1
|
Vertegel P, Milkin P, Murashko A, Parker M, Peranidze K, Emashova N, Minko S, Reukov V. Cell detachment: A review of techniques, challenges, and opportunities for advancing biomedical research and applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:50-68. [PMID: 40023326 DOI: 10.1016/j.pbiomolbio.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Culturing living cells outside the body is a complex process involving various techniques. Despite advances, harvesting cells remains challenging, especially in light of new emerging and scaled-up cell culture technologies. Enzymatic adherent cell harvesting is the most used and robust technology but can harm cells. Non-enzymatic detachment methods offer advantages but also present challenges. Thermo-responsive polymers require precise control of the molecular characteristics and thickness of the thermoresponsive films, which makes this method less robust and more expensive. This review highlights the importance of controlling harvested cell quality and its relationship to cell binding and detachment mechanisms. Many alternative methods have not been extensively analyzed, and their impact on cell quality beyond standard viability assays is not yet known. Developing robust cell harvesting methods for bioreactor microcarriers is a rapidly growing challenge as the cell manufacturing industry expands. Microcarriers with stimuli-responsive coatings face challenges similar to those observed for laboratory-scale cell dishes and bring an additional aspect of the need for microbead recycling consideration. All that together underlines the importance of the research in biomaterials and biotechnology for cell manufacturing.
Collapse
|
2
|
Zhang H, Wu Z, Wang Z, Yan X, Duan X, Sun H. Advanced surface modification techniques for titanium implants: a review of osteogenic and antibacterial strategies. Front Bioeng Biotechnol 2025; 13:1549439. [PMID: 40177619 PMCID: PMC11962728 DOI: 10.3389/fbioe.2025.1549439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent mechanical strength, corrosion resistance, and biocompatibility. However, their limited osteointegration and susceptibility to bacterial infections remain major clinical challenges. Recent advancements in surface modification techniques have significantly improved the osteogenic and antibacterial properties of Ti implants. This review summarizes key strategies, including ion doping, hydroxyapatite (HAp) coatings, nanostructured surfaces, and graphene-based modifications. Zinc (Zn)-doped coatings increase osteoblast proliferation by 25%, enhance cell adhesion by 40%, and inhibit Staphylococcus aureus by 24%. Magnesium (Mg)-doped Ti surfaces enhance osteoblast differentiation, with 38% increased alkaline phosphatase (ALP) activity and a 4.5-fold increase in cell proliferation. Copper (Cu)-doped coatings achieve 99.45% antibacterial efficacy against S. aureus and 98.65% against Escherichia coli (E. coli). Zn-substituted HAp promotes mineralized nodule formation by 4.5-fold and exhibits 16.25% bacterial inhibition against E. coli. Graphene-based coatings stimulate bone marrow stem cells (BMSCs) and provide light-responsive surface potentials for enhanced osteogenesis. Despite these advancements, challenges remain in optimizing ion release kinetics and long-term stability. Future research should focus on multi-functional coatings that integrate osteogenic, antibacterial, and immunomodulatory properties to enhance clinical performance and patient outcomes.
Collapse
Affiliation(s)
- Handong Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zidong Wu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zemin Wang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xinfeng Yan
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xudong Duan
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huaqiang Sun
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Xu J, Liu X, Liang P, Yuan H, Yang T. In Situ Preparation of Tannic Acid-Modified Poly( N-isopropylacrylamide) Hydrogel Coatings for Boosting Cell Response. Pharmaceutics 2024; 16:538. [PMID: 38675199 PMCID: PMC11054217 DOI: 10.3390/pharmaceutics16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The improvement of the capability of poly(N-isopropylacrylamide) (PNIPAAm) hydrogel coating in cell adhesion and detachment is critical to efficiently prepare cell sheets applied in cellular therapies and tissue engineering. To enhance cell response on the surface, the amine group-modified PNIPAAm (PNIPAAm-APTES) nanohydrogels were synthesized and deposited spontaneously on tannic acid (TA)-modified polyethylene (PE) plates. Subsequently, TA was introduced onto PNIPAAm-APTES nanohydrogels to fabricate coatings composed of TA-modified PNIPAAm-APTES (PNIPAAm-APTES-TA). Characterization techniques, including TEM, SEM, XPS, and UV-Vis spectroscopy, confirmed the effective deposition of hydrogels of PNIPAAm as well as the morphologies, content of chemical bonding-TA, and stability of various coatings. Importantly, the porous hydrogel coatings exhibited superhydrophilicity at 20 °C and thermo-responsive behavior. The fluorescence measurement demonstrated that the coating's stability effectively regulated protein behavior, influencing cell response. Notably, cell response tests revealed that even without precise control over the chain length/thickness of PNIPAAm during synthesis, the coatings enhanced cell adhesion and detachment, facilitating efficient cell culture. This work represented a novel and facile approach to preparing bioactive PNIPAAm for cell culture.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China;
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Xiangzhe Liu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengpeng Liang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China;
| | - Tianyou Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
| |
Collapse
|
4
|
Jiang Z, Li N, Shao Q, Zhu D, Feng Y, Wang Y, Yu M, Ren L, Chen Q, Yang G. Light-controlled scaffold- and serum-free hard palatal-derived mesenchymal stem cell aggregates for bone regeneration. Bioeng Transl Med 2023; 8:e10334. [PMID: 36684075 PMCID: PMC9842060 DOI: 10.1002/btm2.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023] Open
Abstract
Cell aggregates that mimic in vivo cell-cell interactions are promising and powerful tools for tissue engineering. This study isolated a new, easily obtained, population of mesenchymal stem cells (MSCs) from rat hard palates named hard palatal-derived mesenchymal stem cells (PMSCs). The PMSCs were positive for CD90, CD44, and CD29 and negative for CD34, CD45, and CD146. They exhibited clonogenicity, self-renewal, migration, and multipotent differentiation capacities. Furthermore, this study fabricated scaffold-free 3D aggregates using light-controlled cell sheet technology and a serum-free method. PMSC aggregates were successfully constructed with good viability. Transplantation of the PMSC aggregates and the PMSC aggregate-implant complexes significantly enhanced bone formation and implant osseointegration in vivo, respectively. This new cell resource is easy to obtain and provides an alternative strategy for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Na Li
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qin Shao
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Danji Zhu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuting Feng
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yang Wang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Mengjia Yu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Lingfei Ren
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qianming Chen
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Guoli Yang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
5
|
You Q, Lu M, Li Z, Zhou Y, Tu C. Cell Sheet Technology as an Engineering-Based Approach to Bone Regeneration. Int J Nanomedicine 2022; 17:6491-6511. [PMID: 36573205 PMCID: PMC9789707 DOI: 10.2147/ijn.s382115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bone defects that are congenital or the result of infection, malignancy, or trauma represent a challenge to the global healthcare system. To address this issue, multiple research groups have been developing novel cell sheet technology (CST)-based approaches to promote bone regeneration. These methods hold promise for use in regenerative medicine because they preserve cell-cell contacts, cell-extracellular matrix interactions, and the protein makeup of cell membranes. This review introduces the concept and preparation system of the cell sheet (CS), explores the application of CST in bone regeneration, highlights the current states of the bone regeneration via CST, and offers perspectives on the challenges and future research direction of translating current knowledge from the lab to the clinic.
Collapse
Affiliation(s)
- Qi You
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Minxun Lu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhuangzhuang Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Yong Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China,Correspondence: Chongqi Tu; Yong Zhou, Department of Orthopedics, West China Hospital, Sichuan University, No. 37, Guoxuexiang, Chengdu, 610041, Sichuan Province, People’s Republic of China, Email ;
| |
Collapse
|
6
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
7
|
Light-induced osteogenic differentiation of BMSCs with graphene/TiO 2 composite coating on Ti implant. Colloids Surf B Biointerfaces 2021; 207:111996. [PMID: 34298411 DOI: 10.1016/j.colsurfb.2021.111996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 11/23/2022]
Abstract
Light-induced surface potential have been demonstrated as an effective bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation regulator. However, traditional bone repair implants almost were weak or no light-responsive. Fortunately, surface modification was a feasible strategy to realize its light functionalization for bone implants. Herein, a graphene oxide (GO)/titanium dioxide (TiO2) nanodots composite coating on the surface of titanium (Ti) implant was constructed, and GO was reduced to reduced graphene oxide (rGO) with the method of UV-assisted photocatalytic reduction. After rGO deposited on the surface of TiO2, a heterojunction formed at the interface of rGO and TiO2. With visible light illumination, positive charges accumulated on the surface of rGO/TiO2 film, and performed as a positive surface potential change. The light-induced surface potential which was generated under proper light intensity is harmless to the cell adhesion and proliferation behavior, but presented a good BMSCs osteogenic differentiation promoting effect, and the activation of the voltage-gated calcium channels through surface potential and the promotion of the adsorption of osteogenic growth factors could be the reason. This work given a new insight of the modification for Ti implant with a light-induced surface potential, and shows potential application for bone regeneration on the clinical practice through light stimulation.
Collapse
|
8
|
Jiang Z, Zhu D, Yu K, Xi Y, Wang X, Yang G. Recent advances in light-induced cell sheet technology. Acta Biomater 2021; 119:30-41. [PMID: 33144232 DOI: 10.1016/j.actbio.2020.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Various stimuli have been applied to harvest complete cell sheets, including temperature, magnetic, pH, and electrical stimuli. Cell sheet technology is a convenient and efficient approach with beneficial effects for tissue regeneration and cell therapy. Lights of different wavelengths, such as ultraviolet (UV), visible light, and near infrared ray (NIR) light, were confirmed to aid in fabricating a cell sheet. Changes in the wettability, potential, or water content of the culturing surfaces that occur under light illumination induce conformational changes in the adhesive proteins or collagens, which then leads to cell sheet detachment. However, the current approaches face several limitations, as few standards for safe light illumination have been proposed to date, and require a careful control of the wavelength, power, and irradiation time. Future studies should aim at generating new materials for culturing and releasing cell sheets rapidly and effectively.
Collapse
|
9
|
Enhancement of Photocatalytic Activities with Nanosized Polystyrene Spheres Patterned Titanium Dioxide Films for Water Purification. Catalysts 2020. [DOI: 10.3390/catal10080886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
For environmental applications, such as water and air purification utilizing photocatalysts, we synthesized patterned titanium dioxide (TiO2) thin films using polystyrene (PS) spheres. This was primarily done to enhance the surface area and photocatalytic activities. TiO2 thin films were deposited on silicon wafers attached to variously sized PS spheres via the spin coating method and were annealed at 600 °C. The processing step involved patterning and coating a TiO2 sol–gel. The photocatalytic performance was analyzed using an UV–visible spectrophotometer. Within 20 min, a high catalytic efficiency (98% removal) with a 20-time faster decomposition rate of the malachite green (MG) solution than that of the nonpatterned TiO2 was obtained from the patterned TiO2 with 400 nm sized PS due to the large surface area. In addition, the phenol in the water removed as much as 50% within 2 h with the same photocatalyst, which was expected to be one of the strong candidates to be applied to the next generation of photocatalysts for water purification.
Collapse
|
10
|
Long X, Yi Y, Wang X, Duan X, Sun Y, Wu C, Weng W, Xu B, Cheng K, Wang H, Lin J. Gr/TiO2 Films with Light-Controlled Positive/Negative Charge for Cell Harvesting Application. ACS Biomater Sci Eng 2020; 6:2020-2028. [DOI: 10.1021/acsbiomaterials.9b01946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaojun Long
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Yang Yi
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xiaozhao Wang
- Zhejiang University−University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 314400, China
| | - Xiyue Duan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Yuan Sun
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Chengwei Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Boyong Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | | | | |
Collapse
|
11
|
Huertas RM, Fraga MC, Crespo JG, Pereira VJ. Solvent-Free Process for the Development of Photocatalytic Membranes. Molecules 2019; 24:molecules24244481. [PMID: 31817756 PMCID: PMC6943574 DOI: 10.3390/molecules24244481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
This work described a new sustainable method for the fabrication of ceramic membranes with high photocatalytic activity, through a simple sol-gel route. The photocatalytic surfaces, prepared at low temperature and under solvent-free conditions, exhibited a narrow pore size distribution and homogeneity without cracks. These surfaces have shown a highly efficient and reproducible behavior for the degradation of methylene blue. Given their characterization results, the microfiltration photocatalytic membranes produced in this study using solvent-free conditions are expected to effectively retain microorganisms, such as bacteria and fungi that could then be inactivated by photocatalysis.
Collapse
Affiliation(s)
- Rosa M. Huertas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (R.M.H.); (M.C.F.)
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Maria C. Fraga
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (R.M.H.); (M.C.F.)
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - João G. Crespo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Vanessa J. Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (R.M.H.); (M.C.F.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2784 Oeiras, Portugal
- Correspondence: ; Tel.: +351-214-469-554
| |
Collapse
|
12
|
Long X, Wang X, Yao L, Lin S, Zhang J, Weng W, Cheng K, Wang H, Lin J. Graphene/Si-Promoted Osteogenic Differentiation of BMSCs through Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43857-43864. [PMID: 31692325 DOI: 10.1021/acsami.9b14679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene (Gr) presents promising applications in regulating the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Light illumination is regarded as a spatiotemporally controllable, easily applicable, and noninvasive mean to modulate material responses. Herein, Gr-transferred silicon (Gr/Si) with a Schottky junction is utilized to evaluate the visible-light-promoted osteogenic differentiation of BMSCs. Under light illumination, light-induced charges, owing to the formation of the Schottky junction at the interface of Gr and Si, accumulated on the surface and then changed the surface potential of Gr/Si. The Schottky junction and surface potential at the interface of Gr and Si was measured by photovoltaic test and scanning Kelvin probe microscopy. Alkaline phosphatase (ALP) activity and quantitative real-time polymerase chain reaction (PCR) measurement showed that such variations of surface improved the osteogenic differentiation of BMSCs, and the activation of the voltage-gated calcium channels through surface potential and accumulation of cytosolic Ca2+ could be the reason. Moreover, X-ray photoelectron spectroscopy characterization showed that surface charge could also affect BMSCs differentiation through the promotion or inhibition of the adsorption of osteogenic growth factors. Such light-promoted osteogenic differentiation of BMSCs on Gr/Si may have huge potential for biomedical materials or devices for bone regeneration application.
Collapse
Affiliation(s)
- Xiaojun Long
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine , Zhejiang University School of Medicine , Hangzhou 314400 , China
| | - Lili Yao
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Suya Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Jiamin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | | | | |
Collapse
|
13
|
Chen R, Li L, Feng L, Luo Y, Xu M, Leong KW, Yao R. Biomaterial-assisted scalable cell production for cell therapy. Biomaterials 2019; 230:119627. [PMID: 31767445 DOI: 10.1016/j.biomaterials.2019.119627] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Cell therapy, the treatment of diseases using living cells, offers a promising clinical approach to treating refractory diseases. The global market for cell therapy is growing rapidly, and there is an increasing demand for automated methods that can produce large quantities of high quality therapeutic cells. Biomaterials can be used during cell production to establish a biomimetic microenvironment that promotes cell adhesion and proliferation while maintaining target cell genotype and phenotype. Here we review recent progress and emerging techniques in biomaterial-assisted cell production. The increasing use of auxiliary biomaterials and automated production methods provides an opportunity to improve quality control and increase production efficiency using standardized GMP-compliant procedures.
Collapse
Affiliation(s)
- Ruoyu Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ling Li
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lu Feng
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yixue Luo
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mingen Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Rui Yao
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Alternating electric field application induced non-contact and enzyme-free cell detachment. Cytotechnology 2019; 71:583-597. [PMID: 30783819 DOI: 10.1007/s10616-019-00307-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Low intensity (< 2 Vpp/cm (peak to peak voltage/cm)), high frequency (10-30 MHz), and 10 min alternating electric fields (sine wave with no DC component) induce non-contact and enzyme-free cell detachment of anchorage-dependent cells directly from commercially available cell culture flasks and stack plates. 0.25 Vpp/cm, 20 MHz alternating electric field for 10 min at room temperature (RT) induced maximum detachment and separated 99.5 ± 0.1% (mean ± SEM, n = 6) of CHO-K1 and 99.8 ± 0.2% of BALB/3T3 cells from the culture flasks. Both vertical and lateral alternating electric field applications for 10 min at RT detach the CHO-K1 cells from 25 cm2 culture flasks. The alternating electric field application induced cell detachment is almost noncytotoxic, and over 90% of the detached cells remained alive. The alternating electric field applied CHO-K1 cells for 90 min showed little or no lag phase and immediately enter exponential phase in cell growth. Combination of the 20 MHz alternating electric field and enzymatic treatment for 4 min at 37 °C showed synergetic effect and quickly detached human induced pluripotent stem cells from a laminin-coated culture flask compared with the only enzymatic treatment. These results indicate that the rapid cell detachment with both the electric field application and the enzymatic treatment could be applied to subcultures of cells that are susceptible to prolonged enzymatic digestion damage for mass culture of sustainable clinical use.
Collapse
|
15
|
Wang X, Chen Z, Zhou B, Duan X, Weng W, Cheng K, Wang H, Lin J. Cell-Sheet-Derived ECM Coatings and Their Effects on BMSCs Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11508-11518. [PMID: 29564888 DOI: 10.1021/acsami.7b19718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular matrix (ECM) provides a dynamic and complex environment to determine the fate of stem cells. In this work, light harvested cell sheets were treated with paraformaldehyde or ethanol, which eventually become ECM. Such ECM was then immobilized on titanium substrates via polydopamine chemistry. Their effects on bone marrow mesenchymal stromal cells (BMSCs) behaviors were investigated. It was found that paraformaldehyde-treated ECM coating (PT-ECM) showed a well-maintained microstructure, whereas that of ethanol-treated (ET-ECM) was completely changed. As a result, different amide structures and distributions of ECM components, such as laminin and collagen I, were exhibited. Alkaline phosphatase activity, osteocalcin secretion, related gene expression, and mineral deposition were evaluated for BMSCs cultured on both ECM coatings. PT-ECM was demonstrated to promote osteogenic differentiation much more efficiently than that of ET-ECM. That is ascribed to the preservation of native ECM milieu of PT-ECM. Such ECM acquirement and immobilization method could establish surfaces being able to direct stem cell responses on various materials. That shows promising potential in bone tissue engineering and other related biomedical applications.
Collapse
Affiliation(s)
- Xiaozhao Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Zun Chen
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
- School of Medicine , Zhejiang University , Hangzhou 3100058 , China
| | - Beibei Zhou
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Xiyue Duan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | | | | |
Collapse
|
16
|
Zhuang J, Lin S, Dong L, Cheng K, Weng W. Magnetically Assisted Electrodeposition of Aligned Collagen Coatings. ACS Biomater Sci Eng 2018; 4:1528-1535. [DOI: 10.1021/acsbiomaterials.7b01038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Junjun Zhuang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Suya Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
He M, Wang Q, Zhang J, Zhao W, Zhao C. Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44782-44791. [PMID: 29035025 DOI: 10.1021/acsami.7b13238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a Ag-nanoparticle (AgNP)-based substrate-independent bactericidal hydrogel coating with thermoresponsive antibacterial property. To attach the hydrogel coating onto model substrate, we first coated ene-functionalized dopamine on the substrate, and then the hydrogel thin layer was formed on the surface via the UV light initiated surface cross-linking copolymerization of N-isopropylacrylamide (NIPAAm) and sodium acrylate (AANa). Then, Ag ions were adsorbed into the hydrogel layers and reduced to AgNPs by sodium borohydride. The coating showed robust bactericidal ability against Escherichia coli and Staphylococcus aureus toward both contacted bacteria and the bacteria in the surrounding. Upon a reduction of the temperature below the LCST of PNIPAAm, the improved surface hydrophilicity and swollen PNIPAAm could detach the attached dead bacteria. Meanwhile, the long-lasting and regenerable antibacterial properties could be achieved by repeatedly loading AgNPs. By precisely controlling the AgNP loading amounts, the coating showed excellent hemocompatibility and no cytotoxity. Additionally, the coating could be applied to modify cell culture plate, since it could support cell adhesion and proliferation at 37 °C, while detach the cell by changing the temperature below lower critical solution temperature without the treatment of proteases. The study thus presents a promising way to fabricate thermoresponsive and regenerable antibacterial surfaces on diverse materials and devices for biomedical applications.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| |
Collapse
|