1
|
Hsiao WWW, Selvi SV, Alagumalai K. Fabrication of MnSnO 2 intercalated TA-rGO modified sensor for selective electrochemical detection of chloramphenicol in real samples. Food Chem 2025; 464:141474. [PMID: 39427617 DOI: 10.1016/j.foodchem.2024.141474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chloramphenicol (CAP), a potent antibiotic capable of inhibiting protein synthesis, presents significant challenges related to long-term dosing and its persistent leaching into the environment, raising concerns about environmental contamination and resistance development. To address this issue, we developed a reliable, low-cost, and biocompatible nanocomposite material comprising tannic acid (TA)-reduced graphene oxide (rGO) intercalated into manganese-doped tin oxide nanoparticles (MnSnO₂ NPs). The structural formation and catalytic activity of the MnSnO₂ NPs/TA-rGO nanocomposite were characterized using field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. This material exhibits robust interfacial interactions and synergistic effects, resulting in an admirable electrocatalytic reduction response for CAP sensing. The presence of co-interference molecules improved the selectivity performance of the MnSnO2 NPs/TA-rGO-modified glassy carbon electrode. The fabricated exhibited a two linear determination range (0.011-103.43 μmol L-1 and 103.43-1924.16 μmol L-1), with a detection limit (LOD) is 6.7 nmol L-1 and limit of quantification (LOQ) is 12.3 nmol L-1. Furthermore, this sensor demonstrated good sensitivity, admirable reproducibility, repeatability, and storage stability. Finally, the practicability of the fabricated MnSnO2 NPs/TA-rGO glassy carbon electrode sensor was evaluated by analyzing the CAP content in milk, honey, eye drops, biofluids (human serum and urine), and river water, and satisfactory recovery rates of 95.4 %-100.3 % were noted.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan.
| | - Subash Vetri Selvi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | | |
Collapse
|
2
|
Meng L, Zhang L, Liang G, Wang B, Xu Y, Li H, Song Z, Yan H, Guo C, Guan T, He Y. Highly sensitive antibiotic sensing based on optical weak value amplification: A case study of chloramphenicol. Food Chem 2024; 458:140184. [PMID: 38968708 DOI: 10.1016/j.foodchem.2024.140184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
The public health concern of antibiotic residues in animal-origin food has been a long-standing issue. In this work, we present a novel method for antibiotic detection, leveraging optical weak value amplification and harnessing an indirect competitive inhibition assay, which significantly boosts the system's sensitivity in identifying small molecule antibiotics. We chose chloramphenicol as a model compound and mixed it with chloramphenicol-bovine serum albumin conjugates to bind to the chloramphenicol antibody competitively. We achieved a broad linear detection range of up to 3.24 ng/mL and a high concentration resolution of 33.20 pg/mL. To further validate the universality of our proposed detection methodology, we successfully applied it to testing gibberellin and tetracycline. Moreover, we conducted regeneration experiments and real-sample correlation studies. This study introduces a novel strategy for the label-free optical sensing of small molecule antibiotics, greatly expanding the range of applications for sensors utilizing optical weak value amplification.
Collapse
Affiliation(s)
- Lingqin Meng
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China; Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Lizhong Zhang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China
| | - Gengyu Liang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China
| | - Bei Wang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China
| | - Yang Xu
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China
| | - Han Li
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China
| | - Zishuo Song
- Key Laboratory of Medicinal Resource Chemistry and Pharmaceutical Molecular Engineering, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin City, Guangxi Provence, China
| | - Hui Yan
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China
| | - Cuixia Guo
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou City, Fujian Province, China.
| | - Tian Guan
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China.
| | - Yonghong He
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
3
|
Li Y, Deng L, Jiang Y, Jiang X. Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples. CHEMOSPHERE 2024; 367:143616. [PMID: 39447769 DOI: 10.1016/j.chemosphere.2024.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China; Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Lihua Deng
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China
| | - Yaxi Jiang
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Costa HRA, Santos AO, Teixeira YN, Silva MAS, Feitosa VA, Morais S, Oliveira TMBF. Exploring the Thermal-Oxidative Stability of Azithromycin Using a Thermoactivated Sensor Based on Cerium Molybdate and Multi-Walled Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:899. [PMID: 38869524 PMCID: PMC11173558 DOI: 10.3390/nano14110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The chemical stability of azithromycin (AZM) may be compromised depending on the imposed thermo-oxidative conditions. This report addresses evidence of this process under varying conditions of temperature (20-80 °C), exposure time to UV radiation (1-3 h irradiation at 257 nm), and air saturation (1-3 h saturation with atmospheric air at 1.2 L min-1 and 15 kPa) through electrochemical measurements performed with a thermoactivated cerium molybdate (Ce2(MoO4)3)/multi-walled carbon nanotubes (MWCNT)-based composite electrode. Thermal treatment at 120 °C led to coordinated water elimination in Ce2(MoO4)3, improving its electrocatalytic effect on antibiotic oxidation, while MWCNT were essential to reduce the charge-transfer resistance and promote signal amplification. Theoretical-experimental data revealed remarkable reactivity for the irreversible oxidation of AZM on the working sensor using phosphate buffer (pH = 8) prepared in CH3OH/H2O (10:90%, v/v). Highly sensitive (230 nM detection limit) and precise (RSD < 4.0%) measurements were recorded under these conditions. The results also showed that AZM reduces its half-life as the temperature, exposure time to UV radiation, and air saturation increase. This fact reinforces the need for continuous quality control of AZM-based pharmaceuticals, using conditions closer to those observed during their transport and storage, reducing impacts on consumers' health.
Collapse
Affiliation(s)
- Heryka R. A. Costa
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte 63048-080, CE, Brazil; (H.R.A.C.); (A.O.S.); (Y.N.T.); (M.A.S.S.)
| | - André O. Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte 63048-080, CE, Brazil; (H.R.A.C.); (A.O.S.); (Y.N.T.); (M.A.S.S.)
| | - Yago N. Teixeira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte 63048-080, CE, Brazil; (H.R.A.C.); (A.O.S.); (Y.N.T.); (M.A.S.S.)
| | - Maria A. S. Silva
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte 63048-080, CE, Brazil; (H.R.A.C.); (A.O.S.); (Y.N.T.); (M.A.S.S.)
| | - Valker A. Feitosa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, SP, Brazil;
| | - Simone Morais
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. Bernardino de Almeida 431, Porto 4249-015, Portugal;
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte 63048-080, CE, Brazil; (H.R.A.C.); (A.O.S.); (Y.N.T.); (M.A.S.S.)
| |
Collapse
|
5
|
Potbhare AK, Aziz SKT, Ayyub MM, Kahate A, Madankar R, Wankar S, Dutta A, Abdala A, Mohmood SH, Adhikari R, Chaudhary RG. Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review. NANOSCALE ADVANCES 2024; 6:2539-2568. [PMID: 38752147 PMCID: PMC11093270 DOI: 10.1039/d3na01071f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide via exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems. The kinetics of photocatalysis and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) for the optimization of the degradation efficiency of organic dyes, phenol compounds, antibiotics, and pharmaceutical drugs are discussed. Further, we present a brief introduction on different graphene-based metal oxides and a systematic survey of the recently published research literature on electrode materials for lithium-ion batteries (LIBs), supercapacitors, and fuel cells. Subsequently, the power density, stability, pseudocapacitance charge/discharge process, capacity and electrochemical reaction mechanisms of intercalation, and conversion- and alloying-type anode materials are summarized in detail. Furthermore, we thoroughly distinguish the intrinsic differences among underpotential deposition, intercalation, and conventional pseudocapacitance of electrode materials. This review offers a meaningful reference for the construction and fabrication of graphene-based metal oxides as effective photocatalysts for photodegradation study and high-performance optimization of anode materials for LIBs, supercapacitors, and fuel cells.
Collapse
Affiliation(s)
- Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - S K Tarik Aziz
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Mohd Monis Ayyub
- New Chemistry Unit, International Centre for Materials Science and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Aniket Kahate
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Rohit Madankar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Sneha Wankar
- Post Graduate Teaching Department of Chemistry, Gondwana University Gadchiroli 442605 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar POB 23784 Doha Qatar
| | - Sami H Mohmood
- Department of Physics, The University of Jordan Amman 11942 Jordan
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| |
Collapse
|
6
|
Özdemir N, Karslıoğlu B, Bankoğlu Yola B, Atar N, Yola ML. A Novel Molecularly Imprinted Quartz Crystal Microbalance Sensor Based on Erbium Molybdate Incorporating Sulfur-Doped Graphitic Carbon Nitride for Dimethoate Determination in Apple Juice Samples. Foods 2024; 13:810. [PMID: 38472923 DOI: 10.3390/foods13050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Dimethoate (DIM) as an organophosphorus pesticide is widely utilized especially in the cultivation of vegetables and fruits due to its killing effect on harmful insects. However, unconscious use of DIM in large amounts can also cause serious health problems. For these reasons, rapid and reliable detection of DIM from food samples is significant. In this study, a novel quartz crystal microbalance (QCM) sensor based on erbium molybdate incorporating sulfur-doped graphitic carbon nitride (EM/S-g-C3N4) and a molecularly imprinting polymer (MIP) was designed for DIM detection in apple juice samples. Firstly, an EM/S-g-C3N4 nanocomposite with high purity was prepared under hydrothermal conditions at high temperatures over a long period of time. After the modification of the EM/S-g-C3N4 nanocomposite on a QCM chip, the polymerization solution including N,N'-azobisisobutyronitrile (AIBN) as an initiator, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, methacryloylamidoglutamic acid (MAGA) as a monomer, and DIM as an analyte was prepared. Then, the polymerization solution was dropped on an EM/S-g-C3N4 nanocomposite modified QCM chip and an ultraviolet polymerization process was applied for the formation of the DIM-imprinted polymers on the EM/S-g-C3N4 nanocomposite modified QCM chip. After the polymerization treatment, some characterization studies, including electrochemical, microscopic, and spectroscopic methods, were performed to illuminate the surface properties of the nanocomposite and the prepared QCM sensor. The values of the limit of quantification (LOQ) and the detection limit (LOD) of the prepared QCM sensor were as 1.0 × 10-9 M and 3.3 × 10-10 M, respectively. In addition, high selectivity, stability, reproducibility, and repeatability of the developed sensor was observed, providing highly reliable analysis results. Finally, thanks to the prepared sensor, it may be possible to detect pesticides from different food and environmental samples in the future.
Collapse
Affiliation(s)
- Neslihan Özdemir
- Department of Machinery and Metal Technologies, Merzifon Vocational School, Amasya University, Amasya 05300, Turkey
| | - Betül Karslıoğlu
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep 27000, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| |
Collapse
|
7
|
Javaid A, Imran M, Kanwal F, Latif S, Adil SF, Shaik MR, Khan M. Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media. Molecules 2023; 28:7979. [PMID: 38138469 PMCID: PMC10745868 DOI: 10.3390/molecules28247979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
This work reports the influence of antimony substitution in a cerium molybdate lattice for improved dielectric and photocatalytic properties. For this purpose, a series of Ce2-xSbx(MoO4)3 (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were synthesized through a co-precipitation route. The as-synthesized materials were characterized for their optical properties, functional groups, chemical oxidation states, structural phases, surface properties, and dielectric characteristics using UV-Vis spectroscopy (UV-Vis), Fourier transform infrared (FTIR) and Raman spectroscopies, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and impedance spectroscopy, respectively. UV-Vis study showed a prominent red shift of absorption maxima and a continuous decrease in band gap (3.35 eV to 2.79 eV) by increasing the dopant concentration. The presence of Ce-O and Mo-O-Mo bonds, detected via FTIR and Raman spectroscopies, are confirmed, indicating the successful synthesis of the desired material. The monoclinic phase was dominant in all materials, and the crystallite size was decreased from 40.29 nm to 29.09 nm by increasing the Sb content. A significant increase in the dielectric constant (ε' = 2.856 × 108, 20 Hz) and a decrease in the loss tan (tanδ = 1.647, 20 Hz) were exhibited as functions of the increasing Sb concentration. Furthermore, the photocatalytic efficiency of pristine cerium molybdate was also increased by 1.24 times against diclofenac potassium by incorporating Sb (x = 0.09) in the cerium molybdate. The photocatalytic efficiency of 85.8% was achieved within 180 min of UV light exposure at optimized conditions. The photocatalytic reaction followed pseudo-first-order kinetics with an apparent rate constant of 0.0105 min-1, and the photocatalyst was recyclable with good photocatalytic activity even after five successive runs. Overall, the as-synthesized Sb-doped cerium molybdate material has proven to be a promising candidate for charge storage devices and a sustainable photocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Farah Kanwal
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Kumar JV, Saravanan V, Lee D, Muthukutty B. Sense and Shoot: Unveiling the Electro-/Photocatalytic Potential of 2D White Graphene-Supported Perovskite Strontium Cobaltite from Detection to Remediation of Oxidative Stress Herbicide (Mesotrione). Anal Chem 2023; 95:17776-17789. [PMID: 37997913 DOI: 10.1021/acs.analchem.3c03812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In this research, we employed a strategy akin to "Feeding Two Birds with One Stone" aiming for the dual objectives of highly selective electrochemical detection and photocatalytic degradation of the environmentally hazardous herbicide mesotrione (MTN). We achieved this by utilizing hexagonal boron nitride (BN)-supported strontium cobaltite perovskite nanocomposites (SrCoO3/BN). The fabrication of the innovative bifunctional SrCoO3/BN nanocomposites involved a straightforward process of precipitation, followed by an annealing treatment and ultrasonication. The successful formation of these nanocomposites was corroborated through the application of diverse spectroscopic tools. Notably, as-prepared SrCoO3/BN nanocomposites exhibited a remarkable sensing platform for MTN, characterized by a notably low detection limit (11 nm), considerable sensitivity (3.782 μA μM-1 cm-2), and outstanding selectivity, alongside remarkable stability. Concurrently, these SrCoO3/BN nanocomposites demonstrated exceptional visible-light-driven photocatalytic efficacy for MTN degradation (99%) and complete mineralization. Our investigation systematically delved into the influence of operational parameters, including catalyst loading and the involvement of reactive oxidative species, in both the electrocatalytic and photocatalytic reactions. Drawing from these comprehensive studies, we have proposed plausible mechanisms for detecting and degrading MTN. Our findings pave the way for catalyst development, offering a unified solution for detecting and eliminating toxic organic compounds from the environment.
Collapse
Affiliation(s)
- Jeyaraj Vinoth Kumar
- Nano Inspired Laboratory, School of Integrated Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Vadivel Saravanan
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil 626 126, Tamilnadu, India
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | | |
Collapse
|
9
|
Liu M, Ning Y, Ren M, Fu X, Cui X, Hou D, Wang Z, Cui J, Lin A. Internal Electric Field-Modulated Charge Migration Behavior in MoS 2 /MIL-53(Fe) S-Scheme Heterojunction for Boosting Visible-Light-Driven Photocatalytic Chlorinated Antibiotics Degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303876. [PMID: 37469229 DOI: 10.1002/smll.202303876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Inadequate photo-generated charge separation, migration, and utilization efficiency limit the photocatalytic efficiency. Herein, a MoS2 /MIL-53(Fe) photocatalyst/activator with the S-scheme heterojunction structure is designed and the charge migration behavior is modulated by the internal electric field (IEF). The IEF intensity is enhanced to 40 mV by modulating band bending potential and the depletion layer length of MoS2 . The photo-generated electron migration process is boosted by constructing the electron migration bridge (Fe-O-S) and modulating the IEF as the driving force, confirmed by the density functional theory calculation. Compared with the pristine materials, the photocurrent density of MoS2 /MIL-53(Fe) is significantly enhanced 27.5 times. Contributed by the visible-light-driven cooperative catalytic degradation and the high-efficiency direct photo-generated electron reduction dichlorination process, satisfactory chlorinated antibiotics removal and detoxification performances are achieved. This study opens up new insights into the application of heterojunctions in photocatalytic activation of PDS in environmental remediation.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuting Ning
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinping Fu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zihan Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem 2023; 410:135434. [PMID: 36641911 DOI: 10.1016/j.foodchem.2023.135434] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.
Collapse
|
11
|
Microwave-assisted synthesis and characterization of activated carbon–zirconium-incorporated CeO2 nanocomposites for photocatalytic and antimicrobial activity. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
Ivan R, Popescu C, Antohe VA, Antohe S, Negrila C, Logofatu C, del Pino AP, György E. Iron oxide/hydroxide-nitrogen doped graphene-like visible-light active photocatalytic layers for antibiotics removal from wastewater. Sci Rep 2023; 13:2740. [PMID: 36792714 PMCID: PMC9932170 DOI: 10.1038/s41598-023-29927-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Hybrid layers consisting of Fe oxide, Fe hydroxide, and nitrogen doped graphene-like platelets have been synthesized by an eco-friendly laser-based method for photocatalytic applications. The complex composite layers show high photodecomposition efficiency towards degradation of antibiotic molecules under visible light irradiation. The photodecomposition efficiency was investigated as a function of relative concentrations of base materials, Fe oxide nanoparticles and graphene oxide platelets used for the preparation of target dispersions submitted to laser irradiation. Although reference pure Fe oxide/Fe hydroxide layers have high absorption in the visible spectral region, their photodecomposition efficiency is negligible under the same irradiation conditions. The high photocatalytic decomposition efficiency of the nanohybrid layer, up to 80% of the initial antibiotic molecules was assigned to synergistic effects between the constituent materials, efficient separation of the electron-hole pairs generated by visible light irradiation on the surface of Fe oxide and Fe hydroxide nanoparticles, in the presence of conducting graphene-like platelets. Nitrogen doped graphene-like platelets contribute also to the generation of electron-hole pairs under visible light irradiation, as demonstrated by the photocatalytic activity of pure, reference nitrogen doped graphene-like layers. The results also showed that adsorption processes do not contribute significantly to the removal of antibiotic molecules from the test solutions. The decrease of the antibiotic concentration under visible light irradiation was assigned primarily to photocatalytic decomposition mechanisms.
Collapse
Affiliation(s)
- R. Ivan
- grid.435167.20000 0004 0475 5806National Institute for Lasers, Plasma and Radiation Physics, PO Box MG 36, 077125 Măgurele, Ilfov Romania ,grid.5100.40000 0001 2322 497XFaculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Ilfov Romania
| | - C. Popescu
- grid.435167.20000 0004 0475 5806National Institute for Lasers, Plasma and Radiation Physics, PO Box MG 36, 077125 Măgurele, Ilfov Romania
| | - V. A. Antohe
- grid.5100.40000 0001 2322 497XFaculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Ilfov Romania ,grid.7942.80000 0001 2294 713XInstitute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Croix du Sud 1, 1348 Louvain-La-Neuve, Belgium
| | - S. Antohe
- grid.5100.40000 0001 2322 497XFaculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Ilfov Romania ,grid.435118.a0000 0004 6041 6841Academy of Romanian Scientists (AOSR), Splaiul Independenței 54, 050094 Bucharest, Romania
| | - C. Negrila
- grid.443870.c0000 0004 0542 4064National Institute for Materials Physics, PO Box MG 7, 077125 Măgurele, Ilfov, Romania
| | - C. Logofatu
- grid.443870.c0000 0004 0542 4064National Institute for Materials Physics, PO Box MG 7, 077125 Măgurele, Ilfov, Romania
| | - A. Pérez del Pino
- grid.435283.b0000 0004 1794 1122Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona Spain
| | - E. György
- grid.435167.20000 0004 0475 5806National Institute for Lasers, Plasma and Radiation Physics, PO Box MG 36, 077125 Măgurele, Ilfov Romania ,grid.435283.b0000 0004 1794 1122Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
13
|
Shen L, Dong J, Wen B, Wen X, Li J. Facile Synthesis of Hollow Fe 3O 4-rGO Nanocomposites for the Electrochemical Detection of Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040707. [PMID: 36839075 PMCID: PMC9964092 DOI: 10.3390/nano13040707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
Acetaminophen (AC) is one of the most popular pharmacologically active substances used as an analgesic and antipyretic drug. Herein, a new type of hollow Fe3O4-rGO/GCE electrode was prepared for electrochemical detection of AC through a three-step approach involving a solvothermal method for the synthesis of hollow Fe3O4 and the chemical reduction of graphene oxide (GO) for reduced graphene oxide (rGO) and Fe3O4-rGO nanocomposites modified on the glassy carbon electrode (GCE) surface. The as-prepared Fe3O4-rGO nanocomposites were characterized using a transmission electron microscope (TEM), X-ray diffraction (XRD), and a magnetic measurement system (SQUID-VSM). The magnetic Fe3O4-rGO/GCE electrodes were employed for the electrochemical detection of AC using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV) and exhibited an ultra-high selectivity and accuracy, a low detection limit of 0.11 µmol/L with a wider linear range from 5 × 10-7 to 10-4 mol/L, and high recovery between 100.52% and 101.43%. The obtained Fe3O4-rGO-modified GCE displays great practical significance for the detection of AC in drug analysis.
Collapse
|
14
|
Yu H, Liu Y, Cong S, Xia S, Zou D. Review of Mo-based materials in heterogeneous catalytic oxidation for wastewater purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Han C, Yi W, Li Z, Dong C, Zhao H, Liu M. Single-atom Palladium anchored N-doped carbon enhanced electrochemical detection of Furazolidone. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
16
|
In-situ fabrication of AgI/AgnMoxO3x+n/2/g-C3N4 ternary composite photocatalysts for benzotriazole degradation: Tuning the heterostructure, photocatalytic activity and photostability by the degree of molybdate polymerization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Facile preparation of cyclized polyacrylonitrile modified FeWO4 with superior visible-light-driven photocatalysis. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
18
|
Banerjee R, Ghosh D, Bhaduri SN, Biswas R, Biswas P. Electrochemical Detection of Chloramphenicol Using Metal Free Ordered Mesoporous Carbon. ChemistrySelect 2023. [DOI: 10.1002/slct.202202433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rumeli Banerjee
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Debojit Ghosh
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Samanka Narayan Bhaduri
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Rima Biswas
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Papu Biswas
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| |
Collapse
|
19
|
Bisht K, Kumar G, Dutta RK. Amine-Functionalized Crystalline Carbon Nanodots Decorated on Bi 2WO 6 Nanoplates as Solar Photocatalysts for Efficient Degradation of Tetracycline and Ciprofloxacin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krishanan Bisht
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Gandharve Kumar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Raj Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| |
Collapse
|
20
|
Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde. Molecules 2022; 27:molecules27217292. [PMID: 36364119 PMCID: PMC9653999 DOI: 10.3390/molecules27217292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
Conversion of hazardous compounds to value-added chemicals using clean energy possesses massive industrial interest. This applies especially to the hazardous compounds that are frequently released in daily life. In this work, a S-scheme photocatalyst is optimized by rational loading of carbon quantum dots (CQDs) during the synthetic process. As a bridge, the presence of CQDs between TiO2 and CdIn2S4 improves the electron extraction from TiO2 and supports the charge transport in S-scheme. Thanks to this, the TiO2/CQDs/CdIn2S4 presents outstanding photoactivity in converting the polycyclic aromatic hydrocarbons (PAHs) released by cigarette to value-added benzaldehyde. The optimized photocatalyst performs 87.79% conversion rate and 72.76% selectivity in 1 h reaction under a simulated solar source, as confirmed by FT-IR and GC-MS. A combination of experiments and theoretical calculations are conducted to demonstrate the role of CQDs in TiO2/CQDs/CdIn2S4 toward photocatalysis.
Collapse
|
21
|
Chen Y, Zhao L, Wu X, Dong Y, Wang GL. Self-coordinated nanozyme on Cu 3BiS 3 nanorods for high-performance aptasensing. Mikrochim Acta 2022; 189:419. [PMID: 36251095 DOI: 10.1007/s00604-022-05524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
Abstract
A novel strategy is reported to access high-performance nanozymes via the self-coordination of ferrocyanides ([Fe(CN)6]4-) onto the surface of the Cu3BiS3 (CBS) nanorods. Notably, the in situ formed nanozymes had high catalytic activity, good stability, low cost, and easy mass production. The formed nanozyme catalyzed the oxidation of the typical chromogenic substrate of 3,3',5,5'-tetramethylbenzidine (TMB) with a distinctive absorption peak at 652 nm, accompanied by a blue color development. Moreover, the attachment of deoxyribonucleoside 5'-monophosphates (dNMP) beforehand onto the surface of CBS prevented coordination of ferrocyanides and resulted in the tunable formation of the nanozyme, thereby enabling the construction of an exquisite biosensing platform. Taking the aptasensing of chloramphenicol (CAP) as an example, the engineered nanozyme allowed the construction of a homogenous, label-free, and high-performance bioassay in terms of its convenience and high sensitivity. Under the optimal conditions, changes in the absorption intensity at 652 nm for the oxidized TMB provides a good linear correlation with the logarithm of CAP concentrations in the range 0.1 pM to 100 nM, and the limit of detection was 0.033 pM (calculated from 3σ/s). Considering a vast number of bioreactions can be connected to dNMP production, we expect the engineerable nanozyme as a universal signal transduction scaffold for versatile applications in bioassays. Through the attachment of deoxyribonucleoside 5'-monophosphate (dNMP) on the surface of CBS to regulate the generation of self-coordinated nanozyme CBS/BiHCF, a homogeneous, label-free, and high-performance universal aptasensing platform was constructed.
Collapse
Affiliation(s)
- Yanru Chen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lingling Zhao
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Zirconium Molybdate Nanocomposites’ Sensing Platform for the Sensitive and Selective Electrochemical Detection of Adefovir. Molecules 2022; 27:molecules27186022. [PMID: 36144756 PMCID: PMC9503393 DOI: 10.3390/molecules27186022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Adefovir (ADV) is an anti-retroviral drug, which can be used to treat acquired immune deficiency syndrome (AIDS) and chronic hepatitis B (CHB), so its quantitative analysis is of great significance. In this work, zirconium molybdate (ZrMo2O8) was synthesized by a wet chemical method, and a composite with multi-walled carbon nanotubes (MWCNTs) was made. ZrMo2O8-MWCNTs composite was dropped onto the surface of a glassy carbon electrode (GCE) to prepare ZrMo2O8-MWCNTs/GCE, and ZrMo2O8-MWCNTs/GCE was used in the electrochemical detection of ADV for the first time. The preparation method is fast and simple. The materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV). It was electrochemically analysed by differential pulse voltammetry (DPV). Compared with single-material modified electrodes, ZrMo2O8-MWCNTs/GCE showed a vastly improved electrochemical response to ADV. Moreover, the sensor complements the study of the electrochemical detection of ADV. Under optimal conditions, the proposed electrochemical method showed a wide linear range (from 1 to 100 μM) and a low detection limit (0.253 μM). It was successfully tested in serum and urine. In addition, the sensor has the advantages of a simple preparation, fast response, good reproducibility and repeatability. It may be helpful in the potential applications of other substances with similar structures.
Collapse
|
23
|
An ultrasensitive ponceau 4 R detection sensor based on molecularly imprinted electrode using pod-like cerium molybdate and multi-walled carbon nanotubes hybrids. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Nemati F, Rezaie M, Tabesh H, Eid K, Xu G, Ganjali MR, Hosseini M, Karaman C, Erk N, Show PL, Zare N, Karimi-Maleh H. Cerium functionalized graphene nano-structures and their applications; A review. ENVIRONMENTAL RESEARCH 2022; 208:112685. [PMID: 34999024 DOI: 10.1016/j.envres.2022.112685] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Graphene-based nanomaterials with remarkable properties, such as good biocompatibility, strong mechanical strength, and outstanding electrical conductivity, have dramatically shown excellent potential in various applications. Increasing surface area and porosity percentage, improvement of adsorption capacities, reduction of adsorption energy barrier, and also prevention of agglomeration of graphene layers are the main advantages of functionalized graphene nanocomposites. On the other hand, Cerium nanostructures with remarkable properties have received a great deal of attention in a wide range of fields; however, in some cases low conductivity limits their application in different applications. Therefore, the combination of cerium structures and graphene networks has been widely invesitaged to improve properties of the composite. In order to have a comprehensive information of these nanonetworks, this research reviews the recent developments in cerium functionalized graphene derivatives (graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dot (GQD) and their industrial applications. The applications of functionalized graphene derivatives have also been successfully summarized. This systematic review study of graphene networks decorated with different structure of Cerium have potential to pave the way for scientific research not only in field of material science but also in fluorescent sensing, electrochemical sensing, supercapacitors, and catalyst as a new candidate.
Collapse
Affiliation(s)
- Fatemeh Nemati
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Rezaie
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hadi Tabesh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; China University of Science and Technology of China, Anhui, 230026, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Pau-Loke Show
- Department of Biochemical Engineering, University of Nottingham Malaysia, Malaysia
| | - Najmeh Zare
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.
| |
Collapse
|
25
|
Li C, Wu X, Hu J, Shan J, Zhang Z, Huang X, Liu H. Graphene-based photocatalytic nanocomposites used to treat pharmaceutical and personal care product wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35657-35681. [PMID: 35257332 DOI: 10.1007/s11356-022-19469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic technology has been widely studied by researchers in the field of environmental purification. This technology can not only completely convert organic pollutants into small molecules of CO2 and H2O through redox reactions but also remove metal ions and other inorganic substances from water. This article reviews the research progress of graphene-based photocatalytic nanocomposites in the treatment of wastewater. First, we elucidate the basic principles of photocatalysis, the types of graphene-based nanocomposites, and the role of graphene in photocatalysis (e.g., graphene can accelerate the separation of photon-hole pairs and increase the intensity and range of light absorption). Second, the preparation, characterization, and application of composites in wastewater are introduced. We also discuss the kinetic model of the photocatalytic degradation of pollutants. Finally, the enhancement mechanism of graphene in terms of photocatalysis is not completely clear, and graphene-based photocatalysts with high catalytic efficiency, low cost, and large-scale production have not yet appeared, so there is an urgent need for more extensive and in-depth research.
Collapse
Affiliation(s)
- Caifang Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Xianliang Wu
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Jiwei Hu
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Junyue Shan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Zhenming Zhang
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
26
|
Jingrui X, Asraful Alam M, Jing W, Wenchao W, Norhana Balia Yusof Z, Daroch M, Zhang D, Lifen L, Russel M. Enhanced removal of tetracycline from synthetic wastewater using an optimal ratio of co-culture of Desmodesmus sp. and Klebsiella pneumoniae. BIORESOURCE TECHNOLOGY 2022; 351:127056. [PMID: 35358674 DOI: 10.1016/j.biortech.2022.127056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
A sustainable approach of Desmodesmus sp. GIEC-179: Klebsiella pneumoniae (DUT-XJR-t-1.2) co-culture ratios were optimized to remove tetracycline (TET) from synthetic wastewater. To enhance the tetracycline removal performance, the effect of microalgae-bacterial co-culture ratio, maximum TET concentration, effective inoculum amount, growth temperature and pH were studied. The optimized ratio 1:2 of Desmodesmus sp.: K. pneumoniae showed the optimal removal percentage at the temperature of 25 °C, pH 7 and 10% inoculum amount; and the removal of TET was recorded as 95%. Moreover, this study explored the Desmodesmus sp.: K. pneumoniae (1:2) nutrient (COD, NH4+ and PO43-) exchange relationship and their interaction of TET removal to better understand their fundamental mechanism. According to the results of this study, Desmodesmus sp.: K. pneumoniae co-culture could be a green option for bio-removal of tetracycline from wastewater.
Collapse
Affiliation(s)
- Xu Jingrui
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wang Jing
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Wu Wenchao
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China
| | - Dayong Zhang
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Liu Lifen
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Mohammad Russel
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, China.
| |
Collapse
|
27
|
Cheruvathoor Poulose A, Zoppellaro G, Konidakis I, Serpetzoglou E, Stratakis E, Tomanec O, Beller M, Bakandritsos A, Zbořil R. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. NATURE NANOTECHNOLOGY 2022; 17:485-492. [PMID: 35347273 PMCID: PMC9117130 DOI: 10.1038/s41565-022-01087-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS2) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
Collapse
Affiliation(s)
- Aby Cheruvathoor Poulose
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Ioannis Konidakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Efthymis Serpetzoglou
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | | | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| |
Collapse
|
28
|
Arumugam B, Ramaraj SK. Insights into the Design and Electrocatalytic Activity of Magnesium Aluminum Layered Double Hydroxides: Application to Nonenzymatic Catechol Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4848-4858. [PMID: 35413192 DOI: 10.1021/acs.langmuir.1c03494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design of an efficient electrocatalyst for effective trace level determinations of noxious synthetic and or biological compounds is the unceasingly noteworthy conceptual approach for rapid technology. In this work, we designed a magnesium-aluminum layered double hydroxides (Mg-Al LDHs) nanocatalyst and applied it to the electrocatalytic determination of an extremely carcinogenic catechol sensor. A coprecipitation method was employed for synthesizing the nanocatalyst, and the structure, porous nature, and morphology were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm, field emission-scanning electron microscopy, and transmission electron microscopy. The elemental composition was observed by energy dispersive X-ray analysis. The electrochemical studies were investigated with the help of cyclic voltammetry and differential pulse voltammetry techniques. The Mg-Al LDHs-based electrocatalyst was used to detect catechol by electrochemical measurements with different parameters. The proposed catechol sensor shows a wide dynamic range (0.007-200 μM) with a lower level of detection (2.3 nm) and sensitivity (3.57 μA μM-1 cm-2). The excellent sensor performance is attributed to the high surface area, fast electron transfer, more active sites, and excellent flexibility. This study depicts the proposed sensor as probable to practical in a scientific investigation. In addition, the modified electrode showed greater selectivity and was used in the detection of fatal contaminants in instant treatment strategies. Moreover, the Mg-Al LDHs confirmed auspicious real sample scrutiny with noteworthy retrieval outcomes in lake water samples which exposed improved consequences.
Collapse
Affiliation(s)
- Balamurugan Arumugam
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| |
Collapse
|
29
|
Xu H, Sheng Y, Liu Q, Li C, Tang Q, Li Z, Wang W. In situ fabrication of gold nanoparticles into biocathodes enhance chloramphenicol removal. Bioelectrochemistry 2022; 144:108006. [PMID: 34871846 DOI: 10.1016/j.bioelechem.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The development of highly conductive biofilms is a key strategy to enhance antibiotic removal in bioelectrochemical systems (BESs) with biocathodes. In this study, Au nanoparticles (Au-NPs) were in situ fabricated in a biocathode (Au biocathode) to enhance the removal of chloramphenicol (CAP) in BESs. The concentration of Au(III) was determined to be 5 mg/L. CAP was effectively removed in the BES containing a Au biocathode with a removal percentage of 94.0% within 48 h; this result was 1.8-fold greater than that obtained using a biocathode without Au-NPs (51.7%). The Au-NPs significantly reduced the charge transfer resistance and promoted the electrochemical activity of the biocathode. In addition, the Au biocathode showed a specifical enrichment of Dokdonella, Bosea, Achromobacter, Bacteroides and Petrimonas, all of which are associated with electron transfer and contaminant degradation. This study provides a new strategy for enhancing CAP removal in BESs through a simple and eco-friendly electrode design.
Collapse
Affiliation(s)
- Hengduo Xu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Tang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoran Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjing Wang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
30
|
Jannath KA, Akhtar MH, Gurudatt NG, Park DS, Kim KB, Shim YB. Catalytic SrMoO 4 nanoparticles and conducting polymer composite sensor for monitoring of K +-induced dopamine release from neuronal cells. J Mater Chem B 2022; 10:728-736. [PMID: 35019925 DOI: 10.1039/d1tb02295d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Octahedral SrMoO4 nanoparticles (NPs) with a high degree of crystallinity and controlled size (250-350 nm) were synthesized for the first time by employing a facile hydrothermal method. The prepared NPs were composited with a carboxyl group bearing conducting polymer (2,2:5,2-terthiophene-3-(p-benzoic acid, TBA)) to attain a stable sensor probe (pTBA/SrMoO4) which was analyzed using various surface analysis methods. The catalytic performance of the composite electrode was explored as an oxidation catalyst for biological molecules through anchoring on the conducting polymer layer, which functioned as a matrix to enhance the stability and selectivity of the sensor probe. The pTBA/SrMoO4 coated on glassy carbon displayed excellent electrocatalytic performance for the oxidation of some biologically important molecules, including dopamine (DA) in neuronal cells. The sensor immobilized with the catalyst showed an excellent response for DA with a dynamic range between 0.2 and 500 μM and a detection limit of 5 nM. The proposed sensor demonstrates the detection of trace DA released from PC12 cells under K+ stimulation, followed by inhibition of the release of exogenic DA by a Ca2+ channel blocker (nifedipine). The developed method provides an interesting way to monitor the effect of extracellular substances on living cells and the drug potency test.
Collapse
Affiliation(s)
- Khatun A Jannath
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Mahmood Hassan Akhtar
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea.,Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| | - N G Gurudatt
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea.,Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| | - Deog-Su Park
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea.
| | - Yoon-Bo Shim
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea.,Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
31
|
Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J Colloid Interface Sci 2022; 613:1-14. [PMID: 35030412 DOI: 10.1016/j.jcis.2022.01.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
In this study, we firstly introduce an ultra-high sensitive V3.6Mo2.4O16-chitosan (MV-CHT) nanocomposite for electrochemical hydroxychloroquine sulfate (HCQ) monitoring toward paracetamol (PCM) and pantoprazole (PPZ) in environmental and clinical diagnostics. The single-phase MV nanostructures are prepared via the sol-gel pechini route, followed by engineering maleic acid as a structure-directing agent. The stabilization of the MV electro-catalysts is adopted by varying critical factors such as calcination temperature, different chelating ligands, chelating molality and cross-linker concentration. The structural and morphological characterizations, namely, ordered active sites, structural integrity, porous network and dispersibility on the cationic polymer are confirmed by physicochemical analyses. Also, analytical nature of the MV-CHT modified carbon paste electrode (MV-CHT/CPE) is constructed via electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. As a result, the nano-MV-CHT/CPE platforms with 10% of polymeric matrixes delivered the boosted analytical performance in terms of linear ranges (0.0019-194.0 µM), lower detection limit (LOD = 0.224 nM), together with excellent sensitivity and selectivity. The novel combination of MV nanoparticles and CHT provide the fluent channels for rapid charge transport and effective surface area. Such results illustrate the synergistic and interaction capability of MV-CHT-based sensing catalysts with bioactive molecules, which make them as superior drug monitoring devices.
Collapse
|
32
|
Palpandi K, Bhuvaneswari C, Babu SG, Raman N. Rational design of ruddlesden–popper phase Mn 2SnO 4 for ultra-sensitive and highly selective detection of chloramphenicol in real-life samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj00813k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A low-cost and eco-friendly Mn2SnO4/GCE electrochemical sensor was fabricated to detect chloramphenicol present in milk powder and eye drops.
Collapse
Affiliation(s)
- Karuppaiya Palpandi
- Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India
| | - Chellapandi Bhuvaneswari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India
| | - Sundaram Ganesh Babu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India
| |
Collapse
|
33
|
Sudha K, Elangovan A, Senthilkumar S, Jeevika A, Arivazhagan G. Electrocatalytic reduction of nitrofurantoin in biological sample based on assembly of ScMo anchored f-MCNNcs modified GCE. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Bhunia SK, UshaVipinachandran V, Rajendran S. Degradation of emergent pollutants using visible light-triggered photocatalysts. NANOSTRUCTURED MATERIALS FOR VISIBLE LIGHT PHOTOCATALYSIS 2022:433-465. [DOI: 10.1016/b978-0-12-823018-3.00004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
35
|
Regeneration mechanism, modification strategy, and environment application of layered double hydroxides: Insights based on memory effect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
An improving aqueous dispersion of polydopamine functionalized vapor grown carbon fiber for the effective sensing electrode fabrication to chloramphenicol drug detection in food samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Wu Y, Pei F, Feng S, Zhang Y, Wang F, Hao Q, Xia M, Lei W. Simultaneous determination of riboflavin and chloramphenicol by MoS2 nanosheets decorated three-dimensional porous carbon: Reaction mechanism insights by computational simulation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Vinothkumar V, Abinaya M, Chen SM. Ultrasonic assisted preparation of CoMoO4 nanoparticles modified electrochemical sensor for chloramphenicol determination. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Ray SK, Hur J. A review on monoclinic metal molybdate photocatalyst for environmental remediation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Voltammetric determination of linagliptin in bulk and plasma sample using an electrochemical sensor based on L-cysteine modified 1T-MoS2 nanosheets. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Venkatesh K, Rajakumaran R, Chen SM, Karuppiah C, Yang CC, Ramaraj SK, Ali MA, Al-Hemaid FMA, El-Shikh MS, Almunqedhi BMA. A novel hybrid construction of MnMoO 4 nanorods anchored graphene nanosheets; an efficient electrocatalyst for the picomolar detection of ecological pollutant ornidazole in water and urine samples. CHEMOSPHERE 2021; 273:129665. [PMID: 33508687 DOI: 10.1016/j.chemosphere.2021.129665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Nitroimidazole compounds are widely used antibiotics to encounter anaerobic bacterial and parasitic infections. The wide usage of antibiotic drugs became an ecological contaminant which in turn into potential monitoring. In this regards, we have designed and developed a new electrochemical sensing probe to monitor an antiprotozoal drug, ornidazole (ODZ), with the aid of a glassy carbon electrode (GCE) integrated with manganese molybdate nanorods (MnMoO4) decorated graphene nanosheets (GNS) hybrid materials that prepared by feasible probe sonochemical method (parameters: 2-4 W, 5 mV amp, 20 kHz). The electrochemical investigations of the developed probe were performed by using rapid scan electrochemical workstations namely cyclic voltammetry (CV) and amperometric (i-t) techniques. The as-prepared MnMoO4/GNS nanocomposite was characterized and its purity of nanocomposite formation was confirmed by various analytical techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. In addition to that, the textural morphology of the MnMoO4/GNS nanocomposite was examined with the aid of field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The MnMoO4/GNS nanocomposite rotating disk glassy carbon electrode (RDGCE) plays a crucial role in electrochemical detection of ODZ, which results in excellent anti-interference ability, a lower detection limit of 845 pM, massive linear ranges from 10 to 770 nM, and good sensitivity of about 104.62 μA μM-1 cm-2. From the acquired electrochemical studies, we have developed a disposable electrochemical sensor probe using a low-cost screen-printed carbon electrode (SPCE) with MnMoO4/GNS nanocomposite. The MnMoO4/GNS/SPCE are capably employed in real-time sensing of ODZ in water and urine samples. These electrochemical studies revealed the integral new vision on the electrocatalytic performance of the modified SPCE and also shown excellent amplification results in ultra-trace levels.
Collapse
Affiliation(s)
- Krishnan Venkatesh
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Chelladurai Karuppiah
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Chun-Chen Yang
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India.
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Suliman El-Shikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - B M A Almunqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
42
|
Emerging Hybrid Nanocomposite Photocatalysts for the Degradation of Antibiotics: Insights into Their Designs and Mechanisms. NANOMATERIALS 2021; 11:nano11030572. [PMID: 33668837 PMCID: PMC7996256 DOI: 10.3390/nano11030572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 01/13/2023]
Abstract
The raising occurrence of antibiotics in the global water bodies has received the emerging concern due to their potential threats of generating the antibiotic-resistive and genotoxic effects into humans and aquatic species. In this direction, the solar energy assisted photocatalytic technique offers a promising solution to address such emerging concern and paves ways for the complete degradation of antibiotics with the generation of less or non-toxic by-products. Particularly, the designing of hybrid photocatalyticcomposite materials has been found to show higher antibiotics degradation efficiencies. As the hybrid photocatalysts are found as the systems with ideal characteristic properties such as superior structural, surface and interfacial properties, they offer enhanced photoabsorbance, charge-separation, -transfer, redox properties, photostability and easy recovery. In this context, this review study presents an overview on the recent developments in the designing of various hybrid photocatalytic systems and their efficiency towards the degradation of various emerging antibiotic pharmaceutical contaminants in water environments.
Collapse
|
43
|
Activation of peroxymonosulfate by CoFeNi layered double hydroxide/graphene oxide (LDH/GO) for the degradation of gatifloxacin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Nataraj N, Krishnan SK, Chen TW, Chen SM, Lou BS. Ni-Doped ZrO2 nanoparticles decorated MW-CNT nanocomposite for the highly sensitive electrochemical detection of 5-amino salicylic acid. Analyst 2021; 146:664-673. [DOI: 10.1039/d0an01507e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ni-ZrO2/MWCNT/GCE for highly sensitive electrochemical detection of 5-ASA in biofluids.
Collapse
Affiliation(s)
- Nandini Nataraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
- Research and Development Center for Smart Textile Technology
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Bih-Show Lou
- Chemistry Division
- Center for General Education
- Chang Gung University
- Taoyuan 333
- Taiwan
| |
Collapse
|
45
|
Liu X, Jiang Y, Luo J, Guo X, Ying Y, Wen Y, Yang H, Wu Y. A SnO 2/Bi 2S 3-based photoelectrochemical aptasensor for sensitive detection of tobramycin in milk. Food Chem 2020; 344:128716. [PMID: 33267988 DOI: 10.1016/j.foodchem.2020.128716] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Abuse of tobramycin (TOB) causes a series of diseases. Therefore, the development of rapid and sensitive method for analyzing TOB in food products is necessary. In this work, aptamer modified SnO2/Bi2S3-based photoelectrochemical (PEC) sensor was developed for the determination of TOB in milk. Under optimal condition, a wide linear response for TOB from 5 to 50 nmol/L with a limit of detection of 4.28 nmol/L is reached. The possible detection mechanism is that TOB molecules are specifically captured by aptamer, increasing electron transfer resistance and declining the photocurrent. Thanks to the favorably matched energy level of SnO2, and Bi2S3, the PEC aptasensor exhibits high sensitivity, and with the aid of oxalate, the sensitivity of the sensor is further improved. Importantly, the stability of the PEC aptasensor is also satisfactory due to the calcination of SnO2/Bi2S3 at 450 °C.
Collapse
Affiliation(s)
- Xiao Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jing Luo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ye Ying
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Yiping Wu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
46
|
Vilian ATE, Oh SY, Rethinasabapathy M, Umapathi R, Hwang SK, Oh CW, Park B, Huh YS, Han YK. Improved conductivity of flower-like MnWO 4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122868. [PMID: 32531674 DOI: 10.1016/j.jhazmat.2020.122868] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Environmental hazards caused by chloramphenicol has attained special attention. Fast, accurate and reliable detection of chloramphenicol in foodstuffs and water samples is of utmost importance. Herein, we developed a g-C3N4/MnWO4 composite for the selective and sensitive detection of chloramphenicol. Successful fabrication of g-C3N4/MnWO4 composite was verified by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD) and x-ray photo electron spectroscopy (XPS) techniques. Electrochemical characteristics were evaluated by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The g-C3N4/MnWO4 modified glassy carbon electrode has shown the highest electrocatalytic activity towards chloramphenicol with a decreased reduction potential of -0.547 V and increased cathodic peak current. The developed sensor has shown excellent performance for the detection of chloramphenicol with a sensitivity of 0.9986 μA nM-1 cm-2 and LOD of 1.03 nM in a broad linear range of 4.0-71 nM. In addition, the fabricated sensor has achieved anti-interference ability, good stability, excellent repeatability and remarkable reproducibility for the detection of chloramphenicol. The fabricated sensor applied for the determination of chloramphenicol in milk, human blood serum and sewage samples, in which significant and satisfactory results were achieved.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Seo Young Oh
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | | | - Reddicherla Umapathi
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Seung-Kyu Hwang
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Cheol Woo Oh
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Bumjun Park
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
47
|
|
48
|
Hwa KY, Ganguly A, Tata SKS. Influence of temperature variation on spinel-structure MgFe2O4 anchored on reduced graphene oxide for electrochemical detection of 4-cyanophenol. Mikrochim Acta 2020; 187:633. [DOI: 10.1007/s00604-020-04613-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023]
|
49
|
Jain M, Mudhoo A, Ramasamy DL, Najafi M, Usman M, Zhu R, Kumar G, Shobana S, Garg VK, Sillanpää M. Adsorption, degradation, and mineralization of emerging pollutants (pharmaceuticals and agrochemicals) by nanostructures: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34862-34905. [PMID: 32656757 DOI: 10.1007/s11356-020-09635-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/05/2020] [Indexed: 05/12/2023]
Abstract
This review discusses a fresh pool of research findings reported on the multiple roles played by metal-based, magnetic, graphene-type, chitosan-derived, and sonicated nanoparticles in the treatment of pharmaceutical- and agrochemical-contaminated waters. Some main points from this review are as follows: (i) there is an extensive number of nanoparticles with diverse physicochemical and morphological properties which have been synthesized and then assessed in their respective roles in the degradation and mineralization of many pharmaceuticals and agrochemicals, (ii) the exceptional removal efficiencies of graphene-based nanomaterials for different pharmaceuticals and agrochemicals molecules support arguably well a high potential of these nanomaterials for futuristic applications in remediating water pollution issues, (iii) the need for specific surface modifications and functionalization of parent nanostructures and the design of economically feasible production methods of such tunable nanomaterials tend to hinder their widespread applicability at this stage, (iv) supplementary research is also required to comprehensively elucidate the life cycle ecotoxicity characteristics and behaviors of each type of engineered nanostructures seeded for remediation of pharmaceuticals and agrochemicals in real contaminated media, and last but not the least, (v) real wastewaters are extremely complex in composition due to the mix of inorganic and organic species in different concentrations, and the presence of such mixed species have different radical scavenging effects on the sonocatalytic degradation and mineralization of pharmaceuticals and agrochemicals. Moreover, the formulation of viable full-scale implementation strategies and reactor configurations which can use multifunctional nanostructures for the effective remediation of pharmaceuticals and agrochemicals remains a major area of further research.
Collapse
Affiliation(s)
- Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agriculture & Technology, Banda, Uttar Pradesh, 210001, India
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Mahsa Najafi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, 123, Muscat, Oman
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry & Research Centre, Mohamed Sathak Engineering College, Ramanathapuram, Tamil Nadu, India
| | - Vinod Kumar Garg
- Centre for Environmental Sciences and Technology, Central University of Punjab, Bathinda, 151001, India
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia.
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
50
|
Gholami P, Khataee A, Vahid B, Karimi A, Golizadeh M, Ritala M. Sonophotocatalytic degradation of sulfadiazine by integration of microfibrillated carboxymethyl cellulose with Zn-Cu-Mg mixed metal hydroxide/g-C3N4 composite. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116866] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|