1
|
Zhang Y, Zhu X, Wu J, Liao Z, Song S, Ren Z, Chen J. Cu-Pd alloy electrocatalysts with enhanced performance and stability in direct formaldehyde fuel cells. J Colloid Interface Sci 2025; 683:964-972. [PMID: 39718264 DOI: 10.1016/j.jcis.2024.12.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Copper-based materials are promising for formaldehyde oxidation to produce hydrogen but suffer from degradation caused by soluble copper ions in alkaline electrolytes. In this report, a novel Cu1.2Pd0.8/CC alloy electrocatalyst is developed to address this issue. The catalyst drives formaldehyde oxidation at 0.2 V to produce a current density of 50 mA cm-2. Stability tests over 100 h show no significant decay in current density, and the copper ion concentration in the solution remains low at 10.7 μg L-1, almost ten times lower than that observed with copper foam electrodes under identical conditions (107.1 μg L-1). When used in direct formaldehyde fuel cells, the catalyst achieves an open-circuit voltage of 0.9 V and a peak power density of 100.0 mW mgCu-1. This study provides a new strategy for enhancing copper-based catalysts through alloying.
Collapse
Affiliation(s)
- Yan Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xinrui Zhu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China; Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jindong Wu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhipeng Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Shuo Song
- Shenzhen Samii Medical Center, Shenzhen 518055, China
| | - Zhi Ren
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| |
Collapse
|
2
|
Krishan K, Swapna B, Chourasia AK, Sharma CS, Sudarsanam P. Functionalized Metal-Free Carbon Nanosphere Catalyst for the Selective C-N Bond Formation under Open-Air Conditions. ACS OMEGA 2024; 9:35676-35685. [PMID: 39184471 PMCID: PMC11339823 DOI: 10.1021/acsomega.4c03987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
A versatile shape-controlled carbon nanomaterial that can efficiently catalyze the selective C-N coupling reactions under metal-free and open-air conditions was developed by applying N-doping and KOH activation strategies in candle soot (ANCS). The TEM and elemental mapping results showed the formation of sphere-shaped carbon particles as well as the uniform distribution of nitrogen species in the carbon framework. KOH activation enhanced the specific surface area of carbon, whereas N-doping enriched the electron-deficient nature by introducing functional N-based pyrrolic/graphitic structures in the carbon framework. The synergistic effect of N-doping and KOH activation significantly improved the catalytic efficiency of the carbon catalyst (ANCS), giving a 96% conversion of o-phenylenediamine (OPD) with a good selectivity to 2-phenylbenzimidazole (97%). In contrast, the pristine carbon exhibited very low activity (48% conversion of the OPD and 36% selectivity to 2-phenylbenzimidazole). Besides, the ANCS nanomaterial provided a facile catalytic approach for the homo- and cross-C-N condensation of various aromatic amines and diamines to produce diverse functional imines and benzimidazoles at mild conditions. This work provided promising insights into developing advanced, metal-free carbon-based catalysts for selective C-N coupling reactions to produce valuable drug motifs.
Collapse
Affiliation(s)
- Kumar Krishan
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Kandi, Telangana 502284, India
| | - Bhattu Swapna
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Kandi, Telangana 502284, India
| | - Ankit Kumar Chourasia
- Department
of Chemical Engineering, Indian Institute
of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Chandra S. Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Putla Sudarsanam
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Kandi, Telangana 502284, India
| |
Collapse
|
3
|
Han Y, Wang L, Cao K, Zhou J, Zhu Y, Hou Y, Lu Y. In Situ TEM Characterization and Modulation for Phase Engineering of Nanomaterials. Chem Rev 2023; 123:14119-14184. [PMID: 38055201 DOI: 10.1021/acs.chemrev.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Solid-state phase transformation is an intriguing phenomenon in crystalline or noncrystalline solids due to the distinct physical and chemical properties that can be obtained and modified by phase engineering. Compared to bulk solids, nanomaterials exhibit enhanced capability for phase engineering due to their small sizes and high surface-to-volume ratios, facilitating various emerging applications. To establish a comprehensive atomistic understanding of phase engineering, in situ transmission electron microscopy (TEM) techniques have emerged as powerful tools, providing unprecedented atomic-resolution imaging, multiple characterization and stimulation mechanisms, and real-time integrations with various external fields. In this Review, we present a comprehensive overview of recent advances in in situ TEM studies to characterize and modulate nanomaterials for phase transformations under different stimuli, including mechanical, thermal, electrical, environmental, optical, and magnetic factors. We briefly introduce crystalline structures and polymorphism and then summarize phase stability and phase transformation models. The advanced experimental setups of in situ techniques are outlined and the advantages of in situ TEM phase engineering are highlighted, as demonstrated via several representative examples. Besides, the distinctive properties that can be obtained from in situ phase engineering are presented. Finally, current challenges and future research opportunities, along with their potential applications, are suggested.
Collapse
Affiliation(s)
- Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ke Cao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yingxin Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Vikrant K, Kim KH. Gas-phase hydrogenation of furfural into value-added chemicals: The critical role of metal-based catalysts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166882. [PMID: 37678523 DOI: 10.1016/j.scitotenv.2023.166882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Furfural (FF: aldehyde derivable from lignocellulosic biomass) has been widely recognized as a versatile building block for eco-friendly and sustainable applications to reduce industrial reliance on fossil-fuel carbon sources. Hydrogenation of FF, in particular, is recognized as one of the most effective routes for producing various value-added chemicals (e.g., furfuryl alcohol and 2-methylfuran). The gas-phase FF hydrogenation reaction offers economic and environmental advantages over its liquid-phase counterpart in conversion efficiency, product selectivity, and kinetics. The operation of the former does not require high hydrogen pressures or hazardous solvents while not generating undesirable by-products (due to reduced selectivity toward the ring-opening reaction). In this context, the utility of noble and non-noble metal catalyst systems has been recognized for their potential to induce effective FF hydrogenation in the gas phase. The present review addresses current understandings and recent developments in research on gas-phase FF hydrogenation and the factors governing the performance of metal-based catalysts (e.g., materials and surface chemistry; conversion efficiency; product selectivity; and the mechanisms, pathways, and kinetics of the associated reactions). Current shortcomings and research avenues are also discussed to help establish a roadmap for future development of the gas-phase FF hydrogenation technology and associated disciplines. Overall, the present review is expected to offer much-needed insights into the scalability of metal-based catalytic systems for efficient FF hydrogenation in the gas phase.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Huang D, An Q, Wang L, Li T, Liu M, Wu Y. Multi-active sites in situ formed on Schiff-base Pd(II)/Cu(II) self-assembly monolayer supported on graphene oxide: A simple protocol to enhance the catalytic activity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Zhu G, Shi S, Feng X, Zhao L, Wang Y, Cao J, Gao J, Xu J. Switching Amine Oxidation from Imines to Nitriles by Carbon-Hydrogen Bond Activation via Strong Base Modified Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52758-52765. [PMID: 36394950 DOI: 10.1021/acsami.2c13418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precisely controlling the product selectivity from the complex reaction is always an attractive topic in the catalysis field. In this paper, the Ru/strong base junction formed by the redox strategy was demonstrated as an efficient catalyst to switch the selectivity in aerobic oxidation of benzylamines. The zirconia-supported ruthenium (Ru-ZrO2) catalyst could catalyze benzylamine oxidation coupling to imines; however, the potassium oxide strong base modified zirconia-supported ruthenium (Ru-K-ZrO2) catalyst could catalyze benzylamine oxidation dehydrogenation to nitriles. Insight into the mechanism showed that the base modified catalyst had excellent dehydrogenation ability which was assisted by the C-H bond activation and changed the reaction pathway. The strong base modified strategy may provide a new approach for controlling the performance of heterogeneous catalysts and product selectivity.
Collapse
Affiliation(s)
- Guozhi Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, People's Republic of China
| | - Song Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xiao Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Yinwei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jieqi Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
7
|
Mo X, Gao X, Gillado AV, Chen HY, Chen Y, Guo Z, Wu HL, Tse ECM. Direct 3D Printing of Binder-Free Bimetallic Nanomaterials as Integrated Electrodes for Glycerol Oxidation with High Selectivity for Valuable C 3 Products. ACS NANO 2022; 16:12202-12213. [PMID: 35959924 DOI: 10.1021/acsnano.2c02865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Net-zero carbon strategies and green synthesis methodologies are key to realizing the United Nations' sustainable development goals (SDGs) on a global scale. An electrocatalytic glycerol oxidation reaction (GOR) holds the promise of upcycling excess glycerol from biodiesel production directly into precious hydrocarbon commodities that are worth orders of magnitude more than the glycerol feedstock. Despite years of research on the GOR, the synthesis process of nanoscale electrocatalysts still involves (1) prohibitive heat input, (2) expensive vacuum chambers, and (3) emission of toxic liquid pollutants. In this paper, these knowledge gaps are closed via developing a laser-assisted nanomaterial preparation (LANP) process to fabricate bimetallic nanocatalysts (1) at room temperature, (2) under an ambient atmosphere, and (3) without liquid waste emission. Specifically, PdCu nanoparticles with adjustable Pd:Cu content supported on few-layer graphene can be prepared using this one-step LANP method with performance that can rival state-of-the-art GOR catalysts. Beyond exhibiting high GOR activity, the LANP-fabricated PdCu/C nanomaterials with an optimized Pd:Cu ratio further deliver an exclusive product selectivity of up to 99% for partially oxidized C3 products with value over 280000-folds that of glycerol. Through DFT calculations and in situ XAS experiments, the synergy between Pd and Cu is found to be responsible for the stability under GOR conditions and preference for C3 products of LANP PdCu. This dry LANP method is envisioned to afford sustainable production of multimetallic nanoparticles in a continuous fashion as efficient electrocatalysts for other redox reactions with intricate proton-coupled electron transfer steps that are central to the widespread deployment of renewable energy schemes and carbon-neutral technologies.
Collapse
Affiliation(s)
- Xiaoyong Mo
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Xutao Gao
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Armida V Gillado
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhengxiao Guo
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Edmund C M Tse
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| |
Collapse
|
8
|
Liu S, Li Y, Yu X, Han S, Zhou Y, Yang Y, Zhang H, Jiang Z, Zhu C, Li WX, Wöll C, Wang Y, Shen W. Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation. Nat Commun 2022; 13:4559. [PMID: 35931670 PMCID: PMC9355964 DOI: 10.1038/s41467-022-32274-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Bimetallic nanoparticles afford geometric variation and electron redistribution via strong metal-metal interactions that substantially promote the activity and selectivity in catalysis. Quantitatively describing the atomic configuration of the catalytically active sites, however, is experimentally challenged by the averaging ensemble effect that is caused by the interplay between particle size and crystal-phase at elevated temperatures and under reactive gases. Here, we report that the intrinsic activity of the body-centered cubic PdCu nanoparticle, for acetylene hydrogenation, is one order of magnitude greater than that of the face-centered cubic one. This finding is based on precisely identifying the atomic structures of the active sites over the same-sized but crystal-phase-varied single-particles. The densely-populated Pd-Cu bond on the chemically ordered nanoparticle possesses isolated Pd site with a lower coordination number and a high-lying valence d-band center, and thus greatly expedites the dissociation of H2 over Pd atom and efficiently accommodates the activated H atoms on the particle top/subsurfaces.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xiaojuan Yu
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yan Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuqi Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
| | - Chuwei Zhu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wei-Xue Li
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
9
|
Mathiesen JK, Bøjesen ED, Pedersen JK, Kjaer ETS, Juelsholt M, Cooper S, Quinson J, Anker AS, Cutts G, Keeble DS, Thomsen MS, Rossmeisl J, Jensen KMØ. Breaking with the Principles of Coreduction to Form Stoichiometric Intermetallic PdCu Nanoparticles. SMALL METHODS 2022; 6:e2200420. [PMID: 35460216 DOI: 10.1002/smtd.202200420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Intermetallic nanoparticles (NPs) have shown enhanced catalytic properties as compared to their disordered alloy counterparts. To advance their use in green energy, it is crucial to understand what controls the formation of intermetallic NPs over alloy structures. By carefully selecting the additives used in NP synthesis, it is here shown that monodisperse, intermetallic PdCu NPs can be synthesized in a controllable manner. Introducing the additives iron(III) chloride and ascorbic acid, both morphological and structural control can be achieved. Combined, these additives provide a synergetic effect resulting in precursor reduction and defect-free growth; ultimately leading to monodisperse, single-crystalline, intermetallic PdCu NPs. Using in situ X-ray total scattering, a hitherto unknown transformation pathway is reported that diverges from the commonly reported coreduction disorder-order transformation. A Cu-rich structure initially forms, which upon the incorporation of Pd(0) and atomic ordering forms intermetallic PdCu NPs. These findings underpin that formation of stoichiometric intermetallic NPs is not limited by standard reduction potential matching and coreduction mechanisms, but is instead driven by changes in the local chemistry. Ultimately, using the local chemistry as a handle to tune the NP structure might open new opportunities to expand the library of intermetallic NPs by exploiting synthesis by design.
Collapse
Affiliation(s)
- Jette K Mathiesen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Espen D Bøjesen
- Interdisciplinary Nanoscience Center & Aarhus University Centre for Integrated Materials Research, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | - Jack K Pedersen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Emil T S Kjaer
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Mikkel Juelsholt
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Susan Cooper
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Jonathan Quinson
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Geoff Cutts
- Diamond Light Source, Harwell Campus, Oxford, OX11 0DE, UK
| | - Dean S Keeble
- Diamond Light Source, Harwell Campus, Oxford, OX11 0DE, UK
| | - Maria S Thomsen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Jan Rossmeisl
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| |
Collapse
|
10
|
Wu C, Bu J, Wang W, Shen H, Cao Y, Zhang H. Imine Synthesis by Benzylamine Self-Coupling Catalyzed by Cerium-Doped MnO 2 under Mild Conditions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Wu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Jun Bu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Wenbin Wang
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Haidong Shen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Yueling Cao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, PR China
| | - Hepeng Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| |
Collapse
|
11
|
Marakatti VS, Ronda-Lloret M, Krajčí M, Joseph B, Marini C, Delgado JJ, Devred F, Shiju NR, Gaigneaux EM. Highly active and stable Co (Co3O4)_Sm2O3 nano-crystallites derived from Sm2Co7 and SmCo5 intermetallic compounds in NH3 synthesis and CO2 conversion. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01956b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and electronic properties of Sm2Co7 and SmCo5 Intermetallic compound derived catalysts in activation of N2 and CO2 molecules.
Collapse
Affiliation(s)
- Vijaykumar S. Marakatti
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Solids and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
| | - Maria Ronda-Lloret
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
| | - Marian Krajčí
- Institute of Physics, Slovak Academy of Sciences, Bratislava SK-84511, Slovakia
| | - Boby Joseph
- Elettra-Sincrotrone Trieste S. C. p. A, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Carlo Marini
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Jose Delgado
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, e IMEYMAT, Instituto Universitario de Investigación en Microscopía Electrónica y Materiales, Universidad de Cádiz, Puerto Real 11510, Spain
| | - François Devred
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Solids and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
| | - N. Raveendran Shiju
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Solids and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Le SD, Nishimura S. Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01735g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable catalyst with a low metal loading amount of PVP-capped Pd rich CuPd nanoparticles was explored for highly selective production of γ-butyrolactone via hydrogenation of succinic acid at mild hydrogen pressure.
Collapse
Affiliation(s)
- Son Dinh Le
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
13
|
Ashberry H, Zhan X, Skrabalak SE. Identification of Nanoscale Processes Associated with the Disorder-to-Order Transformation of Carbon-Supported Alloy Nanoparticles. ACS MATERIALS AU 2021; 2:143-153. [PMID: 36855759 PMCID: PMC9888660 DOI: 10.1021/acsmaterialsau.1c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to their ordered crystal structures and high structural stabilities, intermetallic nanoparticles often display enhanced catalytic, magnetic, and optical properties compared to their random alloy counterparts. Intermetallic nanoparticles can be achieved by thermal annealing of their disordered (random alloy) counterparts. However, high temperatures and long annealing times needed to achieve the disorder-to-order transition often lead to a loss of sample monodispersity and an increase in the average size of nanoparticles. Here, we performed ex situ powder X-ray diffraction (XRD) and in situ annealing transmission electron microscopy (TEM) experiments to elucidate nanoscale processes that contribute to the ordering of carbon-supported PdCu nanoparticles as a model system. Random alloy PdCu nanoparticles supported on carbon were thermally annealed for various lengths of time at the disorder-to-order phase transition temperature, where changes in nanoparticle size and the crystal phase were monitored. The nanoparticles were only completely transformed to the intermetallic phase by undertaking measures to deliberately increase their size by increasing the number of nanoparticles on the carbon support. In situ annealing TEM experiments reveal nanoscale processes that account for the disorder-to-order phase transformation. Five different processes were observed at 400 °C. Isolated nanoparticles remained in the random alloy phase or underwent a phase transformation to the intermetallic phase. Nanoparticles fused with neighboring nanoparticles resulting in no change in phase or conversion to the intermetallic phase. Evidence of vapor transport was also observed, as some isolated nanoparticles were found to diminish in size upon heating. These variable processes account for the heterogeneity often observed for intermetallic nanoparticle samples achieved through annealing and motivate the development of synthetic routes that suppress particle-particle coalescence, as well as investigating metal-support interactions to facilitate the disorder-to-order phase transformation under mild conditions. Overall, this work furthers our knowledge of the formation of intermetallic nanoparticles by thermal annealing approaches, which could accelerate the development of electrocatalysts and the application of intermetallic nanoparticles in magnetic storage devices.
Collapse
|
14
|
Cruz-Martínez H, Guerra-Cabrera W, Flores-Rojas E, Ruiz-Villalobos D, Rojas-Chávez H, Peña-Castañeda YA, Medina DI. Pt-Free Metal Nanocatalysts for the Oxygen Reduction Reaction Combining Experiment and Theory: An Overview. Molecules 2021; 26:molecules26216689. [PMID: 34771098 PMCID: PMC8588335 DOI: 10.3390/molecules26216689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
The design and manufacture of highly efficient nanocatalysts for the oxygen reduction reaction (ORR) is key to achieve the massive use of proton exchange membrane fuel cells. Up to date, Pt nanocatalysts are widely used for the ORR, but they have various disadvantages such as high cost, limited activity and partial stability. Therefore, different strategies have been implemented to eliminate or reduce the use of Pt in the nanocatalysts for the ORR. Among these, Pt-free metal nanocatalysts have received considerable relevance due to their good catalytic activity and slightly lower cost with respect to Pt. Consequently, nowadays, there are outstanding advances in the design of novel Pt-free metal nanocatalysts for the ORR. In this direction, combining experimental findings and theoretical insights is a low-cost methodology—in terms of both computational cost and laboratory resources—for the design of Pt-free metal nanocatalysts for the ORR in acid media. Therefore, coupled experimental and theoretical investigations are revised and discussed in detail in this review article.
Collapse
Affiliation(s)
- Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (D.R.-V.)
| | - Wilbert Guerra-Cabrera
- Tecnológico Nacional de México, Instituto Tecnológico del Istmo, Panamericana 821, 2da., Juchitán de Zaragoza, Oaxaca 70000, Mexico;
| | - Ernesto Flores-Rojas
- Instituto Politécnico Nacional, CICATA-Legaria, Legaria 694, Col. Irrigación, Ciudad de México 11500, Mexico;
| | - Dunia Ruiz-Villalobos
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (D.R.-V.)
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Tláhuac, Ciudad de México 13508, Mexico;
| | - Yesica A. Peña-Castañeda
- Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Av. Fray Servando Teresa de Mier 92, Cuauhtémoc, Ciudad de México 06080, Mexico
- Correspondence: (Y.A.P.-C.); (D.I.M.)
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
- Correspondence: (Y.A.P.-C.); (D.I.M.)
| |
Collapse
|
15
|
He P, Lv Y, Shang S, Chen B, Liang H, Niu J, Dai W. Defect‐Rich Core‐Shell Carbon Derived from Ionic Liquid for Direct Synthesis of Imines. ChemistrySelect 2021. [DOI: 10.1002/slct.202100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peipei He
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng China
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Ying Lv
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Sensen Shang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Bo Chen
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Hongliang Liang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng China
| | - Wen Dai
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| |
Collapse
|
16
|
Qi M, Wu X, Wang L, Song Y, Diao Y. The effect of the bimetallic Pd-Pb structures on direct oxidative esterification of methacrolein with methanol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Mkhohlakali AC, Fuku X, Modibedi RM, Khotseng LE, Mathe MK. Electroformation of Pd‐modified Thin Film Electrocatalysts Using E‐ALD Technique. ELECTROANAL 2021. [DOI: 10.1002/elan.202100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. C. Mkhohlakali
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
- Department of Chemistry University of the Western Cape, Bellville Cape Town South Africa
| | - X. Fuku
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
| | - R. M. Modibedi
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
| | - L. E. Khotseng
- Department of Chemistry University of the Western Cape, Bellville Cape Town South Africa
| | - M. K. Mathe
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
| |
Collapse
|
18
|
Sudarsanam P, Köckritz A, Atia H, Amin MH, Brückner A. Synergistic Nanostructured MnO
x
/TiO
2
Catalyst for Highly Selective Synthesis of Aromatic Imines. ChemCatChem 2021. [DOI: 10.1002/cctc.202001870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Putla Sudarsanam
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Angela Köckritz
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Hanan Atia
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | | | - Angelika Brückner
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
19
|
Gómez Herranz A, Germán E, Alonso JA, López MJ. Interaction of hydrogen with palladium–copper nanoalloys. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02737-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Williams BP, Qi Z, Huang W, Tsung CK. The impact of synthetic method on the catalytic application of intermetallic nanoparticles. NANOSCALE 2020; 12:18545-18562. [PMID: 32970090 DOI: 10.1039/d0nr04699j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intermetallic alloy nanocrystals have emerged as a promising next generation of nanocatalyst, largely due to their promise of surface tunability. Atomic control of the geometric and electronic structure of the nanoparticle surface offers a precise command of the catalytic surface, with the potential for creating homogeneous active sites that extend over the entire nanoparticle. Realizing this promise, however, has been limited by synthetic difficulties, imparted by differences in parent metal crystal structure, reduction potential, and atomic size. Further, little attention has been paid to the impact of synthetic method on catalytic application. In this review, we seek to connect the two, organizing the current synthesis methods and catalytic scope of intermetallic nanoparticles and suggesting areas where more work is needed. Such analysis should help to guide future intermetallic nanoparticle development, with the ultimate goal of generating precisely controlled nanocatalysts tailored to catalysis.
Collapse
Affiliation(s)
- Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| | | | | | | |
Collapse
|
21
|
Marakatti VS, Gaigneaux EM. Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis. ChemCatChem 2020. [DOI: 10.1002/cctc.202001141] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vijaykumar S. Marakatti
- Institute of Condensed Matter and Nanosciences (IMCN) Molecular chemistry, Solids and caTalysis(MOST) Université catholique de Louvain (UCLouvain) Louvain-la-Neuve BE-1348 Belgium
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN) Molecular chemistry, Solids and caTalysis(MOST) Université catholique de Louvain (UCLouvain) Louvain-la-Neuve BE-1348 Belgium
| |
Collapse
|
22
|
Cheng Y, Xue J, Yang M, Li H, Guo P. Bimetallic PdCu Nanoparticles for Electrocatalysis: Multiphase or Homogeneous Alloy? Inorg Chem 2020; 59:10611-10619. [PMID: 32678586 DOI: 10.1021/acs.inorgchem.0c01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystal phase structure of bimetallic alloy is an important factor determining the electrocatalytic activity toward oxidation of energy molecules. In this paper, PdCu bimetallic NPs with similar element composition and different crystal phase structural features have been synthesized hydrothermally by adjusting the content of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na). Multiphase PdCu NPs composed of pure Pd and alloy phase are obtained with a low concentration (even as low as zero) of EDTA-2Na in synthetic systems while homogeneous PdCu alloy NPs are formed in the presence of EDTA-2Na with a high concentration. The catalytic activity of ethanol electrooxidation is increased from 3.1 mA·cm-2 of pure Pd NPs, to 3.6 mA·cm-2 of multiphase PdCu NPs, and to 5.0 mA·cm-2 of homogeneous PdCu alloy NPs (about 2360 mA mgPd-1). The surface composition and structural stability of homogeneous PdCu NPs were much less damaged during electrochemical measurements. Based on the experimental data, the formation mechanism of multiphase and homogeneous PdCu NPs and their structure-property relationship have been discussed.
Collapse
Affiliation(s)
- Yuanzhe Cheng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jing Xue
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
23
|
Effect of composition of Pd10−xCux (x = 2, 3, 4, and 5) alloy nanoparticles on their electrocatalysis for methanol oxidation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Mukhi P, Roy S. Bimetallic Pd‐Sn Nanocatalysts for Selective Synthesis of Amines and Imines in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.201903671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Priyabrata Mukhi
- Organometallics and Catalysis LaboratorySchool of Basic Sciences, Indian Institute of Technology Bhubaneswar Argul, Khurda 752050 Odisha India
- Department of Education inScience and Mathematics Regional Institute of Education Bhubneshwar 751022 Odisha India
| | - Sujit Roy
- Organometallics and Catalysis LaboratorySchool of Basic Sciences, Indian Institute of Technology Bhubaneswar Argul, Khurda 752050 Odisha India
| |
Collapse
|
25
|
Olekszyszen DN, Albuquerque BL, Silva DDO, Tripodi GL, de Oliveira DC, Domingos JB. Core-shell PdCu bimetallic colloidal nanoparticles in Sonogashira cross-coupling reaction: mechanistic insights into the catalyst mode of action. NANOSCALE 2020; 12:1171-1179. [PMID: 31850429 DOI: 10.1039/c9nr09075d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Core-shell PdCu nanoparticles with different metal proportions were synthesized using a one-pot methodology and characterized by STEM, HRTEM, XANES and EXAFS analysis. The bimetallic nanoparticles were applied as catalysts in the Sonogashira cross-coupling reaction to investigate the mode of action of the PdCu in the reaction. The copper content directly influenced the generation of the cross-coupling product, shaping the performance of the catalyst. A quasi-homogeneous reaction pathway was evidenced by kinetics and poisoning experiments as well as XAS, HRTEM and HRMS analysis. These findings help to elucidate the mode of action of the PdCu nanocatalysts in the, as yet, unrevealed Sonogashira mechanism and the potential development of new nanocatalysts.
Collapse
Affiliation(s)
- Drielly N Olekszyszen
- LaCBio - Laboratory of Biomimetic Catalysis, Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil. and Federal Institute of Paraná, Campus União da Vitória, PR 84600-000, Brazil
| | - Brunno L Albuquerque
- LaCBio - Laboratory of Biomimetic Catalysis, Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil. and LAMOCA, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil
| | - Dagoberto de O Silva
- LaCBio - Laboratory of Biomimetic Catalysis, Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| | - Guilherme L Tripodi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | - Josiel B Domingos
- LaCBio - Laboratory of Biomimetic Catalysis, Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
26
|
Jiang J, Li X, Du S, Shi L, Jiang P, Zhang P, Dong Y, Leng Y. Facile synthesis of a highly efficient Co/Cu@NC catalyst for base-free oxidation of alcohols to esters. NEW J CHEM 2020. [DOI: 10.1039/d0nj00172d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Co/Cu nanoparticle co-decorated N-doped carbon exhibits excellent activity and stability for base-free oxidation of alcohols to esters.
Collapse
Affiliation(s)
- Jiusheng Jiang
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Xiang Li
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Shengyu Du
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Langchen Shi
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Pingping Jiang
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Pingbo Zhang
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Yuming Dong
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Yan Leng
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
27
|
Luo LM, Zhan W, Zhang RH, Hu QY, Guo YF, Zhou XW. Enhanced catalytic activity and stability of CoAuPd nanocatalysts by combining methods of heat treatment and dealloying. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Goud D, Cherevotan A, Maligal-Ganesh R, Ray B, Ramarao SD, Raj J, Peter SC. Unraveling the Role of Site Isolation and Support for Semihydrogenation of Phenylacetylene. Chem Asian J 2019; 14:4819-4827. [PMID: 31713285 DOI: 10.1002/asia.201901401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/03/2019] [Indexed: 11/06/2022]
Abstract
Intermetallic compounds (IMCs) composed of transition metals and post-transition metals function as superior heterogeneous catalysts in comparison to their monometallic and bimetallic alloy counterparts. Rendering IMCs in their nanomaterial iterations further enhances their efficiency. Herein, we demonstrate the role of PdIn as well-dispersed intermetallic nanoparticles (IMNPs) for the semihydrogenation of phenylacetylene selectively to styrene at ambient conditions. Higher selectivity of PdIn was explained with the help DOS calculations. We have explored the role of a few well-known silica-based supports such as SBA-15 and MCM-41, providing insight into how they affect catalysis. As an additional support we have explored previously reported JNC-1, a mesoporous carbon material obtained via a templated strategy using SBA-15. PdIn supported on SBA-15 and JNC-1 displayed the best dispersion, while also exhibiting the most catalytic activity due to the unique nature of the porous structure.
Collapse
Affiliation(s)
- Devender Goud
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Arjun Cherevotan
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Raghu Maligal-Ganesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Bitan Ray
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - S D Ramarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Jithu Raj
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
29
|
Marakatti VS, Sarma SC, Sarkar S, Krajčí M, Gaigneaux EM, Peter SC. Synthetically Tuned Pd-Based Intermetallic Compounds and their Structural Influence on the O 2 Dissociation in Benzylamine Oxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37602-37616. [PMID: 31545585 DOI: 10.1021/acsami.9b11318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intermetallic compounds (IMCs) have diverse electronic and geometrical properties to offer. However, the synthesis of intermetallic nanoparticles is not always easy; developing new methodologies that are conventional for many systems can be challenging, especially when incorporating highly electropositive metals to reduce to IMCs using solution synthesis methodologies. In this study, we report a comprehensive approach to access nanocrystalline PdxMy (M = Cu, Zn, Ga, Ge, Sn, Pb, Cd, In) intermetallic (IM) via the coreduction method employing sodium borohydride as the reductant. A combination of diffraction, spectroscopic, and microscopic techniques were performed to characterize the formed nanoparticles in terms of their phase composition, purity, particle size distribution, and surface oxidation properties of metals, respectively. IMCs of Pd with the elements such as Cu, Zn, Ga, and Ge exhibited higher catalytic activity that with elements such as In, Sn, Pb, and Cd. The DFT studies on these compounds revealed that the adsorption of benzylamine at the Pd site and the dissociative adsorption of O2 on the IM surface play a significant effect on catalytic activity. Among them, PdCu IM exhibited an excellent conversion of benzylamine (94.0%), with 92.2% of dibenzylimine selectivity compared to other IMCs. Moreover, PdCu exhibited decent recyclability and activity for the oxidation of different substituted primary amines.
Collapse
Affiliation(s)
- Vijaykumar S Marakatti
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) , Université Catholique de Louvain (UCLouvain) , Louvain-la-Neuve 1348 , Belgium
| | | | | | - M Krajčí
- Institute of Physics , Slovak Academy of Sciences , Bratislava SK-84511 , Slovakia
| | - Eric M Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) , Université Catholique de Louvain (UCLouvain) , Louvain-la-Neuve 1348 , Belgium
| | | |
Collapse
|
30
|
Chen Q, Cheng T, Fu H, Zhu Y. Crystal phase regulation in noble metal nanocrystals. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63385-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Cao X, Lyu T, Xie W, Mirjalili A, Bradicich A, Huitema R, Jang BWL, Keum JK, More K, Liu C, Yan X. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1822-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
|
33
|
Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts. PROG SOLID STATE CH 2018. [DOI: 10.1016/j.progsolidstchem.2018.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Wu ZP, Shan S, Xie ZH, Kang N, Park K, Hopkins E, Yan S, Sharma A, Luo J, Wang J, Petkov V, Wang L, Zhong CJ. Revealing the Role of Phase Structures of Bimetallic Nanocatalysts in the Oxygen Reduction Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03106] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhi-Peng Wu
- Key Laboratory of Ministry of Education for Green Chemical Technology, R&D Center for Petrochemical Technology, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zhi-Hui Xie
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Ning Kang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Keonwoo Park
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Emma Hopkins
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shan Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Anju Sharma
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jin Luo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jie Wang
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Lichang Wang
- Key Laboratory of Ministry of Education for Green Chemical Technology, R&D Center for Petrochemical Technology, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
35
|
Boulbazine M, Boudjahem AG. Stability, Electronic and Magnetic Properties of Mn-Doped Copper Clusters: A Meta-GGA Functional Investigation. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1456-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Liu S, Li Y, Ta N, Zhou Y, Wu Y, Li M, Miao S, Shen W. Fabrication of palladium-copper nanoparticles with controllable size and chemical composition. J Colloid Interface Sci 2018; 526:201-206. [PMID: 29734087 DOI: 10.1016/j.jcis.2018.04.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 01/05/2023]
Abstract
A series of PdxCu100-x (x = 20, 40, 60, 80) particles with the sizes of 7-9 nm were fabricated by a two-step polyol reduction process, which differentiated the nucleation and growth steps of the nanoparticles. The primary reduction of Pd2+ by ethylene glycol at 393 K formed appreciable amounts of Pd0 nuclei, while the subsequent reduction at 473 K fully reduced the Pd2+ and Cu2+ species with the aid of the initially formed Pd nuclei seeds. Meanwhile, the releasing oleylamine, previously coordinated with metal cations, acted as the capping agent to segregate the nanoparticles. Both parameters simultaneously controlled the assembly kinetics of the bimetallic nanoparticles and resulted in uniform sizes and designed chemical compositions. Among them, the Pd80Cu20 nanoparticles showed quite promising activity and selectivity for the hydrogenation of nitrobenzene under mild conditions.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Na Ta
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongbin Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shu Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
37
|
Li Y, Xiao K, Li J, Jiang P, Jiang Y, Du S, Leng Y. Molybdenum Nitride Nanocatalyst Derived from Melamine and Polyoxometalate‐based Hybrid for Oxidative Coupling of Amines to Imines with Air. ChemCatChem 2018. [DOI: 10.1002/cctc.201800980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Li
- The Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 Jiangsu P.R. China
| | - Kang Xiao
- School of Materials Science & EngineeringNanjing University of Posts and Telecommunications Nanjing 210023 P.R. China
| | - Jingjing Li
- The Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 Jiangsu P.R. China
| | - Pingping Jiang
- The Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 Jiangsu P.R. China
| | - Yuchen Jiang
- The Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 Jiangsu P.R. China
| | - Shengyu Du
- The Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 Jiangsu P.R. China
| | - Yan Leng
- The Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 Jiangsu P.R. China
| |
Collapse
|
38
|
Gamler JTL, Ashberry HM, Skrabalak SE, Koczkur KM. Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801563. [PMID: 29984851 DOI: 10.1002/adma.201801563] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/12/2018] [Indexed: 05/15/2023]
Abstract
As synthetic methods advance for metal nanoparticles, more rigorous studies of structure-function relationships can be made. Many electrocatalytic processes depend on the size, shape, and composition of the nanocatalysts. Here, the properties and electrocatalytic behavior of random alloyed and intermetallic nanoparticles are compared. Beginning with an introduction of metallic nanoparticles for catalysis and the unique features of bimetallic compositions, the discussion transitions to case studies of nanoscale electrocatalysts where direct comparisons of alloy and intermetallic compositions are undertaken for methanol electrooxidation, formic acid electrooxidation, the oxygen reduction reaction, and the electroreduction of carbon dioxide (CO2 ). Design and synthesis strategies for random alloyed and intermetallic nanoparticles are discussed, with an emphasis on Pt-M and Cu-M compositions as model systems. The differences in catalytic performance between alloys and intermetallic nanoparticles are highlighted in order to provide an outlook for future electrocatalyst design.
Collapse
Affiliation(s)
- Jocelyn T L Gamler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Hannah M Ashberry
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Kallum M Koczkur
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
39
|
Gholinejad M, Bahrami M, Nájera C, Pullithadathil B. Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction. J Catal 2018. [DOI: 10.1016/j.jcat.2018.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Shit SC, Singuru R, Pollastri S, Joseph B, Rao BS, Lingaiah N, Mondal J. Cu–Pd bimetallic nanoalloy anchored on a N-rich porous organic polymer for high-performance hydrodeoxygenation of biomass-derived vanillin. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00325d] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A N-rich porous organic polymer-anchored bimetallic Cu–Pd nanoalloy exhibited superior catalytic activity with improved stability for biomass-derived selective hydrodeoxygenation of vanillin.
Collapse
Affiliation(s)
- Subhash Chandra Shit
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | - Ramana Singuru
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | | | - Boby Joseph
- Elettra-Sincrotrone Trieste
- Basovizza 34149
- Italy
| | - Bolla Srinivasa Rao
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | - Nakka Lingaiah
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | - John Mondal
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| |
Collapse
|
41
|
Cui X, Wang X, Xu X, Yang S, Wang Y. One-step stabilizer-free synthesis of porous bimetallic PdCu nanofinger supported on graphene for highly efficient methanol electro-oxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Sarma SC, Peter SC. Understanding small-molecule electro-oxidation on palladium based compounds – a feature on experimental and theoretical approaches. Dalton Trans 2018; 47:7864-7869. [DOI: 10.1039/c8dt00443a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electrochemical oxidation of small molecules such as ethanol, methanol and formic acid on Pd based compounds has a great impact on green energy production in fuel cells.
Collapse
Affiliation(s)
- Saurav Ch. Sarma
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Sebastian C. Peter
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| |
Collapse
|
43
|
Sharma M, Das B, Sharma M, Deka BK, Park YB, Bhargava SK, Bania KK. Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35453-35462. [PMID: 28933824 DOI: 10.1021/acsami.7b11086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst. Impregnation of PdO-CuO nanoparticles on zeolite crystallite leads to the generation of mesoporous channel that probably prevented the leaching of the metal-oxide nanoparticles and endorsed high mass transfer. Formation of mesoporous channel at the external surface of zeolite-Y was evident from transmission electron microscopy and surface area analysis. PdO-CuO nanoparticles were found to be within the range of 2-5 nm. The surface area of PdO-CuO-Y catalyst was found to be much lower than parent zeolite-Y. The decrease in surface area as well as the presence of hysteresis loop in the N2-adsoprtion isotherm further suggested successful encapsulation of PdO-CuO nanoparticles via the mesoporous channel formation. The high positive shifting in binding energy in both Pd and Cu was attributed to the influence of zeolite-Y framework on lattice contraction of metal oxides via confinement effect. PdO-CuO-Y catalyst was found to oxidize benzyl alcohol with 99% selectivity. On subjecting to microwave irradiation the same oxidation reaction was found to occur at ambient condition giving same conversion and selectivity.
Collapse
Affiliation(s)
- Mukesh Sharma
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
| | - Biraj Das
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
| | - Mitu Sharma
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
| | - Biplab K Deka
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea , 44919
| | - Young-Bin Park
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea , 44919
| | - Suresh K Bhargava
- School of Sciences, RMIT University , Melbourne, Victoria 3000, Australia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
- School of Sciences, RMIT University , Melbourne, Victoria 3000, Australia
| |
Collapse
|
44
|
Unraveling the Peculiarities in the Temperature-Dependent Structural Evolution of Black Phosphorus. CONDENSED MATTER 2017. [DOI: 10.3390/condmat2010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|