1
|
Nozdriukhin D, Lyu S, Bonvin J, Reiss M, Razansky D, Deán-Ben XL. Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo. Adv Healthc Mater 2025; 14:e2404242. [PMID: 39854151 DOI: 10.1002/adhm.202404242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival. However, deep-tissue monitoring of microscopic structures in vivo is limited by the sensitivity and spatiotemporal resolution of current bioimaging techniques. In this study, biocompatible microrobots are synthesized by incorporating indocyanine green and iron oxide nanoparticles onto copper phosphate microflowers using a layer-by-layer approach, enhancing optoacoustic contrast and enabling magnetic navigation. Magnetic control of these particles under optoacoustic guidance is demonstrated in vivo. Furthermore, super-resolution optoacoustic imaging, achieved through individual particle tracking, is shown to enable the characterization of microvascular structures and quantification of blood flow. The combination of the microflowers' high carrying capacity, in vivo actuation, and high-resolution tracking capabilities opens new opportunities for precise microvascular targeting and localized administration of theranostic agents via intravascular routes.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | - Shuxin Lyu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jérôme Bonvin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | - Michael Reiss
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| |
Collapse
|
2
|
Li Y, Wang T, Zhang J, Sukhorukov GB, Zhang L, Xue Y, Shang L. Smart Bactericidal Capsules Based on Cationic Luminescent Nanoclusters for Controllable Treatment of Drug-Resistant Bacterial Infection. Adv Healthc Mater 2024; 13:e2303686. [PMID: 38262003 DOI: 10.1002/adhm.202303686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Effective treatment of drug-resistant bacteria infected wound has been a longstanding challenge for healthcare systems. In particular, the development of novel strategies for controllable delivery and smart release of antimicrobial agents is greatly demanded. Herein, the design of biodegradable microcapsules carrying bactericidal gold nanoclusters (AuNCs) as an attractive platform for the effective treatment of drug-resistant bacteria infective wounds is reported. AuNC capsules are fabricated via the well-controlled layer-by-layer strategy, which possess intrinsic near-infrared fluorescence and good biocompatibility. Importantly, these AuNC capsules exhibit strong, specific antibacterial activity toward both S. aureus and methicillin-resistant S. aureus (MRSA). Further mechanistic studies by fluorescence confocal imaging and inductively coupled plasma mass spectrometry reveal that these AuNC capsules will be degraded in the S. aureus environment rather than E. coli, which then controllably release the loaded cationic AuNCs to exert antibacterial effect. Consequently, these AuNC capsules show remarkable therapeutic effect for the MRSA infected wound on a mouse model, and intrinsic fluorescence property of AuNC capsules enables in situ visualization of wound dressings. This study suggests the great potential of microcapsule-based platform as smart carriers of bactericidal agents for the effective treatment of drug-resistant bacterial infection as well as other therapeutic purposes.
Collapse
Affiliation(s)
- Yixiao Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Tianyi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Jiaxin Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Bolshoi pr.30, Moscow, 143025, Russia
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Abalymov AA, Anisimov RA, Demina PA, Kildisheva VA, Kalinova AE, Serdobintsev AA, Novikova NG, Petrenko DB, Sadovnikov AV, Voronin DV, Lomova MV. Time-Delayed Anticancer Effect of an Extremely Low Frequency Alternating Magnetic Field and Multimodal Protein-Tannin-Mitoxantrone Carriers with Brillouin Microspectroscopy Visualization In Vitro. Biomedicines 2024; 12:443. [PMID: 38398045 PMCID: PMC10887239 DOI: 10.3390/biomedicines12020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of an extremely low frequency alternating magnetic field (ELF AMF) at frequencies of 17, 48, and 95 Hz at 100 mT on free and internalized 4T1 breast cancer cell submicron magnetic mineral carriers with an anticancer drug, mitoxantrone, was shown. The alternating magnetic field (100 mT; 17, 48, 95 Hz; time of treatment-10.5 min with a 30 s delay) does not lead to the significant destruction of carrier shells and release of mitoxantrone or bovine serum albumin from them according to the data of spectrophotometry, or the heating of carriers in the process of exposure to magnetic fields. The most optimal set of factors that would lead to the suppression of proliferation and survival of cells with anticancer drug carriers on the third day (in comparison with the control and first day) is exposure to an alternating magnetic field of 100 mT in a pulsed mode with a frequency of 95 Hz. The presence of magnetic nanocarriers in cell lines was carried out by a direct label-free method, space-resolved Brillouin light scattering (BLS) spectrometry, which was realized for the first time. The analysis of the series of integrated BLS spectra showed an increase in the magnetic phase in cells with a growth in the number of particles per cell (from 10 to 100) after their internalization. The safety of magnetic carriers in the release of their constituent ions has been evaluated using atomic absorption spectrometry.
Collapse
Affiliation(s)
- Anatolii A. Abalymov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Roman A. Anisimov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Polina A. Demina
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
- Institute of Chemistry, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Veronika A. Kildisheva
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexandra E. Kalinova
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexey A. Serdobintsev
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Nadezhda G. Novikova
- Institute of Comprehensive Exploitation, Mineral Resources Russian Academy of Sciences, Moscow 111020, Russia
- The Core Shared Research Facility “Industrial Biotechnologies”, Aleksei Nikolayevich Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Dmitry B. Petrenko
- Geological Institute, Russian Academy of Sciences, Moscow 119017, Russia
- Faculty of Natural Sciences, Department of Theoretical and Applied Chemistry, Federal State University of Education, Mytischi 141014, Russia
| | - Alexandr V. Sadovnikov
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Denis V. Voronin
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Moscow 119991, Russia
| | - Maria V. Lomova
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| |
Collapse
|
4
|
Alvandi M, Shaghaghi Z, Farzipour S, Marzhoseyni Z. Radioprotective Potency of Nanoceria. Curr Radiopharm 2024; 17:138-147. [PMID: 37990425 DOI: 10.2174/0118744710267281231104170435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 11/23/2023]
Abstract
Cancer presents a significant medical challenge that requires effective management. Current cancer treatment options, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy, have limitations in terms of their efficacy and the potential harm they can cause to normal tissues. In response, researchers have been focusing on developing adjuvants that can enhance tumor responses while minimizing damage to healthy tissues. Among the promising options, nanoceria (NC), a type of nanoparticle composed of cerium oxide, has garnered attention for its potential to improve various cancer treatment regimens. Nanoceria has demonstrated its ability to exhibit toxicity towards cancer cells, inhibit invasion, and sensitize cancer cells to both radiation therapy and chemotherapy. The remarkable aspect is that nanoceria show minimal toxicity to normal tissues while protecting against various forms of reactive oxygen species generation. Its capability to enhance the sensitivity of cancer cells to chemotherapy and radiotherapy has also been observed. This paper thoroughly reviews the current literature on nanoceria's applications within different cancer treatment modalities, with a specific focus on radiotherapy. The emphasis is on nanoceria's unique role in enhancing tumor radiosensitization and safeguarding normal tissues from radiation damage.
Collapse
Affiliation(s)
- Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Science, Mazandaran University of Medical Science, Sari, Iran
| | - Zeynab Marzhoseyni
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Wang X, Bai R. Advances in smart delivery of magnetic field-targeted drugs in cardiovascular diseases. Drug Deliv 2023; 30:2256495. [PMID: 37702067 PMCID: PMC10501169 DOI: 10.1080/10717544.2023.2256495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Magnetic Drug Targeting (MDT) is of particular interest to researchers because of its good loading efficiency, targeting accuracy, and versatile use in vivo. Cardiovascular Disease (CVD) is a global chronic disease with a high mortality rate, and the development of more precise and effective treatments is imminent. A growing number of studies have begun to explore the feasibility of MDT in CVD, but an up-to-date systematic summary is still lacking. This review discusses the current research status of MDT from guiding magnetic fields, magnetic nanocarriers, delivery channels, drug release control, and safety assessment. The current application status of MDT in CVD is also critically introduced. On this basis, new insights into the existing problems and future optimization directions of MDT are further highlighted.
Collapse
Affiliation(s)
- Xinyu Wang
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruru Bai
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Nifontova G, Kalenichenko D, Kriukova I, Terryn C, Audonnet S, Karaulov A, Nabiev I, Sukhanova A. Impact of Macrophages on the Interaction of Cetuximab-Functionalized Polyelectrolyte Capsules with EGFR-Expressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917654 DOI: 10.1021/acsami.3c10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polyelectrolyte capsules (PCs) are a promising tool for anticancer drug delivery and tumor targeting. Surface functionalization of PCs with antibodies is widely used for providing their specific interactions with cancer cells. The efficiency of PC-based targeted delivery systems can be affected by the cellular heterogeneity of the tumor, particularly by the presence of tumor-associated macrophages. We used human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells in either monoculture or coculture to analyze the targeting capacity and internalization efficiency of PCs with a mean size of 1.03 ± 0.11 μm. The PCs were functionalized with the monoclonal antibody cetuximab targeting the human epidermal growth factor receptor (EGFR). We have shown that surface functionalization of the PCs with cetuximab ensures a specific interaction with EGFR-expressing cancer cells and promotes capsule internalization. In monoculture, the macrophages derived from human leukemia monocytic cells have been found to internalize both nonfunctionalized PCs and cetuximab-functionalized PCs (Cet-PCs) more intensely compared to epidermoid carcinoma cells. The internalization of Cet-PCs by cancer cells is mediated by lipid rafts of the cell membrane, whereas the PC internalization by macrophages is only slightly influenced by lipid rafts. Experiments with a coculture of human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells have shown that Cet-PCs preferentially interact with cancer cells, which are subsequently attacked by macrophages. These data can be used to further improve the strategy of PC functionalization for targeted delivery, with the cellular heterogeneity of the tumor microenvironment taken into consideration.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Daria Kalenichenko
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Christine Terryn
- Plateau Technique PICT, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Sandra Audonnet
- URCACyt, Flow Cytometry Technical Platform, Université de Reims Champagne-Ardenne, 51096, Reims, France
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| |
Collapse
|
7
|
Liu G, Bao L, Chen C, Xu J, Cui X. The implication of mesenteric functions and the biological effects of nanomaterials on the mesentery. NANOSCALE 2023; 15:12868-12879. [PMID: 37492026 DOI: 10.1039/d3nr02494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A growing number of nanomaterials are being broadly used in food-related fields as well as therapeutics. Oral exposure to these widespread nanomaterials is inevitable, with the intestine being a major target organ. Upon encountering the intestine, these nanoparticles can cross the intestinal barrier, either bypassing cells or via endocytosis pathways to enter the adjacent mesentery. The intricate structure of the mesentery and its entanglement with the abdominal digestive organs determine the final fate of nanomaterials in the human body. Importantly, mesentery-governed dynamic processes determine the distribution and subsequent biological effects of nanomaterials that cross the intestine, thus there is a need to understand how nanomaterials interact with the mesentery. This review presents the recent progress in understanding the mesenteric structure and function and highlights the importance of the mesentery in health and disease, with a focus on providing new insights and research directions around the biological effects of nanomaterials on the mesentery. A thorough comprehension of the interactions between nanomaterials and the mesentery will facilitate the design of safer nanomaterial-containing products and the development of more effective nanomedicines to combat intestinal disorders.
Collapse
Affiliation(s)
- Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
8
|
Won S, An J, Song H, Im S, You G, Lee S, Koo KI, Hwang CH. Transnasal targeted delivery of therapeutics in central nervous system diseases: a narrative review. Front Neurosci 2023; 17:1137096. [PMID: 37292158 PMCID: PMC10246499 DOI: 10.3389/fnins.2023.1137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023] Open
Abstract
Currently, neurointervention, surgery, medication, and central nervous system (CNS) stimulation are the main treatments used in CNS diseases. These approaches are used to overcome the blood brain barrier (BBB), but they have limitations that necessitate the development of targeted delivery methods. Thus, recent research has focused on spatiotemporally direct and indirect targeted delivery methods because they decrease the effect on nontarget cells, thus minimizing side effects and increasing the patient's quality of life. Methods that enable therapeutics to be directly passed through the BBB to facilitate delivery to target cells include the use of nanomedicine (nanoparticles and extracellular vesicles), and magnetic field-mediated delivery. Nanoparticles are divided into organic, inorganic types depending on their outer shell composition. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes. Magnetic field-mediated delivery methods include magnetic field-mediated passive/actively-assisted navigation, magnetotactic bacteria, magnetic resonance navigation, and magnetic nanobots-in developmental chronological order of when they were developed. Indirect methods increase the BBB permeability, allowing therapeutics to reach the CNS, and include chemical delivery and mechanical delivery (focused ultrasound and LASER therapy). Chemical methods (chemical permeation enhancers) include mannitol, a prevalent BBB permeabilizer, and other chemicals-bradykinin and 1-O-pentylglycerol-to resolve the limitations of mannitol. Focused ultrasound is in either high intensity or low intensity. LASER therapies includes three types: laser interstitial therapy, photodynamic therapy, and photobiomodulation therapy. The combination of direct and indirect methods is not as common as their individual use but represents an area for further research in the field. This review aims to analyze the advantages and disadvantages of these methods, describe the combined use of direct and indirect deliveries, and provide the future prospects of each targeted delivery method. We conclude that the most promising method is the nose-to-CNS delivery of hybrid nanomedicine, multiple combination of organic, inorganic nanoparticles and exosomes, via magnetic resonance navigation following preconditioning treatment with photobiomodulation therapy or focused ultrasound in low intensity as a strategy for differentiating this review from others on targeted CNS delivery; however, additional studies are needed to demonstrate the application of this approach in more complex in vivo pathways.
Collapse
Affiliation(s)
- Seoyeon Won
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeon An
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwayoung Song
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Geunho You
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungho Lee
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyo-in Koo
- Major of Biomedical Engineering, Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Gileva A, Trushina D, Yagolovich A, Gasparian M, Kurbanova L, Smirnov I, Burov S, Markvicheva E. Doxorubicin-Loaded Polyelectrolyte Multilayer Capsules Modified with Antitumor DR5-Specific TRAIL Variant for Targeted Drug Delivery to Tumor Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:902. [PMID: 36903780 PMCID: PMC10005140 DOI: 10.3390/nano13050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Recently, biodegradable polyelectrolyte multilayer capsules (PMC) have been proposed for anticancer drug delivery. In many cases, microencapsulation allows to concentrate the substance locally and prolong its flow to the cells. To reduce systemic toxicity when delivering highly toxic drugs, such as doxorubicin (DOX), the development of a combined delivery system is of paramount importance. Many efforts have been made to exploit the DR5-dependent apoptosis induction for cancer treatment. However, despite having a high antitumor efficacy of the targeted tumor-specific DR5-B ligand, a DR5-specific TRAIL variant, its fast elimination from a body limits its potential use in a clinic. A combination of an antitumor effect of the DR5-B protein with DOX loaded in the capsules could allow to design a novel targeted drug delivery system. The aim of the study was to fabricate PMC loaded with a subtoxic concentration of DOX and functionalized with the DR5-B ligand and to evaluate a combined antitumor effect of this targeted drug delivery system in vitro. In this study, the effects of PMC surface modification with the DR5-B ligand on cell uptake both in 2D (monolayer culture) and 3D (tumor spheroids) were studied by confocal microscopy, flow cytometry and fluorimetry. Cytotoxicity of the capsules was evaluated using an MTT test. The capsules loaded with DOX and modified with DR5-B demonstrated synergistically enhanced cytotoxicity in both in vitro models. Thus, the use of the DR5-B-modified capsules loaded with DOX at a subtoxic concentration could provide both targeted drug delivery and a synergistic antitumor effect.
Collapse
Affiliation(s)
- Anastasia Gileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Daria Trushina
- Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Anne Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Marine Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Leyli Kurbanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ivan Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Sergey Burov
- Cytomed JSC, Orlovo-Denisovsky pr. 14, 197375 St. Petersburg, Russia
| | - Elena Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
10
|
Targeted Therapy for Glomerulonephritis Using Arterial Delivery of Encapsulated Etanercept. Int J Mol Sci 2023; 24:ijms24032784. [PMID: 36769101 PMCID: PMC9917155 DOI: 10.3390/ijms24032784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 μg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.
Collapse
|
11
|
Novoselova MV, Shramova EI, Sergeeva OV, Shcherbinina EY, Perevoschikov SV, Melnikov P, Griaznova OY, Sergeev IS, Konovalova EV, Schulga AA, Proshkina GM, Zatsepin TS, Deyev SM, Gorin DA. Polymer/magnetite carriers functionalized by HER2-DARPin: Avoiding lysosomes during internalization and controlled toxicity of doxorubicin by focused ultrasound induced release. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102612. [PMID: 36243307 DOI: 10.1016/j.nano.2022.102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
Nanomedicine has revolutionized the available treatment options during the last decade, but poor selectivity of targeted drug delivery and release is still poses a challenge. In this study, doxorubicin (DOX) and magnetite nanoparticles were encapsulated by freezing-induced loading, coated with polymeric shell bearing two bi-layers of polyarginine/dextran sulphate and finally modified with HER2-specific DARPin proteins. We demonstrated that the enhanced cellular uptake of these nanocarriers predominantly occurs by SKOV-3 (HER2+) cells, in comparison to CHO (HER2-) cells, together with the controlled DOX release using low intensity focused ultrasound (LIFU). In addition, a good ability of DARPin+ capsules to accumulate in the tumor and the possibility of combination therapy with LIFU were demonstrated. A relatively high sensitivity of the obtained nanocarriers to LIFU and their preferential interactions with mitochondria in cancer cells make these carriers promising candidates for cancer treatment, including novel approaches to overcome drug resistance.
Collapse
Affiliation(s)
- M V Novoselova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - O V Sergeeva
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E Y Shcherbinina
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | | | - P Melnikov
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - O Yu Griaznova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - I S Sergeev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - A A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - T S Zatsepin
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - D A Gorin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
12
|
Liu RK, Gu YH, Jia J, Qiao M, Wei Y, Sun Q, Zhao H, Wang JX. Three-Fluid Nozzle Spray Drying Strategy for Efficient Fabrication of Functional Colloidosomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16194-16202. [PMID: 36517019 DOI: 10.1021/acs.langmuir.2c02961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidosomes as Pickering emulsion microcapsules are expected to serve various applications, including encapsulation of drugs and loading of functional materials. Normally, when using colloidosomes for drug encapsulation, the latex particles as shell materials need to be mixed with drugs before the assembly process. However, this procedure may cause aggregation of latex particles, thereby resulting in disordered assembled shells or a low loading efficiency. Herein, we propose a three-fluid nozzle spray drying process to efficiently assemble latex particles of P(styrene (St)-co-butyl acrylate (BA)) into colloidosomes. The three-fluid nozzle spray drying equipment allows for the preparation for drug encapsulation without advance mixing of drug and shell materials. This strategy enables the construction of colloidosomes with uniform and controllable pores and the loading of functional materials. The effects of the compressed air flow rate, inlet temperature, feed rate, and solid content were explored, revealing the formation mechanism of colloidosomes during the spray drying process. Doxycycline hydrochloride (DH) was encapsulated in colloidosomes for controllable release, and the sustained release time is up to 100 h. The release rate can be adjusted by varying the glass transition temperature (Tg) and size of latex particles. Furthermore, Fe3O4 nanoparticle (NP)-loaded colloidosomes were constructed by this strategy. The magnetic response intensity of colloidosomes can be modulated by varying the amount of Fe3O4 NPs. The anticancer drug encapsulation and loading of other functional particles were also explored to expand applications.
Collapse
Affiliation(s)
- Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yu-Hang Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People's Republic of China
| | - Hong Zhao
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| |
Collapse
|
13
|
Sapach AY, Sindeeva OA, Nesterchuk MV, Tsitrina AA, Mayorova OA, Prikhozhdenko ES, Verkhovskii RA, Mikaelyan AS, Kotelevtsev YV, Sukhorukov GB. Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51579-51592. [PMID: 36367877 DOI: 10.1021/acsami.2c12004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 μm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 μg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 μm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.
Collapse
Affiliation(s)
- Anastasiia Yu Sapach
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Sechenov First State Medical University, Moscow 119991, Russia
| | - Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
| | | | - Alexandra A Tsitrina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | - Arsen S Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Siberian State Medical University, Tomsk 634050, Russia
- Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
14
|
Pradakis N, Maniotis N, Samaras T. Computational Study of Magnetic Particle Motion inside the Nasal Cavity under the Impact of an External Magnetic Field for Biomedical Applications. MICROMACHINES 2022; 13:1816. [PMID: 36363837 PMCID: PMC9692509 DOI: 10.3390/mi13111816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The blood−brain barrier is a highly selective semipermeable border that separates blood circulation from the brain and hinders the accumulation of substances in the central nervous system. Hence, a treatment plan aiming to combat neurodegenerative diseases may be restricted. The exploitation of the nose−brain pathway could be a promising bypass method. However, pharmaceutical uptake through the olfactory epithelium is insignificant in terms of treatment, if relying only on fluid dynamic interactions. The main reasons for this are the highly complicated geometry of the nose and the residence time of the substance. The issue can be tackled by using magnetic particles as drug carriers. With the application of an external magnetic field, further control of the particle motion can be achieved, leading to increased uptake. The present work studies this approach computationally by employing magnetite particles with a radius of 7.5 μm while a magnetic field is applied with a permanent neodymium-iron-boron magnet of 9.5×105 A/m magnetization. Through this investigation, the best drug delivery protocol achieved a 2% delivery efficiency. The most significant advantage of this protocol is its straightforward design, which does not require complex equipment, thus rendering the protocol portable and manageable for frequent dosing or at-home administration.
Collapse
Affiliation(s)
- Nikolaos Pradakis
- Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Nikolaos Maniotis
- Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Center of Interdisciplinary Research and Innovation (CIRI), Aristotle University of Thessaloniki, Balkan Center, 570 01 Thermi, Greece
| | - Theodoros Samaras
- Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Center of Interdisciplinary Research and Innovation (CIRI), Aristotle University of Thessaloniki, Balkan Center, 570 01 Thermi, Greece
| |
Collapse
|
15
|
Verkhovskii R, Ermakov A, Grishin O, Makarkin MA, Kozhevnikov I, Makhortov M, Kozlova A, Salem S, Tuchin V, Bratashov D. The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules 2022; 27:6073. [PMID: 36144805 PMCID: PMC9501256 DOI: 10.3390/molecules27186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance. Thus, the capturing ability is limited by the objects' magnetic properties, size, and flow rate. Despite the importance of a thorough investigation of this process to prove the concept of magnetically controlled drug delivery, it has not been sufficiently investigated. Here, we studied the efficiency of polyelectrolyte capsules' capture by the external magnetic field source depending on their size, the magnetic nanoparticle payload, and the suspension's flow rate. Additionally, we estimated the possibility of magnetically trapping cells containing magnetic capsules in flow and evaluated cells' membrane integrity after that. These results are required to prove the possibility of the magnetically controlled delivery of the encapsulated medicine to the affected area with its subsequent retention, as well as the capability to capture magnetically labeled cells in flow.
Collapse
Affiliation(s)
- Roman Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Alexey Ermakov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Oleg Grishin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail A. Makarkin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Ilya Kozhevnikov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail Makhortov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Anastasiia Kozlova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Samia Salem
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Department of Physics, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Valery Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Ave., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
- Bach Institute of Biochemistry, FRC “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 119071 Moscow, Russia
| | - Daniil Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| |
Collapse
|
16
|
Xu L, Chu Z, Zhang J, Cai T, Zhang X, Li Y, Wang H, Shen X, Cai R, Shi H, Zhu C, Pan J, Pan D. Steric Effects in the Deposition Mode and Drug-Delivering Efficiency of Nanocapsule-Based Multilayer Films. ACS OMEGA 2022; 7:30321-30332. [PMID: 36061696 PMCID: PMC9434745 DOI: 10.1021/acsomega.2c03591] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 05/10/2023]
Abstract
Using surface-initiated atom transfer radical polymerization (ATRP), block polymers with a series of quaternization degrees were coated on the surface of silica nanocapsules (SNCs) by the "grafting-from" technique. Molnupiravir, an antiviral medicine urgently approved for the treatment of SARS-CoV-2, was encapsulated in polymer-coated SNCs and further incorporated into well-defined films with polystyrene sulfonate (PSS) homopolymers by layer-by-layer (LBL) self-assembly via electrostatic interactions. We investigated the impact of the quaternization degree of the polymers and steric hindrance of functional groups on the growth mode, swelling/deswelling transition, and drug-delivering efficiency of the obtained LBL films. The SNCs were derived from coronas of parent block polymers of matched molecular weights-poly(N-isopropylacrylamide)-block-poly(N,N-dimethylaminoethyl methacrylate) (PNIPAM-b-PDMAEMA)-by quaternization with methyl sulfate. As revealed by the data results, SNCs with coronas with higher quaternization degrees resulted in a larger layering distance of the film structure because of weaker ionic pairing (due to the presence of a bulky methyl spacer) between SNCs and PSS. Interestingly, when comparing the drug release profile of the encapsulated drugs from SNC-based films, the release rate was slower in the case of capsule coronas with higher quaternization degrees because of the larger diffusion distance of the encapsulated drugs and stronger hydrophobic-hydrophobic interactions between SNCs and drug molecules.
Collapse
Affiliation(s)
- Li Xu
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zihan Chu
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Zhang
- N.O.D
Topia (GuangZhou) Biotechnology Co., Ltd., Guangzhou, Guangdong 510599, China
| | - Tingwei Cai
- Guangdong
Jiabo Pharmaceutical Co., Qingyuan, Guangdong 511517, China
| | - Xingxing Zhang
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yinzhao Li
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hailong Wang
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochen Shen
- China
Tobacco Jiangsu Industrial Co., Ltd., Nanjing, Jiangsu 210023, China
| | - Raymond Cai
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haifeng Shi
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunyin Zhu
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jia Pan
- Novo
Nordisk Research Center—Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Donghui Pan
- Jiangsu
Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| |
Collapse
|
17
|
Zhao Z, Si T, Kozelskaya AI, Akimchenko IO, Tverdokhlebov SI, Rutkowski S, Frueh J. Biodegradable magnesium fuel-based Janus micromotors with surfactant induced motion direction reversal. Colloids Surf B Biointerfaces 2022; 218:112780. [PMID: 35988310 DOI: 10.1016/j.colsurfb.2022.112780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
The speed and motion directionality of bubble-propelled micromotors is dependent on bubble lifetime, bubble formation frequency and bubble stabilization. Absence and presence of bubble stabilizing agents should significantly influence speed and propulsion pattern of a micromotor, especially for fast-diffusing molecules like hydrogen. This study demonstrates a fully biodegradable Janus structured micromotor, propelled by hydrogen bubbles generated by the chemical reaction between hydrochloric acid and magnesium. Six different concentrations of hydrochloric acid and five different concentrations of the surfactant Triton X-100 were tested, which also cover the critical micelle concentration at a pH corresponding to an empty stomach. The Janus micromotor reverses its propulsion direction depending on the availability and concentration of a surfactant. Upon surfactant-free condition, the Janus micromotor is propelled by bubble cavitation, causing the micromotor to be pulled at high speed for short time intervals into the direction of the imploding bubble and thus backwards. In case of available surfactant above the critical micelle concentration, the Janus micromotor is pushed forward by the generated bubbles, which emerge at high frequency and form a bubble trail. The finding of the propulsion direction reversal effect demonstrates the importance to investigate the motion properties of artificial micromotors in a variety of different environments prior to application, especially with surfactants, since biological media often contain large amounts of surface-active components.
Collapse
Affiliation(s)
- Zewei Zhao
- Faculty of Medicine and Health, Ministry of Education, Harbin Institute of Technology, XiDaZhi Street 92, Mingde Building, Harbin 150001, PR China
| | - Tieyan Si
- School of Physics, Yikuang Street 2, 2H Harbin Institute of Technology, Harbin 150080, PR China
| | - Anna I Kozelskaya
- Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.
| | - Igor O Akimchenko
- Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | | | - Sven Rutkowski
- Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.
| | - Johannes Frueh
- Faculty of Medicine and Health, Ministry of Education, Harbin Institute of Technology, XiDaZhi Street 92, Mingde Building, Harbin 150001, PR China; Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.
| |
Collapse
|
18
|
Zyuzin MV, Hartmann R, Timin AS, Carregal-Romero S, Parak WJ, Escudero A. Biodegradable particles for protein delivery: Estimation of the release kinetics inside cells. BIOMATERIALS ADVANCES 2022; 139:212966. [PMID: 35891597 DOI: 10.1016/j.bioadv.2022.212966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
A methodology to quantify the efficiency of the protein loading and in-vitro delivery for biodegradable capsules with different architectures based on polyelectrolytes (dextran sulfate, poly-L-arginine and polyethylenimine) and SiO2 was developed. The capsules were loaded with model proteins such as ovalbumin and green fluorescent protein (GFP), and the protein release profile inside cells (either macrophages or HeLa cells) after endocytosis was analysed. Both, protein loading and release kinetics were evaluated by analysing confocal laser scanning microscopy images using MatLab and CellProfiler software. Our results indicate that silica capsules showed the most efficient release of proteins as cargo molecules within 48 h, as compared to their polymeric counterparts. This developed method for the analysis of the intracellular cargo release kinetics from carrier structures could be used in the future for a better control of drug release profiles.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia.
| | - Raimo Hartmann
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Alexander S Timin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain; CIBER Enfermedades Respiratorias (CIBERES) Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | | | - Alberto Escudero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, E-41012 Seville, Spain; Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla - CSIC, Calle Américo Vespucio 49, E-41092 Seville, Spain.
| |
Collapse
|
19
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
20
|
Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Adv Colloid Interface Sci 2022; 304:102680. [PMID: 35468354 DOI: 10.1016/j.cis.2022.102680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/12/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have attracted a great deal of attention for biomedical applications thanks to their tunable architecture. Compared to alternative methods, in which the precise control over the final properties of the systems is usually limited, the intrinsic versatility of the LbL approach allows the functionalization of all the constituents of the polymeric capsules following relatively simple protocols. In fact, the final properties of the capsules can be adjusted from the inner cavity to the outer layer through the polymeric shell, resulting in therapeutic, diagnostic, or theranostic (i.e., combination of therapeutic and diagnostic) agents that can be adapted to the particular characteristics of the patient and face the challenges encountered in complex pathologies. The biomedical industry demands novel biomaterials capable of targeting several mechanisms and/or cellular pathways simultaneously while being tracked by minimally invasive techniques, thus highlighting the need to shift from monofunctional to multifunctional polymer capsules. In the present review, those strategies that permit the advanced functionalization of polymer capsules are accordingly introduced. Each of the constituents of the capsule (i.e., cavity, multilayer membrane and outer layer) is thoroughly analyzed and a final overview of the combination of all the strategies toward the fabrication of multifunctional capsules is presented. Special emphasis is given to the potential biomedical applications of these multifunctional capsules, including particular examples of the performed in vitro and in vivo validation studies. Finally, the challenges in the fabrication process and the future perspective for their safe translation into the clinic are summarized.
Collapse
|
21
|
Novoselova M, Chernyshev VS, Schulga A, Konovalova EV, Chuprov-Netochin RN, Abakumova TO, German S, Shipunova VO, Mokrousov MD, Prikhozhdenko E, Bratashov DN, Nozdriukhin DV, Bogorodskiy A, Grishin O, Kosolobov SS, Khlebtsov BN, Inozemtseva O, Zatsepin TS, Deyev SM, Gorin DA. Effect of Surface Modification of Multifunctional Nanocomposite Drug Delivery Carriers with DARPin on Their Biodistribution In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2022; 5:2976-2989. [PMID: 35616387 DOI: 10.1021/acsabm.2c00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly. FIL also improved the photoacoustic signal and particle mobility in a magnetic field gradient, a result unachievable by the LBL alone. For targeted delivery of the carriers to cancer cells, the carrier surface was modified with a designed ankyrin repeat protein (DARPin) directed toward the epithelial cell adhesion molecule (EpCAM). Flow cytometry measurements showed that the DARPin-coated capsules specifically interacted with the surface of EpCAM-overexpressing human cancer cells such as MCF7. In vivo and ex vivo biodistribution studies in FvB mice showed that the carrier surface modification with DARPin changed the biodistribution of the capsules toward epithelial cells. In particular, the capsules accumulated substantially in the lungs─a result that can be effectively used in targeted lung cancer therapy. The results of this work may aid in the further development of the "magic bullet" concept and may bring the quality of personalized medicine to another level.
Collapse
Affiliation(s)
- Marina Novoselova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Vasiliy S Chernyshev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Alexey Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elena V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Sergei German
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Institute of Spectroscopy of the Russian Academy of Sciences, Moscow 108840, Russia
| | - Victoria O Shipunova
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Maksim D Mokrousov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | | | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Daniil V Nozdriukhin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Andrey Bogorodskiy
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Oleg Grishin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sergey S Kosolobov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia
| | - Olga Inozemtseva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| |
Collapse
|
22
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
23
|
Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. NANOMATERIALS 2022; 12:nano12111807. [PMID: 35683663 PMCID: PMC9182445 DOI: 10.3390/nano12111807] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Until now, strategies used to treat cancer are imperfect, and this generates the need to search for better and safer solutions. The biggest issue is the lack of selective interaction with neoplastic cells, which is associated with occurrence of side effects and significantly reduces the effectiveness of therapies. The use of nanoparticles in cancer can counteract these problems. One of the most promising nanoparticles is magnetite. Implementation of this nanoparticle can improve various treatment methods such as hyperthermia, targeted drug delivery, cancer genotherapy, and protein therapy. In the first case, its feature makes magnetite useful in magnetic hyperthermia. Interaction of magnetite with the altered magnetic field generates heat. This process results in raised temperature only in a desired part of a patient body. In other therapies, magnetite-based nanoparticles could serve as a carrier for various types of therapeutic load. The magnetic field would direct the drug-related magnetite nanoparticles to the pathological site. Therefore, this material can be used in protein and gene therapy or drug delivery. Since the magnetite nanoparticle can be used in various types of cancer treatment, they are extensively studied. Herein, we summarize the latest finding on the applicability of the magnetite nanoparticles, also addressing the most critical problems faced by smart nanomedicine in oncological therapies.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Szymon Gorgoń
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Radoń
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
24
|
Gusliakova OI, Prikhozhdenko ES, Plastun VO, Mayorova OA, Shushunova NA, Abdurashitov AS, Kulikov OA, Abakumov MA, Gorin DA, Sukhorukov GB, Sindeeva OA. Renal Artery Catheterization for Microcapsules' Targeted Delivery to the Mouse Kidney. Pharmaceutics 2022; 14:1056. [PMID: 35631642 PMCID: PMC9144148 DOI: 10.3390/pharmaceutics14051056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
The problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice. In this study, we compared how capsule size and dosage affect the target kidney blood flow. It has been established that an increase in the diameter of microcapsules by 29% (from 3.1 to 4.0 μm) requires a decrease in their concentration by at least 50% with the same suspension volume. The photoacoustic method, along with laser speckle contrast imaging, was shown to be useful for monitoring blood flow and selecting a safe dose. Capsules contribute to a longer retention of a macromolecular substance in the target kidney compared to its free form due to mechanical retention in capillaries and slow impregnation into surrounding tissues during the first 1-3 h, which was shown by fluorescence tomography and microscopy. At the same time, the ability of capillaries to perform almost complete "self-cleaning" from capsular shells during the first 12 h leads to the preservation of organ tissues in a normal state. The proposed strategy, which combines endovascular surgery and the injection of polymer microcapsules containing the active substance, can be successfully used to treat a wide range of nephropathies.
Collapse
Affiliation(s)
- Olga I. Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Ekaterina S. Prikhozhdenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Valentina O. Plastun
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Oksana A. Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Natalia A. Shushunova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
| | - Oleg A. Kulikov
- Institute of Medicine, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia;
| | - Maxim A. Abakumov
- Department of Medical Nanobiotecnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Str., 117997 Moscow, Russia;
| | - Dmitry A. Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia;
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olga A. Sindeeva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
| |
Collapse
|
25
|
Stepanova M, Dubavik A, Efimova A, Konovalova M, Svirshchevskaya E, Zakharov V, Orlova A. Magneto-Luminescent Nanocomposites Based on Carbon Dots and Ferrite with Potential for Bioapplication. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1396. [PMID: 35564105 PMCID: PMC9103926 DOI: 10.3390/nano12091396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
Multifunctional nanocomposites that combine both magnetic and photoluminescent (PL) properties provide significant advantages for nanomedical applications. In this work, a one-stage synthesis of magneto-luminescent nanocomposites (MLNC) with subsequent stabilization is proposed. Microwave synthesis of magnetic carbon dots (M-CDs) was carried out using precursors of carbon dots and magnetic nanoparticles. The effect of stabilization on the morphological and optical properties of nanocomposites has been evaluated. Both types of nanocomposites demonstrate magnetic and PL properties simultaneously. The resulting MLNCs demonstrated excellent solubility in water, tunable PL with a quantum yield of up to 28%, high photostability, and good cytocompatibility. Meanwhile, confocal fluorescence imaging showed that M-CDs were localized in the cell nuclei. Consequently, the multifunctional nanocomposites M-CDs are promising candidates for bioimaging and therapy.
Collapse
Affiliation(s)
- Mariia Stepanova
- International Laboratory Hybrid Nanostructures for Biomedicine, ITMO University, Saint Petersburg 199034, Russia; (A.D.); (A.E.); (V.Z.); (A.O.)
| | - Aliaksei Dubavik
- International Laboratory Hybrid Nanostructures for Biomedicine, ITMO University, Saint Petersburg 199034, Russia; (A.D.); (A.E.); (V.Z.); (A.O.)
| | - Arina Efimova
- International Laboratory Hybrid Nanostructures for Biomedicine, ITMO University, Saint Petersburg 199034, Russia; (A.D.); (A.E.); (V.Z.); (A.O.)
| | - Mariya Konovalova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia; (M.K.); (E.S.)
| | - Elena Svirshchevskaya
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia; (M.K.); (E.S.)
| | - Viktor Zakharov
- International Laboratory Hybrid Nanostructures for Biomedicine, ITMO University, Saint Petersburg 199034, Russia; (A.D.); (A.E.); (V.Z.); (A.O.)
| | - Anna Orlova
- International Laboratory Hybrid Nanostructures for Biomedicine, ITMO University, Saint Petersburg 199034, Russia; (A.D.); (A.E.); (V.Z.); (A.O.)
| |
Collapse
|
26
|
Burmistrov IA, Veselov MM, Mikheev AV, Borodina TN, Bukreeva TV, Chuev MA, Starchikov SS, Lyubutin IS, Artemov VV, Khmelenin DN, Klyachko NL, Trushina DB. Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2021; 14:65. [PMID: 35056960 PMCID: PMC8777611 DOI: 10.3390/pharmaceutics14010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.
Collapse
Affiliation(s)
- Ivan A. Burmistrov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
| | - Alexander V. Mikheev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N. Borodina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Tatiana V. Bukreeva
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- National Research Centre ‘‘Kurchatov Institute”, 123182 Moscow, Russia
| | - Michael A. Chuev
- Valiev Institute of Physics and Technology of RAS, 117218 Moscow, Russia;
| | - Sergey S. Starchikov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Igor S. Lyubutin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Dmitry N. Khmelenin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Daria B. Trushina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Department of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
27
|
Effect of Size on Magnetic Polyelectrolyte Microcapsules Behavior: Biodistribution, Circulation Time, Interactions with Blood Cells and Immune System. Pharmaceutics 2021; 13:pharmaceutics13122147. [PMID: 34959428 PMCID: PMC8703762 DOI: 10.3390/pharmaceutics13122147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Drug carriers based on polyelectrolyte microcapsules remotely controlled with an external magnetic field are a promising drug delivery system. However, the influence of capsule parameters on microcapsules’ behavior in vivo is still ambiguous and requires additional study. Here, we discuss how the processes occurring in the blood flow influence the circulation time of magnetic polyelectrolyte microcapsules in mouse blood after injection into the blood circulatory system and their interaction with different blood components, such as WBCs and RBCs. The investigation of microcapsules ranging in diameter 1–5.5 μm allowed us to reveal the dynamics of their filtration by vital organs, cytotoxicity, and hemotoxicity, which is dependent on their size, alongside the efficiency of their interaction with the magnetic field. Our results show that small capsules have a long circulation time and do not affect blood cells. In contrast, the injection of large 5.5 μm microcapsules leads to fast filtration from the blood flow, induces the inhibition of macrophage cell line proliferation after 48 h, and causes an increase in hemolysis, depending on the carrier concentration. The obtained results reveal the possible directions of fine-tuning microcapsule parameters, maximizing capsule payload without the side effects for the blood flow or the blood cells.
Collapse
|
28
|
Nanoparticle-Doped Hybrid Polyelectrolyte Microcapsules with Controlled Photoluminescence for Potential Bioimaging Applications. Polymers (Basel) 2021; 13:polym13234076. [PMID: 34883579 PMCID: PMC8658880 DOI: 10.3390/polym13234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Fluorescent imaging is widely used in the diagnosis and tracking of the distribution, interaction, and transformation processes at molecular, cellular, and tissue levels. To be detectable, delivery systems should exhibit a strong and bright fluorescence. Quantum dots (QDs) are highly photostable fluorescent semiconductor nanocrystals with wide absorption spectra and narrow, size-tunable emission spectra, which make them suitable fluorescent nanolabels to be embedded into microparticles used as bioimaging and theranostic agents. The layer-by-layer deposition approach allows the entrapping of QDs, resulting in bright fluorescent microcapsules with tunable surface charge, size, rigidity, and functional properties. Here, we report on the engineering and validation of the structural and photoluminescent characteristics of nanoparticle-doped hybrid microcapsules assembled by the deposition of alternating oppositely charged polyelectrolytes, water-soluble PEGylated core/shell QDs with a cadmium selenide core and a zinc sulfide shell (CdSe/ZnS), and carboxylated magnetic nanoparticles (MNPs) onto calcium carbonate microtemplates. The results demonstrate the efficiency of the layer-by-layer approach to designing QD-, MNP-doped microcapsules with controlled photoluminescence properties, and pave the way for the further development of next-generation bioimaging agents based on hybrid materials for continuous fluorescence imaging.
Collapse
|
29
|
Voronin DV, Abalymov AA, Svenskaya YI, Lomova MV. Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. Int J Mol Sci 2021; 22:9149. [PMID: 34502059 PMCID: PMC8430748 DOI: 10.3390/ijms22179149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The increased research activity aiming at improved delivery of pharmaceutical molecules indicates the expansion of the field. An efficient therapeutic delivery approach is based on the optimal choice of drug-carrying vehicle, successful targeting, and payload release enabling the site-specific accumulation of the therapeutic molecules. However, designing the formulation endowed with the targeting properties in vitro does not guarantee its selective delivery in vivo. The various biological barriers that the carrier encounters upon intravascular administration should be adequately addressed in its overall design to reduce the off-target effects and unwanted toxicity in vivo and thereby enhance the therapeutic efficacy of the payload. Here, we discuss the main parameters of remote-controlled drug delivery systems: (i) key principles of the carrier selection; (ii) the most significant physiological barriers and limitations associated with the drug delivery; (iii) major concepts for its targeting and cargo release stimulation by external stimuli in vivo. The clinical translation for drug delivery systems is also described along with the main challenges, key parameters, and examples of successfully translated drug delivery platforms. The essential steps on the way from drug delivery system design to clinical trials are summarized, arranged, and discussed.
Collapse
Affiliation(s)
- Denis V. Voronin
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Leninsky Prospekt 65, 119991 Moscow, Russia
| | - Anatolii A. Abalymov
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Yulia I. Svenskaya
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Maria V. Lomova
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| |
Collapse
|
30
|
Gerasimova EN, Yaroshenko VV, Talianov PM, Peltek OO, Baranov MA, Kapitanova PV, Zuev DA, Timin AS, Zyuzin MV. Real-Time Temperature Monitoring of Photoinduced Cargo Release inside Living Cells Using Hybrid Capsules Decorated with Gold Nanoparticles and Fluorescent Nanodiamonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36737-36746. [PMID: 34313441 DOI: 10.1021/acsami.1c05252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Real-time temperature monitoring within biological objects is a key fundamental issue for understanding the heating process and performing remote-controlled release of bioactive compounds upon laser irradiation. The lack of accurate thermal control significantly limits the translation of optical laser techniques into nanomedicine. Here, we design and develop hybrid (complex) carriers based on multilayered capsules combined with nanodiamonds (NV centers) as nanothermometers and gold nanoparticles (Au NPs) as nanoheaters to estimate an effective laser-induced temperature rise required for capsule rupture and further release of cargo molecules outside and inside cancerous (B16-F10) cells. We integrate both elements (NV centers and Au NPs) in the capsule structure using two strategies: (i) loading inside the capsule's cavity (CORE) and incorporating them inside the capsule's wall (WALL). Theoretically and experimentally, we show the highest and lowest heat release from capsule samples (CORE or WALL) under laser irradiation depending on the Au NP arrangement within the capsule. Applying NV centers, we measure the local temperature of capsule rupture inside and outside the cells, which is determined to be 128 ± 1.12 °C. Finally, the developed hybrid containers can be used to perform the photoinduced release of cargo molecules with simultaneous real-time temperature monitoring inside the cells.
Collapse
Affiliation(s)
- Elena N Gerasimova
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Vitaly V Yaroshenko
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Pavel M Talianov
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Oleksii O Peltek
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Mikhail A Baranov
- Faculty of Photonics and Optical Information, Center of Information Optical Technologies ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Polina V Kapitanova
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Dmitry A Zuev
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Alexander S Timin
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk 634050, Russian Federation
- R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov University, St. Petersburg 197022, Russian Federation
| | - Mikhail V Zyuzin
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| |
Collapse
|
31
|
Abdurashitov AS, Prikhozhdenko ES, Mayorova OA, Plastun VO, Gusliakova OI, Shushunova NA, Kulikov OA, Tuchin VV, Sukhorukov GB, Sindeeva OA. Optical coherence microangiography of the mouse kidney for diagnosis of circulatory disorders. BIOMEDICAL OPTICS EXPRESS 2021; 12:4467-4477. [PMID: 34457426 PMCID: PMC8367229 DOI: 10.1364/boe.430393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) has become widespread in clinical applications in which precise three-dimensional functional imaging of living organs is required. Nevertheless, the kidney is inaccessible for the high resolution OCT imaging due to a high light attenuation coefficient of skin and soft tissues that significantly limits the penetration depth of the probing laser beam. Here, we introduce a surgical protocol and fixation scheme that enables functional visualization of kidney's peritubular capillaries via OCT microangiography. The model of reversible/irreversible glomerulus embolization using drug microcarriers confirms the ability of OCT to detect circulatory disorders. This approach can be used for choosing optimal carriers, their dosages and diagnosis of other blood flow pathologies.
Collapse
Affiliation(s)
- Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
| | | | - Oksana A Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Valentina O Plastun
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Olga I Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Natalia A Shushunova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Oleg A Kulikov
- Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Russia
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Science, 24 Rabochaya Str., Saratov 410028, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London E1 4NS, United Kingdom
| | - Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| |
Collapse
|
32
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
33
|
Borvinskaya E, Gurkov A, Shchapova E, Mutin A, Timofeyev M. Histopathological analysis of zebrafish after introduction of non-biodegradable polyelectrolyte microcapsules into the circulatory system. PeerJ 2021; 9:e11337. [PMID: 33996284 PMCID: PMC8106396 DOI: 10.7717/peerj.11337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Polyelectrolyte microcapsules are among the most promising carriers of various sensing substances for their application inside the bloodstream of vertebrates. The long-term effects of biodegradable microcapsules in mammals are relatively well studied, but this is not the case for non-biodegradable microcapsules, which may be even more generally applicable for physiological measurements. In the current study, we introduced non-biodegradable polyelectrolyte microcapsules coated with polyethylene glycol (PMs-PEG) into the circulatory system of zebrafish to assess their long-term effects on fish internal organs with histopathologic analysis. Implantation of PMs-PEG was not associated with the formation of microclots or thrombi in thin capillaries; thus, the applied microcapsules had a low aggregation capacity. The progression of the immune response to the implant depended on the time and the abundance of microparticles in the tissues. We showed that inflammation originated from recognition and internalization of PMs-PEG by phagocytes. These microcapsule-filled immune cells have been found to migrate through the intestinal wall into the lumen, demonstrating a possible mechanism for partial microparticle elimination from fish. The observed tissue immune response to PMs-PEG was local, without a systemic effect on the fish morphology. The most pronounced chronic severe inflammatory reaction was observed near the injection site in renal parenchyma and within the abdominal cavity since PMs-PEG were administered with kidney injection. Blood clots and granulomatosis were noted at the injection site but were not found in the kidneys outside the injection site. Single microcapsules brought by blood into distal organs did not have a noticeable effect on the surrounding tissues. The severity of noted pathologies of the gills was insufficient to affect respiration. No statistically significant alterations in hepatic morphology were revealed after PMs-PEG introduction into fish body. Overall, our data demonstrate that despite they are immunogenic, non-biodegradable PMs-PEG have low potential to cause systemic effects if applied in the minimal amount necessary for detection of fluorescent signal from the microcapsules.
Collapse
Affiliation(s)
| | - Anton Gurkov
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Ekaterina Shchapova
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Andrei Mutin
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| |
Collapse
|
34
|
Marin E, Tiwari N, Calderón M, Sarasua JR, Larrañaga A. Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18511-18524. [PMID: 33861060 PMCID: PMC9161222 DOI: 10.1021/acsami.1c01450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have emerged as promising biomedical systems for the release of a wide variety of therapeutic agents, owing to their tunable and controllable structure and the possibility to include several functionalities in the polymeric membrane during the fabrication process. However, the limitation of the capsules with a single functionality to overcome the challenges involved in the treatment of complex pathologies denotes the need to develop multifunctional capsules capable of targeting several mediators and/or mechanisms. Oxidative stress is caused by the accumulation of reactive oxygen species [e.g., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-)] in the cellular microenvironment and is a key modulator in the pathology of a broad range of inflammatory diseases. The disease microenvironment is also characterized by the presence of proinflammatory cytokines, increased levels of matrix metalloproteinases, and acidic pH, all of which could be exploited to trigger the release of therapeutic agents. In the present work, multifunctional capsules were fabricated via the LbL approach. Capsules were loaded with an antioxidant enzyme (catalase) and functionalized with a model drug (doxorubicin), which was conjugated to an amine-containing dendritic polyglycerol through a pH-responsive linker. These capsules efficiently scavenge H2O2 from solution, protecting cells from oxidative stress, and release the model drug in acidic microenvironments. Accordingly, in this work, a polymeric microplatform is presented as an unexplored combinatorial approach applicable for multiple targets of inflammatory diseases, in order to perform controlled spatiotemporal enzymatic reactions and drug release in response to biologically relevant stimuli.
Collapse
Affiliation(s)
- Edurne Marin
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Neha Tiwari
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jose-Ramon Sarasua
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
35
|
Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13:570. [PMID: 33920503 PMCID: PMC8072651 DOI: 10.3390/pharmaceutics13040570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations.
Collapse
Affiliation(s)
- Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Jordan M. Hagood
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Collin N. Britten
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Brandon S. Abbott
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Catherine A. Vopat
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
| | - Eian G. Patterson
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Ajay Jain
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Keisha B. Walters
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
36
|
Svenskaya Y, Garello F, Lengert E, Kozlova A, Verkhovskii R, Bitonto V, Ruggiero MR, German S, Gorin D, Terreno E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021; 5:362-377. [PMID: 33850694 PMCID: PMC8040826 DOI: 10.7150/ntno.59458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Francesca Garello
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Ekaterina Lengert
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Valeria Bitonto
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sergey German
- Laboratory of Optics and Spectroscopy of Nanoobjects, Institute of Spectroscopy of the RAS, Troitsk 108840, Russia.,Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
37
|
Nozdriukhin D, Besedina N, Chernyshev V, Efimova O, Rudakovskaya P, Novoselova M, Bratashov D, Chuprov-Netochin R, Kamyshinsky R, Vasiliev A, Chermoshentsev D, Dyakov SA, Zharov V, Gippius N, Gorin DA, Yashchenok A. Gold nanoparticle-carbon nanotube multilayers on silica microspheres: Optoacoustic-Raman enhancement and potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111736. [PMID: 33545879 DOI: 10.1016/j.msec.2020.111736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022]
Abstract
There has been growing interest in recent years in developing multifunctional materials for studying the structure interface in biological systems. In this regard, the multimodal systems, which possess activity in the near-infrared (NIR) region, become even more critical for the possibility of improving examined biotissue depth and, eventually, data analysis. Herein, we engineered bi-modal contrast agents by integrating carbon nanotubes (CNT) and gold nanoparticles (AuNP) around silica microspheres using the Layer-by-Layer self-assembly method. The experimental studies revealed that microspheres with CNT sandwiched between AuNP exhibit strong absorption in the visible and NIR regions and high optoacoustic contrast (OA, also called photoacoustics) and Raman scattering when illuminated with 532 nm and 785 nm lasers, respectively. The developed microspheres demonstrated amplification of the signal in the OA flow cytometry at the laser wavelength of 1064 nm. This finding was further validated with ex vivo brain tissue using a portable Raman spectrometer and imaging with the Raster-scanning OA mesoscopy technique. The obtained data suggest that the developed contrast agents can be promising in applications of localization OA tomography (LOT), OA flow cytometry, and multiplex SERS detection.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; Nanobiotech Lab, Alferov University, 194021 St. Petersburg, Russia.
| | | | - Vasiliy Chernyshev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Olga Efimova
- Center for Neuroscience and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Polina Rudakovskaya
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Marina Novoselova
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | | | - Roman Chuprov-Netochin
- MIPT Life Sciences Center, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Roman Kamyshinsky
- National Research Center 'Kurchatov Institute', Akademika Kurchatova pl., 1, 123182, Moscow, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Alexander Vasiliev
- National Research Center 'Kurchatov Institute', Akademika Kurchatova pl., 1, 123182, Moscow, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitry Chermoshentsev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; Phystech School of Fundamental and Applied Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; Quantum Optics Group, Russian Quantum Center, 143025 Moscow, Russia
| | - Sergey A Dyakov
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir Zharov
- University of Arkansas for Medical Sciences, AR 72205, Little Rock, USA
| | - Nikolay Gippius
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexey Yashchenok
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| |
Collapse
|
38
|
Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yee Chu Kwa
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences Faculty of Health and Life Sciences Management and Science University Shah Alam Selangor 40100 Malaysia
| | - Chai Hong Yeong
- School of Medicine Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
- School of Biosciences Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
39
|
Prikhozhdenko ES, Gusliakova OI, Kulikov OA, Mayorova OA, Shushunova NA, Abdurashitov AS, Bratashov DN, Pyataev NA, Tuchin VV, Gorin DA, Sukhorukov GB, Sindeeva OA. Target delivery of drug carriers in mice kidney glomeruli via renal artery. Balance between efficiency and safety. J Control Release 2021; 329:175-190. [PMID: 33276016 DOI: 10.1016/j.jconrel.2020.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Targeting drug delivery systems is crucial to reducing the side effects of therapy. However, many of them are lacking effectiveness for kidney targeting, due to systemic dispersion and accumulation in the lungs and liver after intravenous administration. Renal artery administration of carriers provides their effective local accumulation but may cause irreversible vessel blockage. Therefore, the combination of the correct administration procedure, suitable drug delivery system, selection of effective and safe dosage is the key to sparing local therapy. Here, we propose the 3-μm sized fluorescent capsules based on poly-L-arginine and dextran sulfate for targeting the kidney via a mice renal artery. Hemodynamic study of the target kidney in combination with the histological analysis reveals a safe dose of microcapsules (20 × 106), which has not lead to irreversible pathological changes in blood flow and kidney tissue, and provides retention of 20.5 ± 3% of the introduced capsules in the renal cortex glomeruli. Efficacy of fluorescent dye localization in the target kidney after intra-arterial administration is 9 times higher than in the opposite kidney and after intravenous injection. After 24 h microcapsules are not observed in the target kidney when the safe dose of carriers is being used but a high level of fluorescent signal persists for 48 h indicating that fluorescent cargo accumulation in tissues. Injection of non-safe microcapsule dose leads to carriers staying in glomeruli for at least 48 h which has consequences of blood flow not being restored and tissue damage being observed in histology.
Collapse
Affiliation(s)
| | - Olga I Gusliakova
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Oleg A Kulikov
- Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Russia
| | - Oksana A Mayorova
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
| | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Nikolay A Pyataev
- Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Russia
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia; National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia; School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London E1 4NS, United Kingdom
| | - Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia; Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia.
| |
Collapse
|
40
|
Bondarenko L, Terekhova V, Kahru A, Dzhardimalieva G, Kelbysheva E, Tropskaya N, Kydralieva K. Sample preparation considerations for surface and crystalline properties and ecotoxicity of bare and silica-coated magnetite nanoparticles. RSC Adv 2021; 11:32227-32235. [PMID: 35495499 PMCID: PMC9042031 DOI: 10.1039/d1ra05703k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Magnetite (Fe3O4) nanoparticles (NPs) have widely used in various fields, including in medicine, due to their (super)paramagnetic properties. This requires a thorough evaluation of their possible hazardous effects. However, there is no standard procedure for the preparation of oxidation-prone NPs (such as magnetite) before subjecting them to biological assays. In this study we used Fe3O4 NPs (bare and silica-coated) as test samples to compare different preparation methods (ultrasound, centrifugation and filteration of NPs suspensions) based on X-ray and dynamic light scattering analysis and evaluation of microstructure and surface charge. After oxidation and functionalization, all samples retained their superparamagnetic behaviour. The toxicity of NP suspensions obtained by the methods described for Paramecium caudatum ciliates and Sinapis alba plants was evaluated. The charge and surface reactivity of magnetite nanoparticles can be affected by the different separation methods leading to their toxicity changes.![]()
Collapse
Affiliation(s)
- Lyubov Bondarenko
- Moscow Aviation Institute (National Research University), Moscow, Russia
| | - Vera Terekhova
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anne Kahru
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Gulzhian Dzhardimalieva
- Moscow Aviation Institute (National Research University), Moscow, Russia
- Institute of Problems of Chemical Physics, Chernogolovka, Moscow Region, Russia
| | - Elena Kelbysheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Natalya Tropskaya
- Moscow Aviation Institute (National Research University), Moscow, Russia
- Sklifosovsky Institute for Emergency Medicine, Moscow, Russia
| | - Kamila Kydralieva
- Moscow Aviation Institute (National Research University), Moscow, Russia
| |
Collapse
|
41
|
Verkhovskii RA, Kozlova AA, Sindeeva OA, Kozhevnikov IO, Prikhozhdenko ES, Mayorova OA, Grishin OV, Makarkin MA, Ermakov AV, Abdurashitov AS, Tuchin VV, Bratashov DN. Lightsheet-based flow cytometer for whole blood with the ability for the magnetic retrieval of objects from the blood flow. BIOMEDICAL OPTICS EXPRESS 2021; 12:380-394. [PMID: 33659080 PMCID: PMC7899519 DOI: 10.1364/boe.413845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 05/04/2023]
Abstract
Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.
Collapse
Affiliation(s)
| | | | - Olga A. Sindeeva
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- Skolkovo Innovation Center, 3 Nobel str., Moscow 121205, Russia
| | | | | | - Oksana A. Mayorova
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Oleg V. Grishin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Alexey V. Ermakov
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Valery V. Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- National Research Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- Institute of Precision Mechanics and Control of the RAS, 24 Rabochaya str., Saratov 410028, Russia
| | | |
Collapse
|
42
|
Hwang CH. Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review. Int J Nanomedicine 2020; 15:9683-9701. [PMID: 33311979 PMCID: PMC7726550 DOI: 10.2147/ijn.s287456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
Although the incidence of central nervous system injuries has continued to rise, no promising treatments have been elucidated. Erythropoietin plays an important role in neuroprotection and neuroregeneration as well as in erythropoiesis. Moreover, the current worldwide use of erythropoietin in the treatment of hematologic diseases allows for its ready application in patients with central nervous system injuries. However, erythropoietin has a very short therapeutic time window (within 6–8 hours) after injury, and it has both hematopoietic and nonhematopoietic receptors, which exhibit heterogenic and phylogenetic differences. These differences lead to limited amounts of erythropoietin binding to in situ erythropoietin receptors. The lack of high-quality evidence for clinical use and the promising results of in vitro/in vivo models necessitate fast targeted delivery agents such as nanocarriers. Among current nanocarriers, noncovalent polymer-entrapping or polymer-adsorbing erythropoietin obtained by nanospray drying may be the most promising. With the incorporation of magnetic nanocarriers into an erythropoietin polymer, spatiotemporal external magnetic navigation is another area of great interest for targeted delivery within the therapeutic time window. Intravenous administration is the most readily used route. Manufactured erythropoietin nanocarriers should be clearly characterized using bioengineering analyses of the in vivo size distribution and the quality of entrapment or adsorption. Further preclinical trials are required to increase the therapeutic bioavailability (in vivo biological identity alteration, passage through the lung capillaries or the blood brain barrier, and timely degradation followed by removal of the nanocarriers from the body) and decrease the adverse effects (hematological complications, neurotoxicity, and cytotoxicity), especially of the nanocarrier.
Collapse
Affiliation(s)
- Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
43
|
Encapsulation of manganese dioxide nanoparticles into layer-by-layer polymer capsules for the fabrication of antioxidant microreactors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111349. [DOI: 10.1016/j.msec.2020.111349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
|
44
|
Nifontova G, Krivenkov V, Zvaigzne M, Samokhvalov P, Efimov AE, Agapova OI, Agapov II, Korostylev E, Zarubin S, Karaulov A, Nabiev I, Sukhanova A. Controlling Charge Transfer from Quantum Dots to Polyelectrolyte Layers Extends Prospective Applications of Magneto-Optical Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35882-35894. [PMID: 32663390 DOI: 10.1021/acsami.0c08715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The layer-by-layer (LbL) deposition approach allows combined incorporation of fluorescent, magnetic, and plasmonic nanoparticles into the shell of polyelectrolyte microcapsules to obtain stimulus-responsive systems whose imaging and drug release functions can be triggered by external stimuli. The combined use of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) yields magnetic-field-driven imaging tools that can be tracked and imaged even deep in tissue when the appropriate type of QDs and wavelength of their excitation are used. QDs are excellent photonic labels for microcapsule encoding due to their close-to-unity photoluminescence (PL) quantum yields, narrow PL emission bands, and tremendous one- and two-photon extinction coefficients. However, the presence of MNPs and electrically charged polyelectrolyte molecules used for the LbL fabrication of magneto-optical microcapsules provokes alterations of the QD optical properties because of the photoinduced charge and energy transfer resulting in QD photodarkening or photobrightening. These lead to variation of the microcapsule PL signal under illumination, which hampers their tracking and quantitative analysis in cells and tissues. Here, we have studied the effects of the structure and spatial arrangement of the nanoparticles within the microcapsule polyelectrolyte shell, the total shell thickness, and the shell surface charge on their PL properties under continuous illumination. The roles of the charge transfer and its main driving forces in the stability of the microcapsules PL signal have been established, and the design of the microcapsules dually encoded with QDs and MNPs providing the strongest and most stable PL has been determined. Controlling the energy transfer from the QDs and MNPs and the charge transfer from QDs to polyelectrolyte layers in the engineering of magneto-optical microcapsules with a bright and stable PL signal extends their applications to long-lasting quantitative fluorescence imaging.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Victor Krivenkov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Maria Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Anton E Efimov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russian Federation
| | - Olga I Agapova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russian Federation
| | - Igor I Agapov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russian Federation
| | - Evgeny Korostylev
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Sergei Zarubin
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
45
|
Zyuzin MV, Antuganov D, Tarakanchikova YV, Karpov TE, Mashel TV, Gerasimova EN, Peltek OO, Alexandre N, Bruyere S, Kondratenko YA, Muslimov AR, Timin AS. Radiolabeling Strategies of Micron- and Submicron-Sized Core-Shell Carriers for In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31137-31147. [PMID: 32551479 DOI: 10.1021/acsami.0c06996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Core-shell particles made of calcium carbonate and coated with biocompatible polymers using the Layer-by-Layer technique can be considered as a unique drug-delivery platform that enables us to load different therapeutic compounds, exhibits a high biocompatibility, and can integrate several stimuli-responsive mechanisms for drug release. However, before implementation for diagnostic or therapeutic purposes, such core-shell particles require a comprehensive in vivo evaluation in terms of physicochemical and pharmacokinetic properties. Positron emission tomography (PET) is an advanced imaging technique for the evaluation of in vivo biodistribution of drug carriers; nevertheless, an incorporation of positron emitters in these carriers is needed. Here, for the first time, we demonstrate the radiolabeling approaches of calcium carbonate core-shell particles with different sizes (CaCO3 micron-sized core-shell particles (MicCSPs) and CaCO3 submicron-sized core-shell particles (SubCSPs)) to precisely determine their in vivo biodistribution after intravenous administration in rats. For this, several methods of radiolabeling have been developed, where the positron emitter (68Ga) was incorporated into the particle's core (co-precipitation approach) or onto the surface of the shell (either layer coating or adsorption approaches). According to the obtained data, radiochemical bounding and stability of 68Ga strongly depend on the used radiolabeling approach, and the co-precipitation method has shown the best radiochemical stability in human serum (96-98.5% for both types of core-shell particles). Finally, we demonstrate the size-dependent effect of core-shell particles' distribution on the specific organ uptake, using a combination of imaging techniques, PET, and computerized tomography (CT), as well as radiometry of separate organs. Thus, our findings open up new perspectives of CaCO3-radiolabeled core-shell particles for their further implementation into clinical practice.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Dmitrii Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Yana V Tarakanchikova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg 194021, Russian Federation
| | - Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Tatiana V Mashel
- Department of Applied Optics, ITMO University, Grivtsova 14-16, St. Petersburg 190000, Russian Federation
| | - Elena N Gerasimova
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Oleksii O Peltek
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Nominé Alexandre
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
- Universite de Lorraine CNRS, Institut Jean Lamour, F-54000 Nancy, France
| | - Stéphanie Bruyere
- Universite de Lorraine CNRS, Institut Jean Lamour, F-54000 Nancy, France
| | - Yulia A Kondratenko
- Laboratory of Organosilicon Compounds and Materials, Grebenshchikov Institute of Silicate Chemistry RAS, nab. Makarova, 2, St. Petersburg 199034, Russia
| | - Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg 194021, Russian Federation
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
46
|
|
47
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
48
|
Popova NR, Popov AL, Ermakov AM, Reukov VV, Ivanov VK. Ceria-Containing Hybrid Multilayered Microcapsules for Enhanced Cellular Internalisation with High Radioprotection Efficiency. Molecules 2020; 25:E2957. [PMID: 32605031 PMCID: PMC7411955 DOI: 10.3390/molecules25132957] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cerium oxide nanoparticles (nanoceria) are believed to be the most versatile nanozyme, showing great promise for biomedical applications. At the same time, the controlled intracellular delivery of nanoceria remains an unresolved problem. Here, we have demonstrated the radioprotective effect of polyelectrolyte microcapsules modified with cerium oxide nanoparticles, which provide controlled loading and intracellular release. The optimal (both safe and uptake efficient) concentrations of ceria-containing microcapsules for human mesenchymal stem cells range from 1:10 to 1:20 cell-to-capsules ratio. We have revealed the molecular mechanisms of nanoceria radioprotective action on mesenchymal stem cells by assessing the level of intracellular reactive oxygen species (ROS), as well as by a detailed 96-genes expression analysis, featuring genes responsible for oxidative stress, mitochondrial metabolism, apoptosis, inflammation etc. Hybrid ceria-containing microcapsules have been shown to provide an indirect genoprotective effect, reducing the number of cytogenetic damages in irradiated cells. These findings give new insight into cerium oxide nanoparticles' protective action for living beings against ionising radiation.
Collapse
Affiliation(s)
- N. R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - V. V. Reukov
- University of Georgia, 315 Dawson Hall, Athens, GA 30602, USA;
| | - V. K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
49
|
Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs). Comput Biol Med 2020; 120:103741. [DOI: 10.1016/j.compbiomed.2020.103741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023]
|
50
|
Kurochkin MA, Sindeeva OA, Brodovskaya EP, Gai M, Frueh J, Su L, Sapelkin A, Tuchin VV, Sukhorukov GB. Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110664. [DOI: 10.1016/j.msec.2020.110664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/25/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|