1
|
Lei Z, Chen X, Chen K, Liu P, Ao M, Gan L, Yu L. Exosome-like vesicles encapsulated with specific microRNAs accelerate burn wound healing and ameliorate scarring. J Nanobiotechnology 2025; 23:264. [PMID: 40176075 PMCID: PMC11963272 DOI: 10.1186/s12951-025-03337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/16/2025] [Indexed: 04/04/2025] Open
Abstract
Burn injuries are prevalent, yet effective treatments remain elusive. Exosomes derived from mesenchymal stem cells (MSC-Ex) possess remarkable pro-regenerative properties for wound healing. Despite their potential, the challenge of mass production limits their clinical application. To address this, preparing exosome-like vesicles has become an international trend. In this study, 28 key microRNAs (miRNAs) with significant pro-proliferation, anti-inflammation, and anti-fibrosis functions were screened from MSC-Ex. These miRNAs were encapsulated into liposomes and then hybridized with extracellular vesicles derived from watermelon to create synthetic exosome-like vesicles. The fabricated vesicles exhibited similar particle size and zeta potential to MSC-Ex, demonstrating high serum stability and effectively resisting the degradation of miRNA by RNase. They were efficiently internalized by cells and enabled a high rate of lysosomal escape for miRNAs post cellular uptake, thereby effectively exerting their pro-proliferative, anti-inflammatory, and anti-fibrotic functions. Further experiments demonstrated that these vesicles efficiently accelerated burn wound healing and reduced scarring, with effects comparable to those of natural MSC-Ex. Based on these findings, the exosome-like vesicles fabricated in this study present a promising alternative to MSC-Ex in burn wound treatment.
Collapse
Affiliation(s)
- Zhiyong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Xiaojuan Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Kezhuo Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Pan Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China.
| |
Collapse
|
2
|
Liu Y, Zhang R, Yang Y, Liu X, Jiang Y. Corosolic acid derivative-based lipid nanoparticles for efficient RNA delivery. J Control Release 2025; 378:1-17. [PMID: 39631700 DOI: 10.1016/j.jconrel.2024.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Lipid nanoparticles (LNPs) represent the most widely employed and clinically validated platform for in vivo RNA delivery. However, currently used LNP formulations, which consist of lipids and cholesterol, exhibit limited transfection efficiency and off-target hepatic transfection. These limitations necessitate higher dosage and pose potential safety concerns. In this study, three derivatives of corosolic acid (CA) were synthesized to create a library of cholesterol-free lipid nanoparticles, CAxLNPs. From this library, CAβLNP was identified as the most effective, exhibiting enhanced tumor cell uptake and superior endosomal membrane fusion capabilities compared to cholesterol-containing LNP formulations, leading to optimal endosomal escape and efficient cytoplasmic delivery of mRNA/siRNA. Following intratumoral injection, CAβLNP demonstrated significantly improved retention and penetration within tumor tissues while minimizing undesired hepatic transfection. This LNP formulation offers a safer, more effective carrier for RNA delivery, providing promising potential to expand the applications of RNA therapeutics.
Collapse
Affiliation(s)
- Yunhu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Ruizhe Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Yueying Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Xiao Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Yanyan Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China.
| |
Collapse
|
3
|
de Araujo BR, do Nascimento T, Dos Santos Matos AP, de Souza Belmiro VB, de Souza de Bustamante Monteiro MS, Santos-Oliveira R, Ricci-Junior E. Nanocarriers for siRNA Delivery Aimed at the Treatment of Melanoma: Systematic Review. Curr Drug Deliv 2025; 22:431-449. [PMID: 37170995 DOI: 10.2174/1567201820666230425234700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/13/2023]
Abstract
Melanoma is a malignant skin cancer type with a high lethality rate due to active metastasis. Among the risk factors for its development is exposure to ultraviolet radiation (UV) and phenotypical characteristics such as clear skin and eyes. Given the difficulties of the conventional therapy, the high cost of the treatment and the low bioavailability of drugs, it is important to develop new therapeutic methods to circumvent this situation. Nanosystems such as micelles, liposomes and nanoparticles present advantages when compared to conventional treatments. The objective of this paper is to carry out a literature review based on articles that dealt with the use of siRNA-loaded nanosystems for the treatment of melanoma, with trials carried out in vivo to assess tumor size. The search was conducted in the Web of Science and PubMed databases considering the last 5 years, that is, the period between January 2017 to December 2021. The "SiRNA and Drug Delivery Systems and Melanoma" keywords were used in both databases, and the articles were analyzed using the inclusion and exclusion criteria established for this paper. The results obtained indicated that using siRNA transported via nanosystems was capable of silencing the BRAF tumor genes and of reducing tumor size and weight, not presenting in vitro and/or in vivo toxicity. Such being the case, the development of these systems becomes a non-invasive and promising option for the treatment of melanoma.
Collapse
Affiliation(s)
- Brenda Regina de Araujo
- Galenic Development Laboratory, Faculty of Pharmacy, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatielle do Nascimento
- Galenic Development Laboratory, Faculty of Pharmacy, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Dos Santos Matos
- Galenic Development Laboratory, Faculty of Pharmacy, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Brandao de Souza Belmiro
- Galenic Development Laboratory, Faculty of Pharmacy, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Eduardo Ricci-Junior
- Galenic Development Laboratory, Faculty of Pharmacy, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Shao W, Yang Y, Shen W, Ren L, WenwenWang, Zhu P. Hyaluronic acid-conjugated methotrexate and 5-fluorouracil for targeted drug delivery. Int J Biol Macromol 2024; 273:132671. [PMID: 38823747 DOI: 10.1016/j.ijbiomac.2024.132671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
The delivery of chemotherapeutical drugs via nanomaterials has become a focus of pharmaceutical research over several decades due to improved drug delivery to cancer cells, decreased side effects on normal tissues, and increased therapeutic efficacy. Herein, a novel hyaluronic acid-conjugated methotrexate and 5-fluorouracil nanodrug system has been developed to address the critical limitations associated with the high toxicity and side effects of methotrexate and 5-fluorouracil. Furthermore, this nanodrug system enhances the targeting capacity of drug molecules and facilitates the potential integration of multimodal drug therapies. Concomitantly, the synergistic effects of MTX with 5-fluorouracil have been shown to improve the therapeutic index of MTX while attenuating the associated toxicities of MTX. The structure and micromorphology of the novel nanodrug can be confirmed by 1HNMR, FT-IR, UV-Vis, DLS, TEM, and AFM. Due to the ability of HA to bind to CD44 receptors activated on the surface of cancer cells and its enhanced permeability and retention (EPR) effect, the novel nanodrug we designed and synthesized can effectively target cancer cells. Cell counting Kit-8 (CCK8), flow cytometry, and live-dead staining assays in vitro showed that this nanodrug system had high targeting and antitumor activity against CD44 receptors. By using drugs to act on patient-derived colorectal, liver, and breast cancer organoids, the anticancer effect of the nanodrug was identified and verified. These results showed that the nanodrug system developed in this study may have great potential as a targeted therapy for cancer.
Collapse
Affiliation(s)
- Wanfei Shao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Yanfang Yang
- Guangxi Zhuoqiang Technology Co. LTD, Nanning, Guangxi 530000, China
| | - Weidong Shen
- Department of Gastroenterology, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| | - Lei Ren
- Nanjing University of Chinese Medicine Affiliated Jiangyin Traditional Chinese Medicine Hospital, Jiangyin 214400, Jiangsu, China
| | - WenwenWang
- Nanjing University of Chinese Medicine Affiliated Jiangyin Traditional Chinese Medicine Hospital, Jiangyin 214400, Jiangsu, China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
5
|
Wu J, Zhang X, Yuan H, Wei S, Gu X, Bu Y, He H, Shi Y, Ma M, Chen S, Wang X. Simply and Cheaply Prepared Liposomal Membrane for Nanocarriers: High Encapsulation Efficiency Based on Broad Regulation of Surface Charges and pH-Switchable Performance. Biomacromolecules 2023; 24:5687-5697. [PMID: 37973608 DOI: 10.1021/acs.biomac.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The zeta potential of nanoparticles impacts their distribution and metabolism in the body as well as their interaction with medications of varying charges, hence altering therapeutic efficacy and safety. In this paper, the external charges of liposomes were regulated by utilizing a simple and economical method based on competition for protons of cationic chitosan (CS) and anion hyaluronic acid (HA). The charge regulation of a liposomal membrane is generally accomplished by adjusting the ratio of charged lipids within a liposome (e.g., cationic DOTAP or anionic DOPS), the stability of which was maintained by the coating materials of cationic chitosan (CS) or anion hyaluronic acid (HA). A series of nanoparticles could respond to pH-stimulation with adjustable surface charge. Moreover, the sizes of liposomes coated with CS and HA remain within a narrow range. In vitro cytotoxicity tests revealed that the nanocarriers were safe, and the nanoparticles containing antitumor medicines were efficient in tumor therapy. Considering liposomes with different external surface charges could be aimed at diverse therapy purposes. The strategies for regulating liposomal surface charges with high encapsulation rates and certain release cycles reported here could provide a versatile platform as carriers for the delivery of drugs and other macromolecules into human bodies.
Collapse
Affiliation(s)
- Jiangjie Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xin Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Huili Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaokai Gu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yangfan Bu
- Hangzhou BOSOM New Materials Technology CO., Ltd. Hangzhou 311188, People's Republic of China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
6
|
Alipour M, Sheikhnejad R, Fouani MH, Bardania H, Hosseinkhani S. DNAi-peptide nanohybrid smart particles target BCL-2 oncogene and induce apoptosis in breast cancer cells. Biomed Pharmacother 2023; 166:115299. [PMID: 37573657 DOI: 10.1016/j.biopha.2023.115299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
Genomic DNA sequences provide unique target sites, with high druggability value, for treatment of genetically-linked diseases like cancer. B-cell lymphoma protein-2 (BCL-2) prevents Bcl-2-associated X protein (BAX) and Bcl-2 antagonist killer 1 (BAK) oligomerization, which would otherwise lead to the release of several apoptogenic molecules from the mitochondrion. It is also known that BCL-2 binds to and inactivates BAX and other pro-apoptotic proteins, thereby inhibiting apoptosis. BCL-2 protein family, through its role in regulation of apoptotic pathways, is possibly related to chemo-resistance in almost half of all cancer types including breast cancer. Here for the first time, we have developed a nanohybrid using a peptide-based carrier and a Deoxyribonucleic acid inhibitor (DNAi) against BCL-2 oncogene to induce apoptosis in breast cancer cells. The genetically designed nanocarrier was functionalized with an internalizing RGD (iRGD) targeting motif and successfully produced by recombinant DNA technology. Gel retardation assay demonstrated that the peptide-based carrier binds single-stranded DNAi upon simple mixing. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses further revealed the formation of nanohybrid particles with a size of 30 nm and a slightly positive charge. This hemocompatible nanohybrid efficiently delivered its contents into cancer cells using iRGD targeting moiety. Gene expression analysis demonstrated that the nanohybrids, which contained DNAi against BCL-2 proficiently suppressed the expression of this oncogene in a sequence specific manner. In addition, the nanohybrid, triggered release of cytochrome c (cyt c) and caspase3/7 activation with high efficiency. Although the DNAi and free nanocarrier were separately unable to affect the cell viability, the nanohybrid of 20 nM of DNAi showed outstanding antineoplastic potential, which was adjusted by the ratio of the MiRGD nanocarrier to DNAi. It should be noted that, the designed nanohybrid showed a suitable specificity profile and did not affect the viability of normal cells. The results suggest that this nanohybrid may be useful for robust breast cancer treatment through targeting the BCL-2 oncogene without any side effects.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran.
| | - Reza Sheikhnejad
- Department of Molecular Biology, Tofigh Daru Co. (TODACO), Tehran, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. RESEARCH (WASHINGTON, D.C.) 2023; 6:0148. [PMID: 37250954 PMCID: PMC10208951 DOI: 10.34133/research.0148] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital,
Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|
8
|
Lin M, Qi X. Advances and Challenges of Stimuli-Responsive Nucleic Acids Delivery System in Gene Therapy. Pharmaceutics 2023; 15:pharmaceutics15051450. [PMID: 37242692 DOI: 10.3390/pharmaceutics15051450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Gene therapy has emerged as a powerful tool to treat various diseases, such as cardiovascular diseases, neurological diseases, ocular diseases and cancer diseases. In 2018, the FDA approved Patisiran (the siRNA therapeutic) for treating amyloidosis. Compared with traditional drugs, gene therapy can directly correct the disease-related genes at the genetic level, which guarantees a sustained effect. However, nucleic acids are unstable in circulation and have short half-lives. They cannot pass through biological membranes due to their high molecular weight and massive negative charges. To facilitate the delivery of nucleic acids, it is crucial to develop a suitable delivery strategy. The rapid development of delivery systems has brought light to the gene delivery field, which can overcome multiple extracellular and intracellular barriers that prevent the efficient delivery of nucleic acids. Moreover, the emergence of stimuli-responsive delivery systems has made it possible to control the release of nucleic acids in an intelligent manner and to precisely guide the therapeutic nucleic acids to the target site. Considering the unique properties of stimuli-responsive delivery systems, various stimuli-responsive nanocarriers have been developed. For example, taking advantage of the physiological variations of a tumor (pH, redox and enzymes), various biostimuli- or endogenous stimuli-responsive delivery systems have been fabricated to control the gene delivery processes in an intelligent manner. In addition, other external stimuli, such as light, magnetic fields and ultrasound, have also been employed to construct stimuli-responsive nanocarriers. Nevertheless, most stimuli-responsive delivery systems are in the preclinical stage, and some critical issues remain to be solved for advancing the clinical translation of these nanocarriers, such as the unsatisfactory transfection efficiency, safety issues, complexity of manufacturing and off-target effects. The purpose of this review is to elaborate the principles of stimuli-responsive nanocarriers and to emphasize the most influential advances of stimuli-responsive gene delivery systems. Current challenges of their clinical translation and corresponding solutions will also be highlighted, which will accelerate the translation of stimuli-responsive nanocarriers and advance the development of gene therapy.
Collapse
Affiliation(s)
- Meng Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
9
|
Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, Pagliuca M, Borzacchiello A. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. LAB ON A CHIP 2023; 23:1389-1409. [PMID: 36647782 DOI: 10.1039/d2lc00933a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticle systems are functional carriers that can be used in the cancer therapy field for the delivery of a variety of hydrophobic and/or hydrophilic drugs. Recently, the advent of microfluidic platforms represents an advanced approach to the development of new nanoparticle-based drug delivery systems. Particularly, microfluidics can simplify the design of new nanoparticle-based systems with tunable physicochemical properties such as size, size distribution and morphology, ensuring high batch-to-batch reproducibility and consequently, an enhanced therapeutic effect in vitro and in vivo. In this perspective, we present accurate state-of-the-art microfluidic platforms focusing on the fabrication of polymer-based, lipid-based, lipid/polymer-based, inorganic-based and metal-based nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Antonio Fabozzi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Marco Barretta
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Gennaro Longobardo
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| |
Collapse
|
10
|
Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters. Polymers (Basel) 2023; 15:polym15040966. [PMID: 36850248 PMCID: PMC9967816 DOI: 10.3390/polym15040966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Granular polymer hydrogels based on dynamic covalent bonds are attracting a great deal of interest for the design of injectable biomaterials. Such materials generally exhibit shear-thinning behavior and properties of self-healing/recovery after the extrusion that can be modulated through the interactions between gel microparticles. Herein, bulk macro-hydrogels based on thiolated-hyaluronic acid were produced by disulphide bond formation using oxygen as oxidant at physiological conditions and gelation kinetics were monitored. Three different thiol substitution degrees (SD%: 65%, 30% and 10%) were selected for hydrogel formation and fully characterized as to their stability in physiological medium and morphology. Then, extrusion fragmentation technique was applied to obtain hyaluronic acid microgels with dynamic disulphide bonds that were subsequently sterilized by autoclaving. The resulting granular hyaluronic hydrogels were able to form stable filaments when extruded through a syringe. Rheological characterization and cytotoxicity tests allowed to assess the potential of these materials as injectable biomaterials. The application of extrusion fragmentation for the formation of granular hyaluronic hydrogels and the understanding of the relation between the autoclaving processes and the resulting particle size and rheological properties should expand the development of injectable materials for biomedical applications.
Collapse
Affiliation(s)
- Luis Andrés Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
- Correspondence: (R.H.); (V.S.-M.); Tel.: +34-915-622900 (R.H.); +34-945-561134 (V.S.-M.)
| | - José María Alonso
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Raúl Pérez-González
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Virginia Sáez-Martínez
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
- Correspondence: (R.H.); (V.S.-M.); Tel.: +34-915-622900 (R.H.); +34-945-561134 (V.S.-M.)
| |
Collapse
|
11
|
Liu AA, Wang ZG, Pang DW. Medical Nanomaterials. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Viegas JSR, Bentley MVLB, Vicentini FTMDC. Challenges to perform an efficiently gene therapy adopting non-viral vectors: Melanoma landscape. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
14
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
15
|
Zhang G, Han S, Wang L, Yao Y, Chen K, Chen S. A Ternary Synergistic eNOS Gene Delivery System Based on Calcium Ion and L-Arginine for Accelerating Angiogenesis by Maximizing NO Production. Int J Nanomedicine 2022; 17:1987-2000. [PMID: 35530975 PMCID: PMC9075900 DOI: 10.2147/ijn.s363168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to construct a delivery system based on L-arginine-modified calcium phosphate (CaP) to load eNOS plasmids (peNOS), which could amply nitric oxide (NO) to repair endothelial damage, promote angiogenic activities and alleviate inflammation. Methods pDNA-loaded CaP nanocomplex (CaP/pDNA) were prepared by co-precipitation method, subsequently modified by L-arginine. The gene transfection efficiency, pro-angiogenic and anti-inflammatory ability were investigated in vivo and in vitro. The therapeutic effect on ischemic hindlimb in vivo was assessed. Results L-arginine modification augmented the transfection efficiency of CaP/peNOS to elevate the eNOS expression, and then served as NO substrate catalyzed by eNOS. At the same time, calcium ions produced by degradation of CaP carriers enhanced the activity of eNOS. In vitro experiments, the loading capability and transfection performance of R(L)-CaP were confirmed to be superior to that of CaP. Additionally, HUVECs treated with R(L)-CaP/peNOS showed the strongest NO release, cell migration, tube formation and the lowest inflammatory levels compared to the CaP/peNOS and R(D)-CaP/peNOS groups. We also demonstrated the advantages of R(L)-CaP/peNOS in increasing blood reperfusion in hindlimb ischemia mice by accelerating angiogenesis and reducing inflammation, which can be attributed to the highest eNOS-derived NO production. Conclusion The combination strategy of peNOS transfection, L-arginine supplement and calcium ions addition is a promising therapeutic approach for certain vascular diseases, based on the synergistic NO production.
Collapse
Affiliation(s)
- Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
- Correspondence: Guiming Zhang, Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China, Email
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Lisheng Wang
- Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Kai Chen
- Department of Clinical Research, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
| | - Si Chen
- Department of Anesthesiology, the 991th Hospital of PLA, Xiangyang, 441000, People’s Republic of China
| |
Collapse
|
16
|
Sun HC, Huang J, Fu Y, Hao LL, Liu X, Shi TY. Enhancing Immune Responses to a DNA Vaccine Encoding Toxoplasma gondii GRA7 Using Calcium Phosphate Nanoparticles as an Adjuvant. Front Cell Infect Microbiol 2022; 11:787635. [PMID: 34976863 PMCID: PMC8716823 DOI: 10.3389/fcimb.2021.787635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Toxoplasma gondii infects almost all warm-blooded animals, including humans. DNA vaccines are an effective strategy against T. gondii infection, but these vaccines have often been poorly immunogenic due to the poor distribution of plasmids or degradation by lysosomes. It is necessary to evaluate the antigen delivery system for optimal vaccination strategy. Nanoparticles (NPs) have been shown to modulate and enhance the cellular humoral immune response. Here, we studied the immunological properties of calcium phosphate nanoparticles (CaPNs) as nanoadjuvants to enhance the protective effect of T. gondii dense granule protein (GRA7). BALB/c mice were injected three times and then challenged with T. gondii RH strain tachyzoites. Mice vaccinated with GRA7-pEGFP-C2+nano-adjuvant (CaPNs) showed a strong cellular immune response, as monitored by elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), a higher IgG2a-to-IgG1 ratio, elevated interleukin (IL)-12 and interferon (IFN)-γ production, and low IL-4 levels. We found that a significantly higher level of splenocyte proliferation was induced by GRA7-pEGFP-C2+nano-adjuvant (CaPNs) immunization, and a significantly prolonged survival time and decreased parasite burden were observed in vaccine-immunized mice. These data indicated that CaPN-based immunization with T. gondii GRA7 is a promising approach to improve vaccination.
Collapse
Affiliation(s)
- Hong-Chao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jing Huang
- Department of Animal Epidemic Surveillance, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, China
| | - Yuan Fu
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Li-Li Hao
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xin Liu
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Tuan-Yuan Shi
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
17
|
Medical Nanomaterials. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Redox/pH-Responsive 2-in-1 Chimeric Nanoparticles for the Co-Delivery of Doxorubicin and siRNA. Polymers (Basel) 2021; 13:polym13244362. [PMID: 34960912 PMCID: PMC8703840 DOI: 10.3390/polym13244362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023] Open
Abstract
The co-delivery of chemotherapy drugs and gene-suppressing small interfering RNA (siRNA) show promise for cancer therapy. The key to the clinical realization of this treatment model will be the development of a carrier system enabling the simultaneous delivery (“co-delivery” instead of combinatorial delivery) of chemotherapy and siRNA agents to cancer. In this study, a co-delivery system was developed from two individual components to form one integrated nanovehicle through a redox-sensitive thiol–disulfide bond for the synergistic delivery of chemotherapy and RNA silencing: doxorubicin (Dox)-loaded N,O-carboxymethyl chitosan (NOCC) complex with a thiolated hyaluronic acid (HA-SH) nanocarrier and dopamine (Dopa)-conjugated thiolated hyaluronic acid (SH-HA-Dopa)-coated calcium phosphate (CaP)-siRNA nanocarrier. The 2-in-1 chimeric nanoparticles (NPs) were structurally stable together in the storage environment and in the circulation. This smart system selectively releases Dox and siRNA into the cytosol. Furthermore, equipped with the tumor-targeting component HA, the co-delivery system shows specific targeting and high cellular uptake efficiency by receptor-mediated endocytosis. In summary, these dual-responsive (redox and pH), tumor-targeting smart 2-in-1 chimeric NPs show promise to be employed in functional co-delivery and tumor therapy.
Collapse
|
19
|
Popova EV, Tikhomirova VE, Beznos OV, Chesnokova NB, Grigoriev YV, Klyachko NL, Kost OA. Chitosan-covered calcium phosphate particles as a drug vehicle for delivery to the eye. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102493. [PMID: 34775060 DOI: 10.1016/j.nano.2021.102493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Formulations on the base of an inhibitor of angiotensin-converting enzyme, enalaprilat, were prepared by the inclusion of the drug into calcium phosphate (CaP)-particles in situ, followed by the covering of the particles with 5 kDa chitosan or 72 kDa glycol chitosan and cross-linking with sodium tripolyphosphate. Physicochemical characterization of the resulted hybrid particles was conducted using dynamic light scattering, as well as scanning and transmission electron microscopy. Enalaprilat-containing particles had a mean hydrodynamic diameter 180 nm and 260 nm and ζ-potential +7 mV and +16 mV for 5 kDa and 72 kDa chitosans, respectively. In vivo studies showed that enalaprilat within particles stayed longer in the tear fluid after single instillation and caused a significantly pronounced and prolonged decrease of intraocular pressure in rabbits, especially in the case of CaP-particles, covered by glycol chitosan. Thus, such formulations demonstrate potential as prospective therapeutic agents for the treatment of eye diseases.
Collapse
Affiliation(s)
- Ekaterina V Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Olga V Beznos
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | | | - Yuri V Grigoriev
- Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia L Klyachko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Research Institute "Nanotechnology and Nanomaterials", G.R. Derzhavin Tambov State University, Tambov, Russia
| | - Olga A Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
20
|
Huang J, Zheng C, Xiao H, Huang H, Wang Y, Lin M, Pang J, Wang Y, Yuan Y, Shuai X. A polymer‑calcium phosphate nanocapsule for RNAi-induced oxidative stress and cascaded chemotherapy. J Control Release 2021; 340:259-270. [PMID: 34740724 DOI: 10.1016/j.jconrel.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022]
Abstract
As most of intracellular reactive oxygen species (ROS) is produced in the mitochondria, mitochondrial modulation of cancer cell is a promising strategy for maximizing the in situ-activable combination therapy of oxidative catastrophe and cascaded chemotherapy. Herein, a serum-stable polymer‑calcium phosphate (CaP) hybrid nanocapsule carrying siRNA against ADP-ribosylation factor 6 (Arf6) overexpressed in cancer cells and parent drug camptothecin (CPT), designated as PTkCPT/siRNA, was developed for the RNAi-induced oxidative catastrophe and cascaded chemotherapy. A copolymer of mPEG-P(Asp-co-TkCPT), covalently tethered with chemotherapeutic CPT via a ROS-labile dithioketal (Tk) linker, was synthesized and self-assembled into a PTkCPT micelle as a nanotemplate for the CaP mineralization. The as-prepared PTkCPT/siRNA nanoparticle showed a core-shell-distinct nanocapsule which was consisted of a spherical polymeric core enclosed within a CaP shell capable of releasing siRNA in response to lysosomal acidity. Blocking Arf6 signal pathway of cancer cells led to their mitochondrial aggregation and subsequently induced a burst of ROS for oxidative catastrophe, which further triggered the cascaded CPT chemotherapy via the breakage of ROS-labile dithioketal linker. This strategy of RNAi-induced oxidative catastrophe and cascaded chemotherapy resulted in a significant combination effect on cancer cell killing and tumor growth inhibition in mice with low side effects, and provided a promising paradigm for precise cancer therapy.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Chujie Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Hong Xiao
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
21
|
Della Sala F, Fabozzi A, di Gennaro M, Nuzzo S, Makvandi P, Solimando N, Pagliuca M, Borzacchiello A. Advances in Hyaluronic-Acid-Based (Nano)Devices for Cancer Therapy. Macromol Biosci 2021; 22:e2100304. [PMID: 34657388 DOI: 10.1002/mabi.202100304] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Antonio Fabozzi
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Stefano Nuzzo
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Pooyan Makvandi
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Nicola Solimando
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Maurizio Pagliuca
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
22
|
Sikkema R, Keohan B, Zhitomirsky I. Hyaluronic-Acid-Based Organic-Inorganic Composites for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4982. [PMID: 34501070 PMCID: PMC8434239 DOI: 10.3390/ma14174982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Applications of natural hyaluronic acid (HYH) for the fabrication of organic-inorganic composites for biomedical applications are described. Such composites combine unique functional properties of HYH with functional properties of hydroxyapatite, various bioceramics, bioglass, biocements, metal nanoparticles, and quantum dots. Functional properties of advanced composite gels, scaffold materials, cements, particles, films, and coatings are described. Benefiting from the synergy of properties of HYH and inorganic components, advanced composites provide a platform for the development of new drug delivery materials. Many advanced properties of composites are attributed to the ability of HYH to promote biomineralization. Properties of HYH are a key factor for the development of colloidal and electrochemical methods for the fabrication of films and protective coatings for surface modification of biomedical implants and the development of advanced biosensors. Overcoming limitations of traditional materials, HYH is used as a biocompatible capping, dispersing, and structure-directing agent for the synthesis of functional inorganic materials and composites. Gel-forming properties of HYH enable a facile and straightforward approach to the fabrication of antimicrobial materials in different forms. Of particular interest are applications of HYH for the fabrication of biosensors. This review summarizes manufacturing strategies and mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
Affiliation(s)
| | | | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S4L7, Canada; (R.S.); (B.K.)
| |
Collapse
|
23
|
Voronin DV, Abalymov AA, Svenskaya YI, Lomova MV. Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. Int J Mol Sci 2021; 22:9149. [PMID: 34502059 PMCID: PMC8430748 DOI: 10.3390/ijms22179149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The increased research activity aiming at improved delivery of pharmaceutical molecules indicates the expansion of the field. An efficient therapeutic delivery approach is based on the optimal choice of drug-carrying vehicle, successful targeting, and payload release enabling the site-specific accumulation of the therapeutic molecules. However, designing the formulation endowed with the targeting properties in vitro does not guarantee its selective delivery in vivo. The various biological barriers that the carrier encounters upon intravascular administration should be adequately addressed in its overall design to reduce the off-target effects and unwanted toxicity in vivo and thereby enhance the therapeutic efficacy of the payload. Here, we discuss the main parameters of remote-controlled drug delivery systems: (i) key principles of the carrier selection; (ii) the most significant physiological barriers and limitations associated with the drug delivery; (iii) major concepts for its targeting and cargo release stimulation by external stimuli in vivo. The clinical translation for drug delivery systems is also described along with the main challenges, key parameters, and examples of successfully translated drug delivery platforms. The essential steps on the way from drug delivery system design to clinical trials are summarized, arranged, and discussed.
Collapse
Affiliation(s)
- Denis V. Voronin
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Leninsky Prospekt 65, 119991 Moscow, Russia
| | - Anatolii A. Abalymov
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Yulia I. Svenskaya
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Maria V. Lomova
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| |
Collapse
|
24
|
Zhang M, Jiang Y, Qi K, Song Y, Li L, Zeng J, Wang C, Zhao Z. Precise engineering of acorn-like Janus nanoparticles for cancer theranostics. Acta Biomater 2021; 130:423-434. [PMID: 34087438 DOI: 10.1016/j.actbio.2021.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
The anisotropic Janus nanoparticles (JNPs) provide synergistic effects by concentrating multiple properties on a single carrier. Herein, we reported a novel and simple approach to fabricate acorn-like poly(acrylic acid)-mesoporous calcium phosphate/polydopamine (PAA-mCaP/PDA) JNPs, which were selectively functionalized with methoxy-poly(ethylene glycol)thiol (PEG-SH) on PDA domains to obtain superior stability, while the other mCaP sides served as a storage space and passage for the anti-cancer drug of doxorubicin (DOX). The unique acorn-like PAA-mCaP/PDA-PEG JNPs were utilized as novel theranostic agents for photoacoustic (PA) imaging-guided synergistic cancer chemo-phototherapy. More importantly, this synthetic strategy can be applied to synthesize various mesoporous Janus nanocarriers, paving the way toward designed synthesis of acorn-like JNPs in nanomedicine, biosensing and catalysis. STATEMENT OF SIGNIFICANCE: The distinct acorn-like poly(acrylic acid)-mesoporous calcium phosphate/polydopamine Janus nanoparticles (PAA-mCaP/PDA JNPs) with a spherical-shaped PAA-mCaP core and PDA half-shell were fabricated for the first time. To achieve superior stability, the acorn-like PAA-mCaP/PDA JNPs were selectively functionalized with methoxy-poly(ethylene glycol)thiol (PEG-SH) on PDA domains to obtain acorn-like PAA-mCaP/PDA-PEG JNPs. The resultant acorn-like PAA-mCaP/PDA-PEG JNPs own an excellent biocompatibility, high drug-loading contents, good photothermal conversion efficiency, photoacoustic (PA) imaging capacity and pH/NIR dual-responsive properties, enabling the acorn-like JNPs to be applied for PA imaging-guided synergistic cancer chemo-phototherapy. More importantly, the synthetic approach could be extended to prepare acorn-like mesoporous inorganic substances/PDA JNPs for specific applications.
Collapse
|
25
|
Zhang X, Hong K, Sun Q, Zhu Y, Du J. Bioreducible, arginine-rich polydisulfide-based siRNA nanocomplexes with excellent tumor penetration for efficient gene silencing. Biomater Sci 2021; 9:5275-5292. [PMID: 34180478 DOI: 10.1039/d1bm00643f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) technology has great potential in cancer therapy, e.g., small interfering RNA (siRNA) can be exploited to silence specific oncogenes related to tumor growth and progression. However, it is critical to achieve high transfection efficiency while reducing cytotoxicity. In this paper, we report an siRNA delivery strategy targeting the oncogene KRAS based on arginine-modified poly(disulfide amine)/siRNA nanocomplexes. The poly(disulfide amine) is synthesized via aza-Michael polyaddition followed by the introduction of arginine groups onto its backbone to afford poly((N,N'-bis(acryloyl)cystamine-co-ethylenediamine)-g-Nω-p-tosyl-l-arginine) (PBR) polycations. Thus multiple interactions including electrostatic interaction, hydrogen bonding and a hydrophobic effect are introduced simultaneously between PBR and siRNA or cell membranes to improve transfection efficiency. By optimizing the grafting density of arginine groups, PBR/siRNA nanocomplexes achieve high cellular uptake efficiency, successful endosomal/lysosomal escape, and rapid biodegradation in the presence of high GSH concentration in the cytoplasm, and finally release siRNA to activate the RNAi mechanism. Additionally, compared to commercially available PEI 25K, PBR/siRNA nanocomplexes possess a significantly increased gene silencing effect on human pancreatic cancer cells (PANC-1) with decreased cytotoxicity and enhanced tumor penetration ability in PANC-1 multicellular spheroids in vitro. Overall, with both GSH-responsiveness and excellent tumor penetration, this safe and efficient poly(disulfide amine)-based siRNA delivery system is expected to provide a new strategy for gene therapy of pancreatic cancer and other stromal-rich tumors.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Kai Hong
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qingmei Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
26
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
27
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
28
|
Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge-Conversion Strategies for Nucleic Acid Delivery. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2011103. [PMID: 35832306 PMCID: PMC9275120 DOI: 10.1002/adfm.202011103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 05/05/2023]
Abstract
Nucleic acids are now considered as one of the most potent therapeutic modalities, as their roles go beyond storing genetic information and chemical energy or as signal transducer. Attenuation or expression of desired genes through nucleic acids have profound implications in gene therapy, gene editing and even in vaccine development for immunomodulation. Although nucleic acid therapeutics bring in overwhelming possibilities towards the development of molecular medicines, there are significant loopholes in designing and effective translation of these drugs into the clinic. One of the major pitfalls lies in the traditional design concepts for nucleic acid drug carriers, viz. cationic charge induced cytotoxicity in delivery pathway. Targeting this bottleneck, several pioneering research efforts have been devoted to design innovative carriers through charge-conversion approaches, whereby built-in functionalities convert from cationic to neutral or anionic, or even from anionic to cationic enabling the carrier to overcome several critical barriers for therapeutics delivery, such as serum deactivation, instability in circulation, low transfection and poor endosomal escape. This review will critically analyze various molecular designs of charge-converting nanocarriers in a classified approach for the successful delivery of nucleic acids. Accompanied by the narrative on recent clinical nucleic acid candidates, the review concludes with a discussion on the pitfalls and scope of these interesting approaches.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis 46268, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pintu Kanjilal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
29
|
Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021; 13:854. [PMID: 34201403 PMCID: PMC8227107 DOI: 10.3390/pharmaceutics13060854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Thiomers (or thiolated polymers) have broken through as avant-garde approaches in anticancer therapy. Their distinguished reactivity and properties, closely linked to their final applications, justify the extensive research conducted on their preparation and use as smart drug-delivery systems (DDSs). Multiple studies have demonstrated that thiomer-rich nanoformulations can overcome major drawbacks found when administering diverse active pharmaceutical ingredients (APIs), especially in cancer therapy. This work focuses on providing a complete and concise review of the synthetic tools available to thiolate cationic and anionic polymers, in particular chitosan (CTS) and hyaluronic acid (HA), respectively, drawing attention to the most successful procedures. Their chemical reactivity and most relevant properties regarding their use in anticancer formulations are also discussed. In addition, a variety of NP formation procedures are outlined, as well as their use in cancer therapy, particularly for taxanes and siRNA. It is expected that the current work could clarify the main synthetic strategies available, with their scope and drawbacks, as well as provide some insight into thiomer chemistry. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of cancer.
Collapse
Affiliation(s)
| | - M.-Violante de-Paz
- Departamento Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
30
|
Karlsson J, Tzeng SY, Hemmati S, Luly KM, Choi O, Rui Y, Wilson DR, Kozielski KL, Quiñones-Hinojosa A, Green JJ. Photocrosslinked Bioreducible Polymeric Nanoparticles for Enhanced Systemic siRNA Delivery as Cancer Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009768. [PMID: 34650390 PMCID: PMC8513781 DOI: 10.1002/adfm.202009768] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 05/05/2023]
Abstract
Clinical translation of polymer-based nanocarriers for systemic delivery of RNA has been limited due to poor colloidal stability in the blood stream and intracellular delivery of the RNA to the cytosol. To address these limitations, this study reports a new strategy incorporating photocrosslinking of bioreducible nanoparticles for improved stability extracellularly and rapid release of RNA intracellularly. In this design, the polymeric nanocarriers contain ester bonds for hydrolytic degradation and disulfide bonds for environmentally triggered small interfering RNA (siRNA) release in the cytosol. These photocrosslinked bioreducible nanoparticles (XbNPs) have a shielded surface charge, reduced adsorption of serum proteins, and enable superior siRNA-mediated knockdown in both glioma and melanoma cells in high-serum conditions compared to non-crosslinked formulations. Mechanistically, XbNPs promote cellular uptake and the presence of secondary and tertiary amines enables efficient endosomal escape. Following systemic administration, XbNPs facilitate targeting of cancer cells and tissue-mediated siRNA delivery beyond the liver, unlike conventional nanoparticle-based delivery. These attributes of XbNPs facilitate robust siRNA-mediated knockdown in vivo in melanoma tumors colonized in the lungs following systemic administration. Thus, biodegradable polymeric nanoparticles, via photocrosslinking, demonstrate extended colloidal stability and efficient delivery of RNA therapeutics under physiological conditions, and thereby potentially advance systemic delivery technologies for nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala SE-75121, Sweden
| | - Stephany Y Tzeng
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shayan Hemmati
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathryn M Luly
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Olivia Choi
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yuan Rui
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David R Wilson
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kristen L Kozielski
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | | | - Jordan J Green
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Materials Science and Engineering, Neurosurgery, Oncology, Ophthalmology, and Chemical and Biomolecular Engineering, Sidney Kimmel Comprehensive Cancer Center, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
31
|
Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS NANO 2021; 15:3900-3926. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.
Collapse
Affiliation(s)
- Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Orysia T Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- University of California-Berkeley, Berkeley, California 94720, United States
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Evelyn Ploetz
- Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation for Science, Bilbao 48009, Spain
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
33
|
Zantye P, Shende S, Ramanan SR, Talukdar I, Kowshik M. Design of a Biocompatible Hydroxyapatite-Based Nanovehicle for Efficient Delivery of Small Interference Ribonucleic Acid into Mouse Embryonic Stem Cells. Mol Pharm 2021; 18:796-806. [PMID: 33464088 DOI: 10.1021/acs.molpharmaceut.0c00684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The small interference RNA (siRNA)-assisted RNA interference approach in stem cells for differentiating into cell-specific lineages is gaining importance for its therapeutic potential. An effective gene delivery platform is crucial to achieve this goal. In this context, self-fluorescent, cell-penetrating peptide (CPP)-functionalized hydroxyapatite nanoparticles (R8HNPs) were synthesized by a modified sol gel technique. R8HNPs were crystalline, displayed characteristic bands, and exhibited broad emission spectra from 350 to 750 nm corresponding to green and red fluorescence. The biocompatible R8HNPs displayed robust binding with siRNA and excellent uptake in R1 ESCs. This was attributed to functionalization with CPP. Moreover, the R8HNP-complexed siRNA exhibited excellent serum and room temperature stability. The NPs protected the siRNA from sonication, pH, and temperature-induced stress and efficiently delivered siRNA to trigger 80% silencing of a pluripotency marker gene, Oct4, in R1 ESCs at 48 h. The transient downregulation was also observed at the protein level. Our findings demonstrate R8HNPs as a promising delivery agent for siRNA therapeutics with the potential for lineage-specific differentiation and future applications in regenerative medicine.
Collapse
Affiliation(s)
- Pranjita Zantye
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Soniya Shende
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Sutapa Roy Ramanan
- Department of Chemical Engineering, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Meenal Kowshik
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| |
Collapse
|
34
|
Hyaluronic acid thiol modified injectable hydrogel: Synthesis, characterization, drug release, cellular drug uptake and anticancer activity. Carbohydr Polym 2020; 254:117286. [PMID: 33357859 DOI: 10.1016/j.carbpol.2020.117286] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Dimethyl sulfoxide (DMSO) is an excellent solvent for various types of anticancer drugs. Here, beyond that, it can participate in a disulfide bond crosslink between sulfhydryl (-SH) modified hyaluronic acid (HA-SH) molecules to form the hydrogel. Thus, during the above crosslink process, the dissolved drug in DMSO could be effectively loaded inside the hydrogels' porous structures as an injectable peritumoral implant. The loaded drugs can be sustained released through hydrogel swelling and degradation around the tumor tissue to suppress tumor growth. In this paper, the above hydrogel was used as a peritumoral drug-loaded implant for chemotherapeutics, photosensitizer, and photothermal reagent, respectively, for chemotherapy, photodynamic therapy, and photothermal therapy in cancer treatment. Therefore, this DMSO involved HA-SS-HA (HA, hyaluronic acid; -SS-, disulfide bond) hydrogel fabrication method is simple and widely applicable for drug-loaded peritumoral implant preparation.
Collapse
|
35
|
Sun Y, Liu L, Zhou L, Yu S, Lan Y, Liang Q, Liu J, Cao A, Liu Y. Tumor Microenvironment-Triggered Charge Reversal Polymetformin-Based Nanosystem Co-Delivered Doxorubicin and IL-12 Cytokine Gene for Chemo-Gene Combination Therapy on Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45873-45890. [PMID: 32924511 DOI: 10.1021/acsami.0c14405] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer metastasis is the leading cause of high mortality and disease recurrence in breast cancer. In this study, a novel tumor microenvironment charge reversal polymetformin (PMet)-based nanosystem co-delivering doxorubicin (DOX) and plasmid encoding IL-12 gene (pIL-12) was developed for chemo-gene combination therapy on metastatic breast cancer. Cationic PMet was readily self-assembled into micelles for DOX physical encapsulation and pIL-12 complexation, and a hyaluronidase-sensitive thiolated hyaluronic acid (HA-SH) was then collaboratively assembled to the pIL-12/DOX-PMet micelleplexes, abbreviated as HA/pIL-12/DOX-PMet. DOX/pIL-12 loaded in HA/pIL-12/DOX-PMet micelleplexes presented prolonged circulation in blood, efficient accumulation in tumors, and internalization in tumor cells via CD44 receptor-mediated tumor specific-targeting, and DOX/pIL-12 was co-released in endo/lysosomes tumor microenvironment followed by HAase-triggered HA-SH deshielding from HA/pIL-12/DOX-PMet micelleplexes. Moreover, HA/PMet micelleplexes displayed excellent pIL-12 transfection and IL-12 expression in tumors of 4T1 tumor-bearing mice. Importantly, HA/pIL-12/DOX-PMet micelleplexes synergistically enhanced the NK cells and tumor infiltrated cytotoxic T lymphocytes and modulated the polarization from protumor M2 macrophages to activated antitumor M1 macrophages, with concomitant decreasing of the immunosuppressive regulatory T (Treg) cells, accompanied by an increase in the cytokines expression of IL-12, IFN-γ and TNF-α, consequently showing an improved antitumor and antimetastasis activity in 4T1 breast cancer lung metastasis mice model. In conclusion, the tumor microenvironment charge reversal HA/PMet nanosystem holds great promise for DOX/pIL-12 co-delivery and exploitation in chemo-gene combination therapy on metastatic breast cancer.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Lu Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Shuangyu Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yang Lan
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Aichen Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
36
|
Zhou Z, Wu H, Yang R, Xu A, Zhang Q, Dong J, Qian C, Sun M. GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer. SCIENCE ADVANCES 2020; 6:6/36/eabc4373. [PMID: 32917602 PMCID: PMC7467696 DOI: 10.1126/sciadv.abc4373] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
The high redox level of tumor microenvironment inhibits the oxidation treatment and the immune response. Here, we innovatively develop maleimide liposome (ML) adjuvants to promote immunogenic cell death (ICD) induction and dendritic cells (DCs) maturation by glutathione (GSH) depletion for augmenting the photothermal immunotherapy of breast cancer. The ML effectively depletes the intracellular GSH and up-regulates reactive oxygen species (ROS) in both tumor cells and DCs. In tumor cells, the ROS boosted the ABTS·+ production to activate photothermal-induced ICD. In DCs, it relieved the immunosuppression, promoting DC maturation (57%) and antigen presenting. As a result of the ML assistant, the therapeutic systems improved the infiltration of CD8+ T cells to 53% in tumor tissues, eliciting strong abscopal effect and antimetastasis effect. The MLs were believed to be a superior candidate of adjuvants for enhancing immune response and cancer therapeutic efficacy.
Collapse
Affiliation(s)
- Zhanwei Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hui Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Ruoxi Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Alan Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Qingyan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Jingwen Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.
| |
Collapse
|
37
|
Shetty C, Noronha A, Pontarelli A, Wilds CJ, Oh JK. Dual-Location Dual-Acid/Glutathione-Degradable Cationic Micelleplexes through Hydrophobic Modification for Enhanced Gene Silencing. Mol Pharm 2020; 17:3979-3989. [DOI: 10.1021/acs.molpharmaceut.0c00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Anne Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
38
|
Ramasamy T, Munusamy S, Ruttala HB, Kim JO. Smart Nanocarriers for the Delivery of Nucleic Acid-Based Therapeutics: A Comprehensive Review. Biotechnol J 2020; 16:e1900408. [PMID: 32702191 DOI: 10.1002/biot.201900408] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/11/2020] [Indexed: 12/13/2022]
Abstract
Nucleic acid-based therapies are promising therapeutics for the treatment of several systemic disorders, and they offer an exciting opportunity to address emerging biological challenges. The scope of nucleic acid-based therapeutics in the treatment of multiple disease states including cancers has been widened by recent progress in Ribonucleic acids (RNA) biology. However, cascades of systemic and intracellular barriers, including rapid degradation, renal clearance, and poor cellular uptake, hinder the clinical effectiveness of nucleic acid-based therapies. These barriers can be circumvented by utilizing advanced smart nanocarriers that efficiently deliver and release the encapsulated nucleic acids into the target tissues. This review describes the current status of clinical trials on nucleic acid-based therapeutics and highlights representative examples that provide an overview on the current and emerging trends in nucleic acid-based therapies. A better understanding of the design of advanced nanocarriers is essential to promote the translation of therapeutic nucleic acids into a clinical reality.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, 50311, USA
| | - Hima Bindu Ruttala
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea
| |
Collapse
|
39
|
Abstract
Therapeutic nucleic acids hold great promise for the treatment of genetic diseases, yet the delivery of this highly charged macromolecular drug remains a challenge in the field. Peptides are promising agents to mediate nucleic acid delivery because they can encode a biological function to overcome the trafficking barriers. Electrostatic nanocomplexes of nucleic acid and peptides can achieve effective delivery, but the balance between their stability and biological function must be finely tuned. In this work, we explore two peptide building blocks that have been studied in the literature: targeting ligands and intracellular trafficking peptides. We grafted these peptides on a polyethylene glycol (PEG) backbone with eight sites for substitution to create so-called "peptide spiders". These conjugates achieve stability via the well-known hydrophilic shielding effect of PEG. In addition, the coordination of peptide building blocks into multimers may create new biological properties, such as the well-known phenomena of increased binding avidity with multivalent ligands. In this work, we linked two trafficking peptides to the PEG backbone using either nonreducible or reducible chemistries and investigated the ability of these materials to carry silencing RNAs into mammalian cells. We then investigated these nanomaterials for their pharmacokinetic properties and silencing of undruggable targets in a mouse model of cancer. While reducible linkages were more potent at silencing in vitro, this effect was reversed when applied in the context of living animals. This work offers an insight into peptide-based delivery materials and investigates peptide-polymer linkages.
Collapse
Affiliation(s)
- Ester J Kwon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry Ko
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Broad Institute of Massachusetts of Technology and Harvard, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
40
|
Zhou J, Han Y, Yang Y, Zhang L, Wang H, Shen Y, Lai J, Chen J. Phospholipid-Decorated Glycogen Nanoparticles for Stimuli-Responsive Drug Release and Synergetic Chemophotothermal Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23311-23322. [PMID: 32349481 DOI: 10.1021/acsami.0c02785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dendritic macromolecules are potential candidates for nanomedical application. Herein, glycogen, the natural hyperbranched polysaccharide with favorable biocompatibility, is explored as an effective drug vehicle for treating liver cancer. In this system, glycogen is oxidized and conjugated with cancer drugs through a disulfide link, followed by in situ loading of polypyrrole nanoparticles and then coated with functional phospholipids to form the desired system, Gly-ss-DOX@ppy@Lipid-RGD. The phospholipid layer has good cell affinity and can assist the system to penetrate into cells smoothly. Additionally, combined with the "fusion targeting" of glycogen and the active targeting effect of RGD toward liver cancer cells, Gly-ss-DOX@ppy@Lipid-RGD presents efficient specificity and enrichment of hepatocellular carcinoma. Owing to the glutathione-triggered cleavage of disulfide linkers, Gly-ss-DOX@ppy@Lipid-RGD can controllably release drugs to induce cell nucleus damage. Meanwhile, the polypyrrole nanoparticles can absorb near-infrared light and radiate heat energy within tumors. Besides enhancing drug release, the heat can also provide photothermal treatment for tumors. As proved by in vitro and in vivo experiments, Gly-ss-DOX@ppy@Lipid-RGD is a remarkable candidate for synergistic chemophotothermal therapy with high anticancer therapeutic activity and reduced systematic toxicity, efficiently suppressing tumor growth. All results demonstrate that glycogen nanoparticles are expected to be a new building block for accurate hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yuning Han
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Li Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Hong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yiting Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jiahui Lai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Khalifehzadeh R, Arami H. The CpG molecular structure controls the mineralization of calcium phosphate nanoparticles and their immunostimulation efficacy as vaccine adjuvants. NANOSCALE 2020; 12:9603-9615. [PMID: 32314980 PMCID: PMC7239567 DOI: 10.1039/c9nr09782a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The co-precipitation of calcium phosphate nanoparticles (CaPs) in the presence of nucleotide chains such as polynucleotides (i.e., plasmid DNA and siRNA) and oligonucleotides has been extensively used for pre-clinical gene or drug delivery and immunotherapy studies. However, the exact role of these molecules in mineralization and tuning the physicochemical characteristics of the synthesized CaPs is still not entirely clear. In this study, we evaluated the effects of three different CpG oligodeoxynucleotides (ODN) and two representative nucleic acids (siRNA and DNA), when used as templates for the formation of CaPs. We examined the influence of CpGs with naturally-occurring phosphodiester or modified phosphorothioate backbones on the homogeneous formation of CaPs from a modified simulated body fluid solution. The hydrodynamic size, size polydispersity, morphology and surface charge of the CaPs were used as the most critical checkpoints to unravel the involved mechanisms. Our results show that the characteristics of CaPs are highly dependent on the composition, backbone, sequence and concentrations of the CpGs. The CpG type and concentration control the size distribution of the mineralized CaPs and their immunostimulation performance as verified by the activation of dendritic cells and secretion of the pro-inflammatory interleukin-6 (IL-6) cytokine, type I interferon-α (IFN-α) and co-stimulatory CD80, CD86 and CD40 markers. This study paves the way for better design of more efficient CaPs loaded with different types of CpGs for immunostimulation applications as vaccine adjuvants.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, USA
| | | |
Collapse
|
42
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
43
|
Huang H, Sha K, Veroniaina H, Wu Z, Wu Z, Qi X. Ca 2+ participating self-assembly of an apoferritin nanostructure for nucleic acid drug delivery. NANOSCALE 2020; 12:7347-7357. [PMID: 32206764 DOI: 10.1039/d0nr00547a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the most encountered obstacles for utilizing nano-sized vehicles to implement the in vivo delivery of nucleic acid drugs (NADs) is the possible steric hindrance caused by their intrinsic size and charge. In this work, we added Ca2+ for the pH triggered self-assembly process of H-apoferritin (HFn), to neutralize negative charges and help siRNA condense during complexation and particle formation. As expected, the internalization efficiency of siRNA in HFn particle formation could be enhanced 1.65-fold, compared with that without incorporated Ca2+. Furthermore, the calcification that occurred within the cavity of HFn particles endows them with endosomal escape capability, which could explain their contribution to the demonstrated in vitro and in vivo gene silencing effect achieved by the internalized siRNA. Thus, this Ca2+ participating self-assembly process of a protein nanostructure would lead to advanced internalization efficiency for NAD therapy.
Collapse
Affiliation(s)
- Haiqin Huang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Yan Y, Dong Y, Yue S, Qiu X, Sun H, Zhong Z. Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46548-46557. [PMID: 31763810 DOI: 10.1021/acsami.9b17223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actively targeted nanomedicines have promised to revolutionize cancer treatment; however, their clinical translation has been limited by either low targetability, use of unsafe materials, or tedious fabrication. Here, we developed CD44 and folate receptor (FR) dually targeted nanoparticulate doxorubicin (HA/FA-NP-DOX) based on a direct conjugate of two purely natural ligands, hyaluronic acid and folic acid (FA), for safe, highly specific, and potent treatment of ovarian tumors in vivo. HA/FA-NP-DOX had a small size and high DOX loading, wherein the particle size decreased from 115, 93, to 89 nm with increasing degree of substitution of FA from 6.4, 8.5, to 11.1, while increased from 80, 93, to 103 nm with increasing DOX loading from 15.0, 23.1, to 31.4 wt %. Interestingly, HA/FA-NP-DOX exhibited excellent lyophilization redispersibility and long-term storage stability with negligible drug leakage while it released 91% of DOX in 48 h at pH 5.0. Cellular studies corroborated that HA/FA-NP-DOX possessed high selectivity to both CD44 and FR, resulting in strong killing of CD44- and FR-positive SKOV-3 ovarian cancer cells while low toxicity against CD44- and FR-negative L929 fibroblast cells. In vivo studies revealed a long elimination half-life of 5.6 h, an elevated tumor accumulation of 12.0% ID/g, and an effective inhibition of the SKOV-3 ovarian tumor for HA/FA-NP-DOX, leading to significant survival benefits over free DOX·HCl and phosphate-buffered saline controls. These dually targeted nanomedicines are simple and safe, providing a potentially translatable treatment for CD44- and FR-positive malignancies.
Collapse
Affiliation(s)
- Yu Yan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
45
|
Samanta P, Kapat K, Maiti S, Biswas G, Dhara S, Dhara D. pH-labile and photochemically cross-linkable polymer vesicles from coumarin based random copolymer for cancer therapy. J Colloid Interface Sci 2019; 555:132-144. [DOI: 10.1016/j.jcis.2019.07.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022]
|
46
|
Luo Z, Dai Y, Gao H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B 2019; 9:1099-1112. [PMID: 31867159 PMCID: PMC6900560 DOI: 10.1016/j.apsb.2019.06.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a natural polysaccharide that has gained much attention due to its biocompatibility, enzyme degradation capacity and active tumor targeting capacity. Its receptor, CD44, is overexpressed in many kinds of cancers and is associated with tumor progress, infiltration and metastasis. Therefore, many researchers have developed various HA-based drug delivery systems for CD44-mediated tumor targeting. In this review, we systemically overview the basic theory of HA, its receptor and hyaluronidase, then we categorize the studies in HA-based drug delivery systems according to the functions of HA, including tumor-targeting materials, enzyme-sensitive biodegradable modality, pH-sensitive component, reduction-sensitive component, and the gel backbone. Finally, the perspective is discussed.
Collapse
Affiliation(s)
- Zhijian Luo
- Ultrasound Diagnosis Department of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Chen Z, Krishnamachary B, Pachecho-Torres J, Penet MF, Bhujwalla ZM. Theranostic small interfering RNA nanoparticles in cancer precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1595. [PMID: 31642207 DOI: 10.1002/wnan.1595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
Due to their ability to effectively downregulate the expression of target genes, small interfering RNA (siRNA) have emerged as promising candidates for precision medicine in cancer. Although some siRNA-based treatments have advanced to clinical trials, challenges such as poor stability during circulation, and less than optimal pharmacokinetics and biodistribution of siRNA in vivo present barriers to the systemic delivery of siRNA. In recent years, theranostic nanomedicine integrating siRNA delivery has attracted significant attention for precision medicine. Theranostic nanomedicine takes advantage of the high capacity of nanoplatforms to ferry cargo with imaging and therapeutic capabilities. These theranostic nanoplatforms have the potential to play a major role in gene specific treatments. Here we have reviewed recent advances in the use of theranostic nanoplatforms to deliver siRNA, and discussed the opportunities as well as challenges associated with this exciting technology. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Zhihang Chen
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesus Pachecho-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Huang D, He B, Mi P. Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics. Biomater Sci 2019; 7:3942-3960. [PMID: 31414096 DOI: 10.1039/c9bm00831d] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium phosphate (CaP) was engineered as a drug delivery nanocarrier nearly 50 years ago due to its biocompatibility and biodegradability. In recent years, several approaches have been developed for the preparation of size-controllable, stable and multifunctional CaP nanocarriers, and several targeting moieties have also been decorated on the surface of these nanocarriers for active targeting. The CaP nanocarriers have been utilized for loading probes, nucleic acids, anticancer drugs and photosensitizers for cancer imaging, therapy and theranostics. Herein, we reviewed the recent advances in the preparation strategies of CaP nanocarriers and the applications of these nanocarriers in tumor diagnosis, gene delivery, drug delivery and theranostics and finally provided perspectives.
Collapse
Affiliation(s)
- Dan Huang
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Number 17, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, P.R. China.
| | - Bin He
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Number 17, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, P.R. China.
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Number 17, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
49
|
Zhao X, Xi Y, Zhang Y, Wu Q, Meng R, Zheng B, Rei L. Redox-Sensitive Gelatin/Silica-Aptamer Nanogels for Targeted siRNA Delivery. NANOSCALE RESEARCH LETTERS 2019; 14:273. [PMID: 31414279 PMCID: PMC6692808 DOI: 10.1186/s11671-019-3101-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi) has potential advantages over other gene therapy approaches due to its high specificity and the ability to inhibit target gene expression. However, the stability and tissue-specific delivery of siRNA remain as the biggest obstacles for RNAi therapeutics. Here, we developed such a system by conjugating gelatin-based nanogels with the nucleolin-targeted AS1411 aptamer and deoxynucleotide-substituted siRNA together (Apt-GS/siRNA) via a disulfide linker to achieve transient docking of siRNA. These Apt-GS/siRNA nanogels demonstrated favorable release of siRNA under reducing conditions owing to disulfide cleavage. Furthermore, this smart system could electively release siRNA into the cytosol in nucleolin-positive cells (A549) by a glutathione-triggered disassembly and subsequently efficient RNAi for luciferase. Besides, disulfide-equipped Apt-GS nanogels showed good biocompatibility in vitro. Taken together, this redox-responsive, tumor-targeting smart nanogels display great potential in exploiting functionalized siRNA delivery and tumor therapy.
Collapse
Affiliation(s)
- Xueqin Zhao
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Yinyin Xi
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Yongming Zhang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Qiuyan Wu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Ruiyuan Meng
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Bin Zheng
- Department of Otolaryngology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014 People’s Republic of China
| | - Lei Rei
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
50
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|