - William Jerome
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| |
Collapse
|
24
|
Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002797. [PMID: 33552863 PMCID: PMC7856897 DOI: 10.1002/advs.202002797] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) play an essential role in physiological and pathological processes. Studies on the regulation of ROS for disease treatments have caused wide concern, mainly involving the topics in ROS-regulating therapy such as antioxidant therapy triggered by ROS scavengers and ROS-induced toxic therapy mediated by ROS-elevation agents. Benefiting from the remarkable advances of nanotechnology, a large number of nanomaterials with the ROS-regulating ability are developed to seek new and effective ROS-related nanotherapeutic modalities or nanomedicines. Although considerable achievements have been made in ROS-based nanomedicines for disease treatments, some fundamental but key questions such as the rational design principle for ROS-related nanomaterials are held in low regard. Here, the design principle can serve as the initial framework for scientists and technicians to design and optimize the ROS-regulating nanomedicines, thereby minimizing the gap of nanomedicines for biomedical application during the design stage. Herein, an overview of the current progress of ROS-associated nanomedicines in disease treatments is summarized. And then, by particularly addressing these known strategies in ROS-associated therapy, several fundamental and key principles for the design of ROS-associated nanomedicines are presented. Finally, future perspectives are also discussed in depth for the development of ROS-associated nanomedicines.
Collapse
Affiliation(s)
- Chenyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Medical UniversityTaiyuan030001China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangdong510700China
| |
Collapse
|
25
|
Ramírez N, Serey M, Illanes A, Piumetti M, Ottone C. Immobilization strategies of photolyases: Challenges and perspectives for DNA repairing application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112113. [PMID: 33383556 DOI: 10.1016/j.jphotobiol.2020.112113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.
Collapse
Affiliation(s)
- Nicolás Ramírez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marcela Serey
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marco Piumetti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| |
Collapse
|
26
|
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-Responsive Nanobiomaterials-Based Therapeutics for Neurodegenerative Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907308. [PMID: 32940007 DOI: 10.1002/smll.201907308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Redox regulation has recently been proposed as a critical intracellular mechanism affecting cell survival, proliferation, and differentiation. Redox homeostasis has also been implicated in a variety of degenerative neurological disorders such as Parkinson's and Alzheimer's disease. In fact, it is hypothesized that markers of oxidative stress precede pathologic lesions in Alzheimer's disease and other neurodegenerative diseases. Several therapeutic approaches have been suggested so far to improve the endogenous defense against oxidative stress and its harmful effects. Among such approaches, the use of artificial antioxidant systems has gained increased popularity as an effective strategy. Nanoscale drug delivery systems loaded with enzymes, bioinspired catalytic nanoparticles and other nanomaterials have emerged as promising candidates. The development of degradable hydrogels scaffolds with antioxidant effects could also enable scientists to positively influence cell fate. This current review summarizes nanobiomaterial-based approaches for redox regulation and their potential applications as central nervous system neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- UCL Centre for Nerve Engineering, University College London, London, WC1E 6BT, UK
| | - Despoina Kesidou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Francisco Moura
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Eric Felli
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
27
|
Zhang RL, Pratiwi FW, Chen BC, Chen P, Wu SH, Mou CY. Simultaneous Single-Particle Tracking and Dynamic pH Sensing Reveal Lysosome-Targetable Mesoporous Silica Nanoparticle Pathways. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42472-42484. [PMID: 32657564 DOI: 10.1021/acsami.0c07917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticle (NP)-based targeted drug delivery is intended to transport therapeutically active molecules to specific cells and particular intracellular compartments. However, there is limited knowledge regarding the complete route of NPs in this targeting scenario. In this study, simultaneously performing motion and dynamic pH sensing using single-particle tracking (SPT) leads to an alternative method of gaining insights into the mesoporous silica nanoparticle's (MSN) journey in targeting lysosome. Two different pH-sensitive dyes and a reference dye are incorporated into mesoporous silica nanoparticles (MSNs) via co-condensation to broaden the measurable pH range (pH 4-7.5) of the nanoprobe. The phosphonate, amine, and lysosomal sorting peptides (YQRLGC) are conjugated onto the MSN's surface to study intracellular nano-biointeractions of two oppositely charged and lysosome-targetable MSNs. The brightness and stability of these MSNs allow their movement and dynamic pH evolution during their journey to be simultaneously monitored in real time. Importantly, a multidimensional analysis of MSN's movement and local pH has revealed new model intracellular dynamic states and distributions of MSNs, previously inaccessible when using single parameters alone. A key result is that YQRLGC-conjugated MSNs took an alternative route to target lysosomes apart from the traditional one, which sped up to 4 h and enhanced their targeting efficiency (up to 32%). The findings enrich our understanding of the intracellular journey of MSNs. This study offers complementary information on correlating the surface design with the full pathway of nanoparticles to achieve targeted delivery of therapeutic payload.
Collapse
Affiliation(s)
- Rong-Lin Zhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Feby Wijaya Pratiwi
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| |
Collapse
|
28
|
Castillo RR, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics 2020; 12:E432. [PMID: 32392811 PMCID: PMC7284475 DOI: 10.3390/pharmaceutics12050432] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
The enormous versatility of mesoporous silica nanoparticles permits the creation of a large number of nanotherapeutic systems for the treatment of cancer and many other pathologies. In addition to the controlled release of small drugs, these materials allow a broad number of molecules of a very different nature and sizes. In this review, we focus on biogenic species with therapeutic abilities (proteins, peptides, nucleic acids, and glycans), as well as how nanotechnology, in particular silica-based materials, can help in establishing new and more efficient routes for their administration. Indeed, since the applicability of those combinations of mesoporous silica with bio(macro)molecules goes beyond cancer treatment, we address a classification based on the type of therapeutic action. Likewise, as illustrative content, we highlight the most typical issues and problems found in the preparation of those hybrid nanotherapeutic materials.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| |
Collapse
|
29
|
An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B 2020; 8:8748-8767. [DOI: 10.1039/d0tb01380c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanomaterials with excellent ROS-scavenging ability and biodistribution are considered as promising candidates in alleviating oxidative stress and restoring redox balance in CNS diseases, further facilitating the function recovery of the CNS.
Collapse
Affiliation(s)
- Zhen An
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
30
|
York-Duran MJ, Godoy-Gallardo M, Jansman MMT, Hosta-Rigau L. A dual-component carrier with both non-enzymatic and enzymatic antioxidant activity towards ROS depletion. Biomater Sci 2019; 7:4813-4826. [PMID: 31535107 DOI: 10.1039/c9bm00913b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
While ROS display crucial functions in many physiological processes, elevated ROS levels are also related to the initiation and progression of many severe diseases such as cancer, cardiovascular conditions or neurologic disorders. Research approaches to diminish ROS levels during disease progression are currently being focused on the therapeutic administration of antioxidant enzymes. However, enzyme administration suffers from several limitations including their fast elimination from blood upon administration, thus making crucial the development of enzyme encapsulating platforms. We have recently reported a multicompartment architecture constituted by two inherently different types of materials, i.e., polymeric microgels and liposomes. Poly(N-isopropylacrylamide-co-acrylic acid) microgels decorated with liposomes and subsequently coated by a protective poly(dopamine) shell (PDA) combine the benefits of both systems while minimizing some of their drawbacks. Herein, we exploit this dual-component platform as a microreactor for ROS depletion. We combine the intrinsic PDA's antioxidant properties with the encapsulation of the catalase enzyme within the liposomal compartments. The surface of the carrier is further functionalised with a poly(ethylene glycol) layer and the low fouling properties are demonstrated in terms of reduction of protein adsorption and cellular uptake. The potential of the carrier as an antioxidant microreactor is shown by its ability to deplete superoxide radicals and hydrogen peroxide, which can also take place in the presence of the two relevant cell lines.
Collapse
Affiliation(s)
- Maria Jose York-Duran
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark.
| | - Maria Godoy-Gallardo
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark.
| | - Michelle Maria Theresia Jansman
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark.
| | - Leticia Hosta-Rigau
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark.
| |
Collapse
|
31
|
Zhang Y, Gal N, Itel F, Westensee IN, Brodszkij E, Mayer D, Stenger S, Castellote-Borrell M, Boesen T, Tabaei SR, Höök F, Städler B. Hybrid vesicles as intracellular reactive oxygen species and nitric oxide generators. NANOSCALE 2019; 11:11530-11541. [PMID: 31150038 DOI: 10.1039/c9nr02584g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Artificial organelles are envisioned as nanosized assemblies with intracellular biocatalytic activity to provide the host cells with non-native or missing/lost function. Hybrid vesicles loaded with glucose oxidase (NRGOx) or β-galactosidase (NRβ-Gal) and equipped with lysosomal escape ability are assembled using phospholipids and the block copolymer poly(cholesteryl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate). The co-localization of the building blocks and the catalytic activity of NRGOx and NRβ-Gal are illustrated. The intracellular activity of the nanoreactors in RAW 264.7 macrophages is confirmed by an enhanced reduction in viability for cells pre-incubated with NRGOx in the presence of glucose due to the generation of cytotoxic hydrogen peroxide compared to the controls. In addition, RAW 264.7 macrophages and primary human macrophages equipped with NRβ-Gal are able to intracellularly convert β-Gal-NONOate into nitric oxide. The successful use of these hybrid vesicles to equip host macrophages with additional catalytic activity diversifies the available toolbox of nanocarriers with envisioned application in cell mimicry.
Collapse
Affiliation(s)
- Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee YW, Luther DC, Kretzmann JA, Burden A, Jeon T, Zhai S, Rotello VM. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics 2019; 9:3280-3292. [PMID: 31244954 PMCID: PMC6567963 DOI: 10.7150/thno.34412] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Protein delivery into cells is a potentially transformative tool for treating "undruggable" targets in diseases associated with protein deficiencies or mutations. The vast majority of these targets are accessed via the cytosol, a challenging prospect for proteins with therapeutic and diagnostic relevance. In this review we will present promising non-viral approaches for intracellular and ultimately cytosolic delivery of proteins using nanocarriers. We will also discuss the mechanistic properties that govern the efficacy of nanocarrier-mediated protein delivery, applications of nanomaterials, and key challenges and opportunities in the use of nanocarriers for intracellular protein delivery.
Collapse
Affiliation(s)
- Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Jessica A. Kretzmann
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Andrew Burden
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Shumei Zhai
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| |
Collapse
|
33
|
Cheng CS, Liu TP, Chien FC, Mou CY, Wu SH, Chen YP. Codelivery of Plasmid and Curcumin with Mesoporous Silica Nanoparticles for Promoting Neurite Outgrowth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15322-15331. [PMID: 30986029 DOI: 10.1021/acsami.9b02797] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress leads to neuron damage and is involved in the pathogenesis of chronic inflammation in neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Researchers, therefore, are looking for antiinflammatory drugs and gene therapy approaches to slow down or even prevent neurological disorders. Combining therapeutics has shown a synergistic effect in the treatment of human diseases. Many nanocarriers could be designed for the simultaneous codelivery of drugs with genes to fight diseases. However, only a few researches have been performed in NDs. In this study, we developed a mesoporous silica nanoparticle (MSN)-based approach for neurodegenerative therapy. This MSN-based platform involved multiple designs in the targeted codelivery of (1) curcumin, a natural antioxidant product, to protect ROS-induced cell damage and (2) plasmid RhoG-DsRed, which is associated with the formation of lamellipodia and filopodia for promoting neurite outgrowth. At the same time, TAT peptide was introduced to the plasmid RhoG-DsRed via electrostatic interaction to elevate the efficiency of nonendocytic pathways and the nuclear plasmid delivery of RhoG-DsRed in cells for enhanced gene expression. Besides, such a plasmid RhoG-DsRed/TAT complex could work as a noncovalent gatekeeper. The release of curcumin inside the channel of the MSN could be triggered when the complex was dissociated from the MSN surface. Taken together, this MSN-based platform combining genetic and pharmacological manipulations of an actin cytoskeleton as well as oxidative stress provides an attractive way for ND therapy.
Collapse
Affiliation(s)
- Cheng-Shun Cheng
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Tsang-Pai Liu
- Mackay Junior College of Medicine, Nursing and Management , Taipei 112 , Taiwan
- Department of Surgery , Mackay Memorial Hospital , Taipei 104 , Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics , National Central University , Chung-Li 320 , Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | | |
Collapse
|
34
|
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology 2019; 17:48. [PMID: 30943985 PMCID: PMC6448271 DOI: 10.1186/s12951-019-0479-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of "conventional" therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
Collapse
Affiliation(s)
| | - Magdalena Poplawska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland.
| |
Collapse
|
35
|
Liu HJ, Xu P. Smart Mesoporous Silica Nanoparticles for Protein Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E511. [PMID: 30986952 PMCID: PMC6523670 DOI: 10.3390/nano9040511] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
Abstract
Mesoporous silica nanoparticles (MSN) have attracted a lot of attention during the past decade which is attributable to their versatile and high loading capacity, easy surface functionalization, excellent biocompatibility, and great physicochemical and thermal stability. In this review, we discuss the factors affecting the loading of protein into MSN and general strategies for targeted delivery and controlled release of proteins with MSN. Additionally, we also give an outlook for the remaining challenges in the clinical translation of protein-loaded MSNs.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| |
Collapse
|
36
|
Zhang B, Wang F, Zhou H, Gao D, Yuan Z, Wu C, Zhang X. Polymer Dots Compartmentalized in Liposomes as a Photocatalyst for In Situ Hydrogen Therapy. Angew Chem Int Ed Engl 2019; 58:2744-2748. [DOI: 10.1002/anie.201813066] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Boyu Zhang
- Faculty of Health SciencesUniversity of Macau Macau SAR China
- College of Medical LaboratoryDalian Medical University Dalian Liaoning 116044 China
| | - Fei Wang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hua Zhou
- Faculty of Health SciencesUniversity of Macau Macau SAR China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of Science Shenzhen 518055 China
| | - Zhen Yuan
- Faculty of Health SciencesUniversity of Macau Macau SAR China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of Macau Macau SAR China
| |
Collapse
|
37
|
Zhang B, Wang F, Zhou H, Gao D, Yuan Z, Wu C, Zhang X. Polymer Dots Compartmentalized in Liposomes as a Photocatalyst for In Situ Hydrogen Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Boyu Zhang
- Faculty of Health SciencesUniversity of Macau Macau SAR China
- College of Medical LaboratoryDalian Medical University Dalian Liaoning 116044 China
| | - Fei Wang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hua Zhou
- Faculty of Health SciencesUniversity of Macau Macau SAR China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of Science Shenzhen 518055 China
| | - Zhen Yuan
- Faculty of Health SciencesUniversity of Macau Macau SAR China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of Macau Macau SAR China
| |
Collapse
|
38
|
Godoy-Gallardo M, Labay C, Hosta-Rigau L. Tyrosinase-Loaded Multicompartment Microreactor toward Melanoma Depletion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5862-5876. [PMID: 30605301 DOI: 10.1021/acsami.8b20275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Melanoma is malignant skin cancer occurring with increasing prevalence with no effective treatment. A unique feature of melanoma cells is that they require higher concentrations of ltyrosine (l-tyr) for expansion than normal cells. As such, it has been demonstrated that dietary l-tyr restriction lowers systemic l-tyr and suppresses melanoma advancement in mice. Unfortunately, this diet is not well tolerated by humans. An alternative approach to impede melanoma progression will be to administer the enzyme tyrosinase (TYR), which converts l-tyr into melanin. Herein, a multicompartment carrier consisting of a polymer shell entrapping thousands of liposomes is employed to act as a microreactor depleting l-tyr in the presence of melanoma cells. It is shown that the TYR enzyme can be incorporated within the liposomal subunits with preserved catalytic activity. Aiming to mimic the dynamic environment at the tumor site, l-tyr conversion is conducted by co-culturing melanoma cells and microreactors in a microfluidic setup with applied intratumor shear stress. It is demonstrated that the microreactors are concurrently depleting l-tyr, which translates into inhibited melanoma cell growth. Thus, the first microreactor where the depletion of a substrate translates into antitumor properties in vitro is reported.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| | - Cédric Labay
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| |
Collapse
|
39
|
Nishimura T, Akiyoshi K. Biotransporting Biocatalytic Reactors toward Therapeutic Nanofactories. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800801. [PMID: 30479925 PMCID: PMC6247036 DOI: 10.1002/advs.201800801] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/31/2018] [Indexed: 05/17/2023]
Abstract
Drug-delivery systems (DDSs), in which drug encapsulation in nanoparticles enables targeted delivery of therapeutic agents and their release at specific disease sites, are important because they improve drug efficacy and help to decrease side effects. Although significant progress has been made in the development of DDSs for the treatment of a wide range of diseases, new approaches that increase the scope and effectiveness of such systems are still needed. Concepts such as nanoreactors and nanofactories are therefore attracting much attention. Nanoreactors, which basically consist of vesicle-encapsulated enzymes, provide prodrug conversion to therapeutic agents rather than simple drug delivery. Nanofactories are an extension of this concept and combine the features of nanoreactors and delivery carriers. Here, the required features of nanofactories are discussed and an overview of current strategies for the design and fabrication of different types of nanoreactors, i.e., systems based on lipid or polymer vesicles, capsules, mesoporous silica, viral capsids, and hydrogels, and their respective advantages and shortcomings, is provided. In vivo applications of biocatalytic reactors in the treatment of cancer, glaucoma, neuropathic pain, and alcohol intoxication are also discussed. Finally, the prospects for further progress in this important and promising field are outlined.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer ChemistryGraduate School of EngineeringKyoto UniversityKatsuraNishikyo‐kuKyoto615‐8510Japan
- ERATO Bio‐Nanotransporter ProjectJapan Science and Technology Agency (JST)Kyoto UniversityKatsuraNishikyo‐kuKyoto615‐8530Japan
| | - Kazunari Akiyoshi
- Department of Polymer ChemistryGraduate School of EngineeringKyoto UniversityKatsuraNishikyo‐kuKyoto615‐8510Japan
- ERATO Bio‐Nanotransporter ProjectJapan Science and Technology Agency (JST)Kyoto UniversityKatsuraNishikyo‐kuKyoto615‐8530Japan
| |
Collapse
|
40
|
Xu K, Yao H, Hu J, Zhou J, Zhou L, Wei S. Pre-drug Self-assembled Nanoparticles: Recovering activity and overcoming glutathione-associated cell antioxidant resistance against photodynamic therapy. Free Radic Biol Med 2018; 124:431-446. [PMID: 29981371 DOI: 10.1016/j.freeradbiomed.2018.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
In photodynamic therapy (PDT), the elevated glutathione (GSH) of cancer cells have two sides for treatment efficacy, activation pre-drug by removing activity suppressor part (advantages) and consumption reactive oxygen species (ROS) to confer PDT resistance (disadvantages). Preparation all-in-one system by simple method to make best use of the advantages and bypass the disadvantages still were remains a technical challenge. Herein, we report a robust PDT nanoparticle with above function based on a self-assembled pyridine modified Zinc phthalocyanine (ZnPc-DTP). The activity suppressor and active part of ZnPc-DTP were linked by disulfide bond. After targeting cancer cells, GSH can react with ZnPc-DTP nanoparticles by cutting disulfide bond to release its active part (ZnPc-SH) and oxidize GSH. In vitro and in vivo results indicated that ZnPc-SH can effective suppress tumor growth under the low antioxidant tumor microenvironment (TME).
Collapse
Affiliation(s)
- Kaikai Xu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, PR China
| | - Hai Yao
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Hu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiahong Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, PR China
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, PR China.
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
41
|
Mukerabigwi JF, Ge Z, Kataoka K. Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy. Chemistry 2018; 24:15706-15724. [DOI: 10.1002/chem.201801159] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine Institute of Industrial Promotion-Kawasaki 3-25-14 Tonomachi Kawasaki-ku Kawasaki 210-0821 Japan
- Policy Alternatives Research Institute The University of Tokyo Tokyo 113-0033 Japan
| |
Collapse
|
42
|
Abstract
Biotechnology has revolutionized therapeutics for the treatment of a wide range of diseases. Recent advances in protein engineering and material science have made the targeted delivery of enzyme therapeutics using nanocarriers (NCs) a new model of treatment. Several NCs have been approved for clinical use in drug delivery. Despite their advantages, few NCs have been approved to deliver enzyme cargo in a targeted manner. This review details the current arsenal of platforms developed to deliver enzyme therapeutics as well as the advantages and challenges of using enzymes as drugs, with examples from the literature, and discusses the benefits and liabilities of a given approach. We conclude by providing a perspective on how this field may evolve over the near and long-term.
Collapse
|
43
|
Godoy-Gallardo M, York-Duran MJ, Hosta-Rigau L. Recent Progress in Micro/Nanoreactors toward the Creation of Artificial Organelles. Adv Healthc Mater 2018; 7. [PMID: 29205928 DOI: 10.1002/adhm.201700917] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Indexed: 12/25/2022]
Abstract
Artificial organelles created from a bottom up approach are a new type of engineered materials, which are not designed to be living but, instead, to mimic some specific functions inside cells. By doing so, artificial organelles are expected to become a powerful tool in biomedicine. They can act as nanoreactors to convert a prodrug into a drug inside the cells or as carriers encapsulating therapeutic enzymes to replace malfunctioning organelles in pathological conditions. For the design of artificial organelles, several requirements need to be fulfilled: a compartmentalized structure that can encapsulate the synthetic machinery to perform an enzymatic function, as well as a means to allow for communication between the interior of the artificial organelle and the external environment, so that substrates and products can diffuse in and out the carrier allowing for continuous enzymatic reactions. The most recent and exciting advances in architectures that fulfill the aforementioned requirements are featured in this review. Artificial organelles are classified depending on their constituting materials, being lipid and polymer-based systems the most prominent ones. Finally, special emphasis will be put on the intracellular response of these newly emerging systems.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Maria J. York-Duran
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| |
Collapse
|
44
|
Rouster P, Pavlovic M, Szilagyi I. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets. Chembiochem 2017; 19:404-410. [DOI: 10.1002/cbic.201700502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Paul Rouster
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Marko Pavlovic
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
- MTA-SZTE Lendület Biocolloids Research Group; Department of Physical Chemistry and Materials Science; University of Szeged; 1 Aradi vértanúk tere 6720 Szeged Hungary
| |
Collapse
|
45
|
Itel F, Schattling PS, Zhang Y, Städler B. Enzymes as key features in therapeutic cell mimicry. Adv Drug Deliv Rev 2017; 118:94-108. [PMID: 28916495 DOI: 10.1016/j.addr.2017.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022]
Abstract
Cell mimicry is a nature inspired concept that aims to substitute for missing or lost (sub)cellular function. This review focuses on the latest advancements in the use of enzymes in cell mimicry for encapsulated catalysis and artificial motility in synthetic bottom-up assemblies with emphasis on the biological response in cell culture or more rarely in animal models. Entities across the length scale from nano-sized enzyme mimics, sub-micron sized artificial organelles and self-propelled particles (swimmers) to micron-sized artificial cells are discussed. Although the field remains in its infancy, the primary aim of this review is to illustrate the advent of nature-mimicking artificial molecules and assemblies on their way to become a complementary alternative to their role models for diverse biomedical purposes.
Collapse
Affiliation(s)
- Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark.
| |
Collapse
|
46
|
Chen YP, Wu SH, Chen IC, Chen CT. Impacts of Cross-Linkers on Biological Effects of Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10254-10265. [PMID: 28229590 DOI: 10.1021/acsami.7b00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemically synthesized cross-linkers play decisive roles in variable cargos attached to nanoparticles (NPs). Previous studies reported that surface properties, such as the size, charge, and surface chemistry, are particularly important determinants influencing the biological fate and actions of NPs and cells. Recent studies also focused on the relationship of serum proteins with the surface properties of NPs (also called the protein corona), which is recognized as a key factor in determining the cytotoxicity and biodistribution. However, there is concern that cross-linkers conjugated onto NPs might induce undesirable biological effects. Cell responses induced by cross-linkers have not yet been precisely elucidated. Herein, using mesoporous silica nanoparticles (MSNs) the surfaces of which were separately conjugated with four popular heterobifunctional cross-linkers, i.e., N-[α-maleimidoacetoxy]succinimide ester (AMAS), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), and maleimide poly(ethylene glycol) succinimidyl carboxymethyl ester (MAL-PEG-SCM), we investigated cross-linker-conjugated MSNs to determine whether they can cause cytotoxicity, or enhance reactive oxygen species (ROS) generation, nuclear factor (NF)-κB activation, and p-p38 or p21 protein expressions in RAW264.7 macrophage cells. Furthermore, we also separately conjugated two biomolecules containing TAT peptides and bovine serum albumin (BSA) as model systems to study their cell responses in detail. Finally, in vivo mice studies evaluated the biodistribution and blood assays (biochemistry and complete blood count) of PEG-derivative NPs, and results suggested that TAT peptides caused significant white blood cell (WBC)-related cell and platelet abnormalities, as well as liver and kidney dysfunction compared to BSA when conjugated onto MSNs. The results showed that attention to cross-linkers should be considered an issue in the surface modification of NPs. We anticipate that our results could be helpful in developing biosafety nanomaterials.
Collapse
Affiliation(s)
| | | | - I-Chih Chen
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University , Taipei 110, Taiwan
| | - Chien-Tsu Chen
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University , Taipei 110, Taiwan
| |
Collapse
|
47
|
Ni Q, Teng Z, Dang M, Tian Y, Zhang Y, Huang P, Su X, Lu N, Yang Z, Tian W, Wang S, Liu W, Tang Y, Lu G, Zhang L. Gold nanorod embedded large-pore mesoporous organosilica nanospheres for gene and photothermal cooperative therapy of triple negative breast cancer. NANOSCALE 2017; 9:1466-1474. [PMID: 28066849 DOI: 10.1039/c6nr07598c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To date, clinicians still lack an effective strategy to treat triple negative breast cancer (TNBC). In this work, we design for the first time a gold nanorod embedded large-pore mesoporous organosilica (GNR@LPMO) nanoplatform for gene and photothermal cooperative therapy of TNBC. The synthesized GNR@LPMOs possess a uniform size (175 nm), high surface area (631 m2 g-1), large pore size, excellent photothermal efficiency, and good biocompatibility. Thanks to the large-pore mesoporous organosilica layer, the GNR@LPMO nanoplatforms display much higher loading capacity of siRNA compared with traditional liposome and bare gold nanorods. Thus, functional siRNA can be efficiently delivered into TNBC cells by GNR@LPMOs, causing much higher cell apoptosis through knocking down the PLK1 proteins. By combining the effective gene delivery and photothermal abilities, the GNR@LPMO nanoplatforms are further used for gene and photothermal cooperative therapy of TNBC, which induce a 15 fold higher mice tumor inhibition rate than sole therapy modality, indicating the potential clinical use of this novel nanoplatform in treating TNBC.
Collapse
Affiliation(s)
- Qianqian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institute of Health, Bethesda, USA
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 Jiangsu, P.R. China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 Jiangsu, P.R. China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| | - Yunlei Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060 Guangdong, P.R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 Jiangsu, P.R. China
| | - Nan Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institute of Health, Bethesda, USA
| | - Zhenlu Yang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| | - Wei Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| | - Shouju Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| | - Wenfei Liu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| | - Yuxia Tang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 Jiangsu, P.R. China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nangjing 210002, Jiangsu, P.R. China.
| |
Collapse
|
48
|
Wang J, Yu Y, Lu K, Yang M, Li Y, Zhou X, Sun Z. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int J Nanomedicine 2017; 12:809-825. [PMID: 28182147 PMCID: PMC5279829 DOI: 10.2147/ijn.s123596] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy dysfunction is considered as a potential toxic mechanism of nanomaterials. Silica nanoparticles (SiNPs) can induce autophagy, but the specific mechanism involved remains unclear. Therefore, the aim of this study was to confirm the effects of SiNPs on autophagy dysfunction and explore the possible underlying mechanism. In this article, we reported that cell-internalized SiNPs exhibited dose- and time-dependent cytotoxicity in both L-02 and HepG2 cells. Multiple methods verified that SiNPs induced autophagy even at the noncytotoxic level and blocked the autophagic flux at the high-dose level. Notably, SiNPs impaired the lysosomal function through damaging lysosomal ultrastructures, increasing membrane permeability, and downregulating the expression of lysosomal proteases, cathepsin B, as evidenced by transmission electron microscopy, acridine orange staining, quantitative reverse transcription-polymerase chain reaction, and Western blot assays. Collectively, these data concluded that SiNPs inhibited autophagosome degradation via lysosomal impairment in hepatocytes, resulting in autophagy dysfunction. The current study not only discloses a potential mechanism of autophagy dysfunction induced by SiNPs but also provides novel evidence for the study of toxic effect and safety evaluation of SiNPs.
Collapse
Affiliation(s)
- Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yongbo Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Ke Lu
- Department of Toxicology and Sanitary Chemistry, School of Public Health
| | - Man Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
49
|
Deodhar GV, Adams ML, Trewyn BG. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600408] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Gauri V Deodhar
- Department of Chemistry; Colorado School of Mines; Golden CO USA
| | - Marisa L Adams
- Department of Chemistry; Colorado School of Mines; Golden CO USA
| | - Brian G Trewyn
- Department of Chemistry; Colorado School of Mines; Golden CO USA
| |
Collapse
|