1
|
Szostak SM, König N, Willner L, Lund R. Modulating melting points in micellar cores: influence of the corona chain length on the core confinement in binary mixed block copolymer micelles. SOFT MATTER 2025; 21:1895-1906. [PMID: 39937442 DOI: 10.1039/d4sm01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Self-assembly of polymers with crystallizable blocks may lead to micelles with ordered, gel-like or crystalline cores. Here we investigate binary mixtures of n-alkyl-poly(ethylene oxide), Cn-PEOx (n = 28, x = 3-20 kDa) and study their self-assembly to gain insight into the effect of confinement on the core-crystallization and micellar structure. By employing identical core block length but varying corona block lengths, the size of the core can be tuned by variation of the block ratios. The micelles were characterized by small-angle X-ray scattering (SAXS) to gain insight into the overall and internal structure, including aggregation number, core size, and density distribution of the corona. SAXS curves from examined samples showed a characteristic pattern of spherical core-shell micelles but with broader corona distribution in the binary mixtures as compared to the neat samples. The structural parameters of the micelles were extracted from the SAXS data by employing a spherical core-shell model with dual density profiles in the core. We found that the aggregation number decreases as PEO length increases following a power law predicted in the literature. Furthermore, the melting point and melting enthalpy of crystalline alkyl cores were closely inspected by densitometry and differential scanning calorimetry (DSC). Correlating the core radius obtained from SAXS, we found that the melting point depression caused by the self-confinement in the micellar core can be described by the Gibbs-Thomson equation. These results show that the micellar structure and phase transition of the semicrystalline core can be easily tuned through blending diblock copolymers with different corona block lengths.
Collapse
Affiliation(s)
| | - Nico König
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
| | - Lutz Willner
- Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Reidar Lund
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
| |
Collapse
|
2
|
Kim D, Kim C, Lee SE, Kim S, Lee SI, Park MH, Kim M, Sung D, Lee K. Development of ROS-Sensitive Sulfasalazine-Loaded Ferrocene Nanoparticles and Evaluation of Their Antirheumatic Effects in a 3D Synovial Hyperplasia Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407813. [PMID: 39950417 DOI: 10.1002/smll.202407813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/03/2024] [Indexed: 05/09/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation, synovial hyperplasia, and bone and cartilage destruction, which significantly impairs physical function and quality of life. Disease-modifying antirheumatic drugs, such as sulfasalazine (SSZ), are crucial for altering the course and progression of RA; however, their clinical use is hampered by poor water solubility and lack of specificity for the reactive oxygen species (ROS)-rich environment typical of RA. To overcome these challenges, ROS-sensitive SSZ-loaded ferrocene nanoparticles are developed. The nanoparticles facilitate enhanced solubility and stability of SSZ and particularly enable precision targeting through the distinctive redox properties of ferrocene. Using a 3D synovial hyperplasia model with fibroblast-like synoviocytes derive from RA patients and validate at both the protein and gene levels, these nanoparticles significantly reduce lactate dehydrogenase, ROS, and inflammatory cytokine levels. Further validation using a collagen-induced arthritis model demonstrates therapeutic efficacy and cytokine modulation in vivo. These findings highlight the potential of ferrocene nanoparticles as a novel and effective therapeutic strategy for RA, offering improved drug delivery and reduced systemic toxicity.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaehyun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - So Eun Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Min Hee Park
- THEDONEE Inc., Research Center, Seoul, South Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
4
|
Abd-El-Aziz A, Ahmed SA, Zhang X, Ma N, Abd-El-Aziz AS. Macromolecules incorporating transition metals in the treatment and detection of cancer and infectious diseases: Progress over the last decade. Coord Chem Rev 2024; 510:215732. [DOI: 10.1016/j.ccr.2024.215732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
6
|
Zhou J, Yang R, Chen Y, Chen D. Efficacy tumor therapeutic applications of stimuli-responsive block copolymer-based nano-assemblies. Heliyon 2024; 10:e28166. [PMID: 38571609 PMCID: PMC10987934 DOI: 10.1016/j.heliyon.2024.e28166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Block copolymers are composed of two or more blocks or segments with different chemical properties via various chemical bonds, which can assemble into nanoparticles with a "core-shell" structure. Due to the benefits of simple functionalization, superior drug-loading capacity, and good biocompatibility, various nano-assemblies based on block copolymers have become widely applied in the treatment of cancers in recent years. These nano-assemblies serve as carriers for anti-tumor bioactive, enhancing drug stability and prolonging their circulation time in vivo, which can reduce the toxic side effects of drugs and improve the therapeutic effect. However, the complex and heterogeneous tumor microenvironment poses challenges to the therapeutic efficacy of these nano-assemblies, having the result in the occurrence of drug resistance and the recurrence of tumors. Consequently, a diverse array of stimuli-responsive nano-assemblies has been devised in order to surmount these obstacles. This article provides a comprehensive overview of the utilization of stimuli-responsive nano-assemblies derived from block copolymers in the context of tumor treatment. The review summarizes block polymers responsive to internal stimuli (like ROS, redox, pH, and enzymes) and external stimuli (like light, and temperature), and discusses current challenges and prospects in this field, aiming to provide novel insights for clinical applications.
Collapse
Affiliation(s)
- Jie Zhou
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Rui Yang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Yu Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
- Department of Laboratory, Haidong Second People's Hospital, Haidong, 810699, China
| |
Collapse
|
7
|
Gupta C, Hazra C, Poddar P, Dhara D, Byram PK, Chakravorty N, Sen R, Ghosh SK. Development and performance evaluation of self-assembled pH-responsive curcumin-bacterial exopolysaccharide micellar conjugates as bioactive delivery system. Int J Biol Macromol 2024; 263:130372. [PMID: 38395275 DOI: 10.1016/j.ijbiomac.2024.130372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The present study reports the synthesis of micellar conjugates, wherein curcumin (Cur), a bioactive compound with poor bioavailability, was covalently bonded to a bacterial exopolysaccharide (EPS). These conjugates were synthesized by utilizing succinic acid that linked Cur to the pyranosyl moiety of the EPS. The Cur-EPS conjugates appeared as spherical micelles in aqueous solution and were found to have an average hydrodynamic diameter of 254 ± 2.7 nm. The micellar conjugates showed superior stability than Cur as evident from their negative surface charge (-27 ± 1.8 mV) and low polydispersity index (PDI) (0.33 ± 0.04). The in vitro studies on release kinetics helped elucidate the pH-responsive characteristics of the Cur-EPS conjugate, as 87.50 ± 1.45 % of Cur was released at an acidic pH of 5.6, in contrast to 30.15 ± 2.61 % at systemic pH of 7.4 at 150 h. The conjugates were hemocompatible and exhibited cytotoxic effect against the osteosarcoma cell line (MG-63) after 48 h treatment. They also demonstrated superior antibacterial, antibiofilm, and antioxidant activities in comparison to free Cur. Therefore, the Cur-EPS conjugates have potential pharmaceutical applications as therapeutic biomaterial that can be applied as a drug delivery system.
Collapse
Affiliation(s)
- Chandrika Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Puja Poddar
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
8
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Najjari Z, Sadri F, Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023; 18:100873. [PMID: 38173712 PMCID: PMC10762358 DOI: 10.1016/j.ajps.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The world has been dealing with a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019, which threatens the lives of many people worldwide. COVID-19 causes respiratory infection with different symptoms, from sneezing and coughing to pneumonia and sometimes gastric symptoms. Researchers worldwide are actively developing novel drug delivery systems (DDSs), such as stimuli-responsive DDSs. The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating "smart" DDS that can effectively control dosage, sustained release, individual variations, and targeted delivery. To conduct a comprehensive literature survey for this article, the terms "Stimuli-responsive", "COVID-19″ and "Drug delivery" were searched on databases/search engines like "Google Scholar", "NCBI", "PubMed", and "Science Direct". Many different types of DDSs have been proposed, including those responsive to various exogenous (light, heat, ultrasound and magnetic field) or endogenous (microenvironmental changes in pH, ROS and enzymes) stimuli. Despite significant progress in DDS research, several challenging issues must be addressed to fill the gaps in the literature. Therefore, this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
Collapse
Affiliation(s)
- Zeinab Najjari
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Sadri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Neumann-Tran TMP, López-Iglesias C, Navarro L, Quaas E, Achazi K, Biglione C, Klinger D. Poly( N-acryloylmorpholine) Nanogels as Promising Materials for Biomedical Applications: Low Protein Adhesion and High Colloidal Stability. ACS APPLIED POLYMER MATERIALS 2023; 5:7718-7732. [DOI: 10.1021/acsapm.3c00890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Thi Mai Phuong Neumann-Tran
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| | - Clara López-Iglesias
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Lucila Navarro
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstrasse 23a, Berlin 14195, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstrasse 23a, Berlin 14195, Germany
| | - Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, E-28935 Madrid, Spain
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| |
Collapse
|
11
|
Luo S, Lv Z, Yang Q, Chang R, Wu J. Research Progress on Stimulus-Responsive Polymer Nanocarriers for Cancer Treatment. Pharmaceutics 2023; 15:1928. [PMID: 37514114 PMCID: PMC10386740 DOI: 10.3390/pharmaceutics15071928] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
As drug carriers for cancer treatment, stimulus-responsive polymer nanomaterials are a major research focus. These nanocarriers respond to specific stimulus signals (e.g., pH, redox, hypoxia, enzymes, temperature, and light) to precisely control drug release, thereby improving drug uptake rates in cancer cells and reducing drug damage to normal cells. Therefore, we reviewed the research progress in the past 6 years and the mechanisms underpinning single and multiple stimulus-responsive polymer nanocarriers in tumour therapy. The advantages and disadvantages of various stimulus-responsive polymeric nanomaterials are summarised, and the future outlook is provided to provide a scientific and theoretical rationale for further research, development, and utilisation of stimulus-responsive nanocarriers.
Collapse
Affiliation(s)
- Shicui Luo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiuqiong Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Renjie Chang
- Center of Digestive Endoscopy, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
12
|
Ahmed YW, Tsai HC, Wu TY, Darge HF, Chen YS. Role of thermal and reactive oxygen species-responsive synthetic hydrogels in localized cancer treatment (bibliometric analysis and review). MATERIALS ADVANCES 2023; 4:6118-6151. [DOI: 10.1039/d3ma00341h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is a major pharmaceutical challenge that necessitates improved care.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, Republic of China
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Yu-Shuan Chen
- Bio Innovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, Republic of China
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Tzu Chi University of Science and Technology, Taiwan, Republic of China
| |
Collapse
|
13
|
Yu H, Zhang S, Wang Z, Li A, Sun X, Niu L, Li Q. Construction and modulation of dual responsive AIE supramolecular aggregates combined with quantum chemistry simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Synthesis, characterization and application of dual thermo- and solvent-responsive double-hydrophilic diblock copolymers of N-acryloylmorpholine and N-isopropylacrylamide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Arsenie LV, Hausig F, Kellner C, Brendel JC, Lacroix-Desmazes P, Ladmiral V, Catrouillet S. Stimuli-Responsive Thiomorpholine Oxide-Derived Polymers with Tailored Hydrophilicity and Hemocompatible Properties. Molecules 2022; 27:molecules27134233. [PMID: 35807477 PMCID: PMC9268026 DOI: 10.3390/molecules27134233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Thermo-responsive hydrophilic polymers, including those showing tuneable lower critical solution temperature (LCST), represent a continuous subject of exploration for a variety of applications, but particularly in nanomedicine. Since biological pH changes can inform the organism about the presence of disequilibrium or diseases, the development of dual LCST/pH-responsive hydrophilic polymers with biological potential is an attractive subject in polymer science. Here, we present a novel polymer featuring LCST/pH double responsiveness. The monomer ethylthiomorpholine oxide methacrylate (THOXMA) can be polymerised via the RAFT process to obtain well-defined polymers. Copolymers with hydroxyethyl methacrylate (HEMA) were prepared, which allowed the tuning of the LCST behaviour of the polymers. Both, the LCST behaviour and pH responsiveness of hydrophilic PTHOXMA were tested by following the evolution of particle size by dynamic light scattering (DLS). In weak and strong alkaline conditions, cloud points ranged between 40–60 °C, while in acidic medium no LCST was found due to the protonation of the amine of the THOX moieties. Additional cytotoxicity assays confirmed a high biocompatibility of PTHOXMA and haemolysis and aggregation assays proved that the thiomorpholine oxide-derived polymers did not cause aggregation or lysis of red blood cells. These preliminary results bode well for the use of PTHOXMA as smart material in biological applications.
Collapse
Affiliation(s)
| | - Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany; (F.H.); (C.K.); (J.C.B.)
| | - Carolin Kellner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany; (F.H.); (C.K.); (J.C.B.)
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany; (F.H.); (C.K.); (J.C.B.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | | | - Vincent Ladmiral
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; (L.V.A.); (P.L.-D.)
- Correspondence: (V.L.); (S.C.)
| | - Sylvain Catrouillet
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; (L.V.A.); (P.L.-D.)
- Correspondence: (V.L.); (S.C.)
| |
Collapse
|
16
|
Kerr A, Sagita E, Mansfield EDH, Nguyen TH, Feeney OM, Pouton CW, Porter CJH, Sanchis J, Perrier S. Polymeric Nanotubes as Drug Delivery Vectors─Comparison of Covalently and Supramolecularly Assembled Constructs. Biomacromolecules 2022; 23:2315-2328. [PMID: 35582852 PMCID: PMC9198979 DOI: 10.1021/acs.biomac.2c00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rod-shaped nanoparticles have been identified as promising drug delivery candidates. In this report, the in vitro cell uptake and in vivo pharmacokinetic/bio-distribution behavior of molecular bottle-brush (BB) and cyclic peptide self-assembled nanotubes were studied in the size range of 36-41 nm in length. It was found that BB possessed the longest plasma circulation time (t1\2 > 35 h), with the cyclic peptide system displaying an intermediate half-life (14.6 h), although still substantially elevated over a non-assembling linear control (2.7 h). The covalently bound BB underwent substantial distribution into the liver, whereas the cyclic peptide nanotube was able to mostly circumvent organ accumulation, highlighting the advantage of the inherent degradability of the cyclic peptide systems through their reversible aggregation of hydrogen bonding core units.
Collapse
Affiliation(s)
- Andrew Kerr
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Erny Sagita
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | | | - Tri-Hung Nguyen
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Orlagh M Feeney
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Christopher J H Porter
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Joaquin Sanchis
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia.,Warwick Medical School, The University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
17
|
Zhou S, Zeng M, Liu Y, Sui X, Yuan J. Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles. Macromol Rapid Commun 2022; 43:e2200010. [PMID: 35393731 DOI: 10.1002/marc.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
With the development of reversible deactivated radical polymerization techniques, polymerization-induced self-assembly (PISA) is emerging as a facile method to prepare block copolymer nanoparticles in situ with high concentrations, providing wide potential applications in different fields, including nanomedicine, coatings, nanomanufacture, and Pickering emulsions. Polymeric emulsifiers synthesized by PISA have many advantages comparing with conventional nanoparticle emulsifiers. The morphologies, size, and amphiphilicity can be readily regulated via the synthetic process, post-modification, and external stimuli. By introducing stimulus responsiveness into PISA nanoparticles, Pickering emulsions stabilized with these nanoparticles can be endowed with "smart" behaviors. The emulsions can be regulated in reversible emulsification and demulsification. In this review, the authors focus on recent progress on Pickering emulsions stabilized by PISA nanoparticles with stimuli-responsiveness. The factors affecting the stability of emulsions during emulsification and demulsification are discussed in details. Furthermore, some viewpoints for preparing stimuli-responsive emulsions and their applications in antibacterial agents, diphase reaction platforms, and multi-emulsions are discussed as well. Finally, the future developments and applications of stimuli-responsive Pickering emulsions stabilized by PISA nanoparticles are highlighted.
Collapse
Affiliation(s)
- Shuo Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yanlin Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Ramesh K, Yadav S, Mishra AK, Jo S, Park S, Oh C, Lim KT. Interface‐cross
‐linked micelles of poly(D,L‐lactide)‐
b
‐poly(furfuryl methacrylate)‐
b
‐poly(N‐acryloylmorpholine) for near‐infrared‐triggered drug delivery application. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kalyan Ramesh
- Department of Display Engineering Pukyong National University Busan South Korea
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Sonyabapu Yadav
- Department of Display Engineering Pukyong National University Busan South Korea
| | - Avnish Kumar Mishra
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju South Korea
| | - Sung‐Han Jo
- Department of Biomedical Engineering Pukyong National University Busan South Korea
| | - Sang‐Hyug Park
- Department of Biomedical Engineering Pukyong National University Busan South Korea
| | - Chul‐Woong Oh
- Department of Marine Biology Pukyong National University Busan South Korea
| | - Kwon Taek Lim
- Department of Display Engineering Pukyong National University Busan South Korea
| |
Collapse
|
19
|
Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. MATERIALS TODAY 2021; 51:317-349. [DOI: 10.1016/j.mattod.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Zhou Y, Ma J, Gao C, Fan X, Lashari NUR, Li J. Electrospun nanofibers from
ferrocene‐containing
multiblock copolymers prepared via
RAFT
polymerization with
F127
modified precursor. J Appl Polym Sci 2021. [DOI: 10.1002/app.50984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingxue Zhou
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Jianhua Ma
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Chaofeng Gao
- Shaanxi Research Design institute Petroleum and Chemical Industry Xi'an China
| | - Xiaodong Fan
- Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an China
| | - Najeeb ur Rehman Lashari
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Junpeng Li
- Department of Applied Chemistry School of Science, Xi'an University of Technology Xi'an China
| |
Collapse
|
21
|
Fan Q, Wang G, Tian D, Ma A, Wang W, Bai L, Chen H, Yang L, Yang H, Wei D, Yang Z. Self-healing nanocomposite hydrogels via Janus nanosheets: Multiple effects of metal–coordination and host–guest interactions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Choi JW, Choi SH, Won JI. Self-Assembly Behavior of Elastin-like Polypeptide Diblock Copolymers Containing a Charged Moiety. Biomacromolecules 2021; 22:2604-2613. [PMID: 34038105 DOI: 10.1021/acs.biomac.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers, and some ELP block copolymers can assemble into spherical nanoparticles with thermosensitivity. In this study, two different ELP diblock copolymers, each composed of a hydrophobic and a charged moiety, were synthesized, and the dependence of their physical properties on pH, temperature, and salt concentration was investigated. A series of analyses revealed that hydrophobic core micelles could be generated in response to a change in their surroundings and that micelles did not self-aggregate, a phenomenon due to the repulsive forces between like-charged molecules on the surface. We also demonstrated that self-assembly behavior was closely dependent on the character of the charged amino acid and the specific anion in solution.
Collapse
Affiliation(s)
- Jeong-Wan Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jong-In Won
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
23
|
Xu J, Yan X, Ge X, Zhang M, Dang X, Yang Y, Xu F, Luo Y, Li G. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor. J Mater Chem B 2021; 9:1297-1314. [PMID: 33443252 DOI: 10.1039/d0tb02192j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The efficacy of ongoing anticancer treatment is often compromised by some barriers, such as low drug content, nonspecific release of drug delivery system, and multidrug resistance (MDR) effect of tumors. Herein, in the research a novel functionalized PEG-based polymer cystine-(polyethylene glycol)2-b-(poly(2-methacryloyloxyethyl ferrocenecarboxylate)2) (Cys-(PEG45)2-b-(PMAOEFC)2) with multi-stimuli sensitive mechanism was constructed, in which doxorubicin (DOX) was chemical bonded through Schiff base structure to provide acid labile DOX prodrug (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2. Afterwards, paclitaxel (PTX) and its diselenide bond linked PTX dimer were encapsulated into the prodrug through physical loading, to achieve pH and triple redox responsive (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2@PTX and (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2@PTX dimer with ultrahigh drugs content. The obtained nanovehicles could self-assemble into globular micelles with good stability based on fluorescence spectra and TEM observation. Moreover, there was a remarkable "reassembly-disassembly" behavior caused by phase transition of micelles under the mimic cancerous physiological environment. DOX and PTX could be on-demand released in acid and redox stress mode, respectively. Meanwhile, in vivo anticancer studies revealed the significant tumor inhibition of nanoformulas. This work offered facile strategies to fabricate drug nanaovehicles with tunable drug content and types, it has a profound significance in overcoming MDR effect, which provided more options for sustainable cancer treatment according to the desired drug dosage and the stage of tumor growth.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiangji Yan
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin Ge
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingzhen Zhang
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xugang Dang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
24
|
Yu H, Sui P, Ge S, Chang X, Li Q, Li A, Sun X. Construction and modulation of dual responsive fluorescent aggregates combined with molecular dynamics simulation. NANO SELECT 2021. [DOI: 10.1002/nano.202000222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Huajie Yu
- School of Materials Science and Engineering Shandong University of Technology Zibo Shandong 255049 P.R. China
| | - Pengliang Sui
- School of Materials Science and Engineering Shandong University of Technology Zibo Shandong 255049 P.R. China
| | - Shujin Ge
- School of Materials Science and Engineering Shandong University of Technology Zibo Shandong 255049 P.R. China
| | - Xiujie Chang
- School of Materials Science and Engineering Shandong University of Technology Zibo Shandong 255049 P.R. China
| | - Qiuhong Li
- School of Materials Science and Engineering Shandong University of Technology Zibo Shandong 255049 P.R. China
| | - Aixiang Li
- School of Materials Science and Engineering Shandong University of Technology Zibo Shandong 255049 P.R. China
| | - Xia Sun
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo Shandong 255049 P.R. China
| |
Collapse
|
25
|
Gao F, Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front Chem 2021; 9:649048. [PMID: 33968898 PMCID: PMC8103170 DOI: 10.3389/fchem.2021.649048] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms; however, as the concentration of ROS increases in the area of a lesion, this may undermine cellular homeostasis, leading to a series of diseases. Using cell-product species as triggers for targeted regulation of polymer structures and activity represents a promising approach for the treatment. ROS-responsive polymer carriers allow the targeted delivery of drugs, reduce toxicity and side effects on normal cells, and control the release of drugs, which are all advantages compared with traditional small-molecule chemotherapy agents. These formulations have attracted great interest due to their potential applications in biomedicine. In this review, recent progresses on ROS responsive polymer carriers are summarized, with a focus on the chemical mechanism of ROS-responsive polymers and the design of molecular structures for targeted drug delivery and controlled drug release. Meanwhile, we discuss the challenges and future prospects of its applications.
Collapse
Affiliation(s)
- Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
26
|
Wang Y, Zhang S, Wang J, Zhou Q, Mukerabigwi JF, Ke W, Lu N, Ge Z. Ferrocene-containing polymersome nanoreactors for synergistically amplified tumor-specific chemodynamic therapy. J Control Release 2021; 333:500-510. [PMID: 33848558 DOI: 10.1016/j.jconrel.2021.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Chemodynamic therapy (CDT) has been proposed to convert tumoral H2O2 into toxic hydroxyl radicals (OH) via Fenton or Fenton-like reactions for antitumor efficacy, which is frequently limited by low H2O2 concentrations or lack of enough metal ions inside tumor tissues. In this report, we present ferrocene-containing responsive polymersome nanoreactors via loading glucose oxidase (GOD) and hypoxia-activable prodrug tirapazamine (TPZ) in the inner aqueous cavities. After intravenous injection, the polymersome nanoreactors with the optimized nanoparticle size of ~100 nm and poly(ethylene glycol) corona facilitate tumor accumulation. The tumor acidic microenvironment can trigger the permeability of the polymersome membranes to activate the nanoreactors and release the loaded TPZ prodrugs. Tumor oxygen and glucose can enter the polymersome nanoreactors and are transformed into H2O2 under the catalysis of GOD, which are further converted into OH via Fenton reaction under catalysis of ferrocene moieties. The oxygen consumption can aggravate tumor hypoxia to activate hypoxia-responsive TPZ prodrugs which can produce benzotriazinyl (BTZ) radicals and OH. All the produced radicals synergistically kill tumor cells via the amplified CDT and suppress the tumor growth efficiently. Thus, the ferrocene-containing responsive polymersome nanoreactors loading GOD and TPZ represent a potent nanoplatform to exert amplified CDT for improved anticancer efficacy.
Collapse
Affiliation(s)
- Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuang Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingbo Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
27
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
28
|
Na Y, Woo J, Choi WI, Sung D. Novel carboxylated ferrocene polymer nanocapsule with high reactive oxygen species sensitivity and on-demand drug release for effective cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111566. [PMID: 33485085 DOI: 10.1016/j.colsurfb.2021.111566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022]
Abstract
Multidrug resistance (MDR) is a major clinical issue leading to substantial reductions in the intracellular levels of anticancer drugs. To overcome MDR, stimulus-responsive polymeric nanotherapeutics that facilitate drug release and cellular uptake at target sites have emerged as promising tools for safe and effective cancer treatment. Among these nanotherapeutics, reactive oxygen species (ROS)-responsive nanocapsules are ideal carriers, as abnormally increased ROS levels can drive controlled drug release at target sites. In this study, we developed novel, high ROS-responsive carboxylated ferrocene nanocapsules (CFNCs) using solvents of different polarities for effective multidrug-resistant cancer therapy. The CFNCs were prepared via the self-assembly of an amphiphilic carboxylated ferrocene polymer composed of a hydrophilic COOH segment and a hydrophobic ferrocenylmethyl methacrylate segment possessing a ROS-responsive group. The size and ROS sensitivity of self-assembled CFNCs could be controlled by using solvents of different polarities during the simple nanoprecipitation process. The CFNCs showed a high loading content (approximately 30 wt%) and on-demand release of paclitaxel under both normal and tumor-mimicking conditions, and exhibited synergistic anticancer effects in multidrug-resistant colorectal cancer cells (HCT-15). Our findings suggest that CFNCs can be applied as carriers for effective cancer therapy.
Collapse
Affiliation(s)
- Yoonhee Na
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea; School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiseob Woo
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea; School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
29
|
Phan H, Taresco V, Penelle J, Couturaud B. Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomater Sci 2021; 9:38-50. [PMID: 33179646 DOI: 10.1039/d0bm01406k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive amphiphilic block copolymers have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, the presence of redox agents, and temperature. The formulation of amphiphilic block copolymers into polymeric drug-loaded nanoparticles is typically achieved by various methods (e.g. oil-in-water emulsion solvent evaporation, solid dispersion, microphase separation, dialysis or microfluidic separation). Despite much progress that has been made, there remain many challenges to overcome to produce reliable polymeric systems. The main drawbacks of the above methods are that they produce very low solid contents (<1 wt%) and involve multiple-step procedures, thus limiting their scope. Recently, a new self-assembly methodology, polymerisation-induced self-assembly (PISA), has shown great promise in the production of polymer-derived particles using a straightforward one-pot approach, whilst facilitating high yield, scalability, and cost-effectiveness for pharmaceutical industry protocols. We therefore focus this review primarily on the most recent studies involved in the design and preparation of PISA-generated nano-objects which are responsive to specific stimuli, thus providing insight into how PISA may become an effective formulation strategy for the preparation of precisely tailored drug delivery systems and biomaterials, while some of the current challenges and limitations are also critically discussed.
Collapse
Affiliation(s)
- Hien Phan
- Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France.
| | | | | | | |
Collapse
|
30
|
Liu W, Chen Q, Shang Y, Teng H, Liu H. Semi-quantitative Analysis of the UV-responsive Behavior of Anisotropic Phase Constructed by Gemini Surfactant 12-3-12·2Br− and trans-ortho-Methoxycinnamate. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Lotocki V, Kakkar A. Miktoarm Star Polymers: Branched Architectures in Drug Delivery. Pharmaceutics 2020; 12:E827. [PMID: 32872618 PMCID: PMC7559275 DOI: 10.3390/pharmaceutics12090827] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Delivering active pharmaceutical agents to disease sites using soft polymeric nanoparticles continues to be a topical area of research. It is becoming increasingly evident that the composition of amphiphilic macromolecules plays a significant role in developing efficient nanoformulations. Branched architectures with asymmetric polymeric arms emanating from a central core junction have provided a pivotal venue to tailor their key parameters. The build-up of miktoarm stars offers vast polymer arm tunability, aiding in the development of macromolecules with adjustable properties, and allows facile inclusion of endogenous stimulus-responsive entities. Miktoarm star-based micelles have been demonstrated to exhibit denser coronae, very low critical micelle concentrations, high drug loading contents, and sustained drug release profiles. With significant advances in chemical methodologies, synthetic articulation of miktoarm polymer architecture, and determination of their structure-property relationships, are now becoming streamlined. This is helping advance their implementation into formulating efficient therapeutic interventions. This review brings into focus the important discoveries in the syntheses of miktoarm stars of varied compositions, their aqueous self-assembly, and contributions their formulations are making in advancing the field of drug delivery.
Collapse
Affiliation(s)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|
32
|
Ramesh K, Mishra AK, Kim JK, Jeong YT, Gal YS, Lim KT. Preparation of Doxorubicin-Loaded Amphiphilic Poly(D,L-Lactide- Co-Glycolide)-b-Poly( N-Acryloylmorpholine) AB 2 Miktoarm Star Block Copolymers for Anticancer Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3713. [PMID: 32842626 PMCID: PMC7504487 DOI: 10.3390/ma13173713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Owing to their unique topology and physical properties, micelles based on miktoarm amphiphilic star block copolymers play an important role in the biomedical field for drug delivery. Herein, we developed a series of AB2-type poly(D,L-lactide-co-glycolide)-b-poly(N-acryloyl morpholine) (PLGA-b-PNAM2) miktoarm star block copolymers by reversible addition-fragmentation chain-transfer polymerization and ring-opening copolymerization. The resulting miktoarm star polymers were investigated by 1H NMR spectroscopy and gel permeation chromatography. The critical micellar concentration value of the micelles increases with an increase in PNAM block length. As revealed by transmission electron microscopy and dynamic light scattering, the amphiphilic miktoarm star block copolymers can self-assemble to form spherical micellar aggregates in water. The anticancer drug doxorubicin (DOX) was encapsulated by polymeric micelles; the drug-loading efficiency and drug-loading content of the DOX-loaded micelles were 81.7% and 9.1%, respectively. Acidic environments triggered the dissociation of the polymeric micelles, which led to the more release of DOX in pH 6.4 than pH 7.4. The amphiphilic PLGA-b-PNAM2 miktoarm star block copolymers may have broad application as nanocarriers for controlled drug delivery.
Collapse
Affiliation(s)
- Kalyan Ramesh
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (K.R.); (Y.T.J.)
| | - Avnish Kumar Mishra
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (A.K.M.); (J.K.K.)
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (A.K.M.); (J.K.K.)
| | - Yeon Tae Jeong
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (K.R.); (Y.T.J.)
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 34828, Korea;
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (K.R.); (Y.T.J.)
| |
Collapse
|
33
|
Ma S, Li G, Tao Q, Guo L, Zhou Z, Yu J. Formation of H 2O 2/temperature dual-responsive supramolecular micelles for drug delivery and kinetics. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Zaishuai Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Jiahui Yu
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| |
Collapse
|
34
|
Na Y, Lee JS, Woo J, Ahn S, Lee E, Il Choi W, Sung D. Reactive oxygen species (ROS)-responsive ferrocene-polymer-based nanoparticles for controlled release of drugs. J Mater Chem B 2020; 8:1906-1913. [DOI: 10.1039/c9tb02533b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ferrocene-containing nanoparticles show reversible redox activity that could trigger drug release mediated by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Yoonhee Na
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Jin Sil Lee
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Jiseob Woo
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Sukyung Ahn
- Utah-Inha DDS and Advanced Therapeutics Research Center
- Incheon
- Republic of Korea
| | - Eunhye Lee
- Utah-Inha DDS and Advanced Therapeutics Research Center
- Incheon
- Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| |
Collapse
|
35
|
Woo J, Park H, Na Y, Kim S, Choi WI, Lee JH, Seo H, Sung D. Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor. RSC Adv 2020; 10:2998-3004. [PMID: 35496132 PMCID: PMC9048966 DOI: 10.1039/c9ra09106h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
A key aspect of biochip and biosensor preparation is optimization of the optical or electrochemical techniques that combine high sensitivity and specificity. Among them, optical techniques such as the use of fluorescent polymeric nanoparticles have resulted in dramatic progress in the field of diagnostics due to their range of advantages. We herein report a facile approach for the development of novel fluorescein polymeric nanoparticles (FPNPs) with immobilization of specific biomolecules for application in a highly sensitive optical biosensor. A series of three amphiphilic fluorescein polymers (poly(FMA-r-NAS-r-MA)), comprising hydrophobic fluorescein O-methacrylate (FMA), hydrophilic N-acryloxysuccinimide (NAS), and methacrylic acid (MA) monomers were synthesized through radical polymerization. In an aqueous environment, these fluorescein polymers self-assembled into spherical shaped nanoparticles with a well-defined particle size, narrow particle size distribution, and enhanced fluorescence properties. The bio-immobilization properties of the FPNPs were also tunable by control of the activated N-hydroxysuccinimide ester group in the polymer series. Furthermore, the fluorescence sensitivity of bovine serum albumin detection by the FPNPs indicates that the limit of detection and sensitivity were improved compared to conventional fluorescence dye-labelled proteins. These novel FPNPs therefore represent a suitable technology for disease diagnosis and biomarker detection to ultimately improve the sensitivity of existing analytical methodologies in a facile and cost-effective manner. We report a facile approach for the development of novel fluorescein polymeric nanoparticles (FPNPs) with immobilization of specific biomolecules for application in a highly sensitive optical biosensor.![]()
Collapse
Affiliation(s)
- Jiseob Woo
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Heesun Park
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Yoonhee Na
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Jin Hyung Lee
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Hyemi Seo
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| |
Collapse
|
36
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
37
|
Liu X, Liu F, Wang Y, Gu H. Ferrocene-containing amphiphilic dendronized random copolymer as efficient stabilizer for reusable gold nanoparticles in catalysis. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Lu B, Xiao Z, Wang Z, Wang B, Zhao W, Ma X, Zhang J. Redox-Sensitive Polymer Micelles Based on CD44 and Folic Acid Receptor for Intracellular Drug Delivery and Drug Controlled Release in Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4222-4232. [DOI: 10.1021/acsabm.9b00500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Beibei Lu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhourui Xiao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhenyuan Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Binshen Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
39
|
Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules 2019; 20:2441-2463. [PMID: 31117357 DOI: 10.1021/acs.biomac.9b00628] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in biological metabolism and intercellular signaling. However, ROS level is dramatically elevated due to abnormal metabolism during multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. By taking advantage of the discrepancy of ROS levels between normal and diseased tissues, a variety of ROS-sensitive moieties or linkers have been developed to design ROS-responsive systems for the site-specific delivery of drugs and genes. In this review, we summarized the ROS-responsive chemical structures, mechanisms, and delivery systems, focusing on their current advances for precise drug/gene delivery. In particular, ROS-responsive nanocarriers, prodrugs, and supramolecular hydrogels are summarized in terms of their application for drug/gene delivery, and common strategies to elevate or diminish cellular ROS concentrations, as well as the recent development of ROS-related imaging probes were also discussed.
Collapse
Affiliation(s)
- Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Shanzhou Duan
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Yong Liu
- Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| |
Collapse
|
40
|
Liu X, Liu F, Astruc D, Lin W, Gu H. Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Mu S, Liu W, Ling Q, Liu X, Gu H. Ferrocenyl amphiphilic Janus dendrimers as redox‐responsive micellar carriers. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shengdong Mu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| |
Collapse
|
43
|
Gulfam M, Sahle FF, Lowe TL. Design strategies for chemical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2019; 24:129-147. [PMID: 30292916 PMCID: PMC6372326 DOI: 10.1016/j.drudis.2018.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Chemical-stimuli-responsive nanotherapeutics have gained great interest in drug delivery and diagnosis applications. These nanotherapeutics are designed to respond to specific internal stimuli including pH, ionic strength, redox, reactive oxygen species, glucose, enzymes, ATP and hypoxia for site-specific and responsive or triggered release of payloads and/or biomarker detections. This review systematically and comprehensively addresses up-to-date technological and design strategies, and challenges nanomaterials to be used for triggered release and sensing in response to chemical stimuli.
Collapse
Affiliation(s)
- Muhammad Gulfam
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
44
|
Qiu G, Liu X, Wang B, Gu H, Wang W. Ferrocene-containing amphiphilic polynorbornenes as biocompatible drug carriers. Polym Chem 2019. [DOI: 10.1039/c9py00332k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferrocene-containing diblock and random polynorbornene-based copolymers were synthesized by ROMP and used as biocompatible drug carrier micelles.
Collapse
Affiliation(s)
- Guirong Qiu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
| | - Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Binrong Wang
- College of Food and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Weixiang Wang
- College of Food and Bioengineering
- Xihua University
- Chengdu 610039
- China
| |
Collapse
|
45
|
Ramesh K, Thangagiri B, Mishra AK, Ahn BH, Gal YS, Lim KT. AB2-type miktoarm poly(l-lactide)-b-poly(N-acryloylmorpholine) amphiphilic star block copolymers as nanocarriers for drug delivery. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Zhang L, Qiu G, Liu F, Liu X, Mu S, Long Y, Zhao Q, Liu Y, Gu H. Controlled ROMP synthesis of side-chain ferrocene and adamantane-containing diblock copolymer for the construction of redox-responsive micellar carriers. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Zhou S, Sun W, Zhai Y. Amphiphilic block copolymer NPs obtained by coupling ricinoleic acid/sebacic acids and mPEG: Synthesis, characterization, and controlled release of paclitaxel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2201-2217. [PMID: 30285542 DOI: 10.1080/09205063.2018.1532136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Currently, nanoparticles (NPs) made of amphiphilic block copolymer are still an essential part of drug delivery system. Here, we report a novel amphiphilic block copolymer and paclitaxel (PTX)-loaded copolymer NPs for the controlled delivery of PTX. The block copolymer was synthesized via melt polycondensation method of methoxy poly(ethylene glycol) (mPEG), sebacic acid (SA) and ricinoleic acid (RA). A series of characterization approaches such as Fourier Transform Infrared Spectroscopy (FTIR), 1Hydrogen-Nuclear Magnetic Resonance (1H-NMR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD) and Gel Permeation Chromatography (GPC) applied have shown that the amphiphilic block copolymer was prepared as designed. NPs prepared by nanoprecipitation method consist of mPEG segments as the hydrophilic shell and RA-SA segments as the hydrophobic core, hydrophobic PTX was encapsulated as model drug. Subsequently, Transmission Electron Microscopy (TEM) analysis indicated that the spherical NPs have effective mean diameters ranging from 100 to 400 nm. Dynamic Light Scattering (DLS) analysis also revealed the controllable NPs diameter by modulating the mass ratio of RA to SA and drug loading amount (DLA). Besides, biphasic profile with zero order drug release was observed in general in vitro release behaviors of PTX from NPs. Further investigation confirmed that the release behaviors depend on the crystallinity of hydrophobic RA-SA segments. Results above suggest that NPs with amphiphlic block copolymer mPEG-b-P(RA-SA)-b-mPEG have a remarkable potential as a carrier for hydrophobic drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Shiya Zhou
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Wei Sun
- b School of Medical Devices , Shenyang Pharmaceutical University , Shenyang , China
| | - Yinglei Zhai
- b School of Medical Devices , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
48
|
Ramesh K, Anugrah DSB, Lim KT. Supramolecular poly(N-acryloylmorpholine)-b-poly(d,l-lactide) pseudo-block copolymer via host-guest interaction for drug delivery. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Liu X, Qiu G, Zhang L, Liu F, Mu S, Long Y, Zhao Q, Liu Y, Gu H. Controlled ROMP Synthesis of Ferrocene-Containing Amphiphilic Dendronized Diblock Copolymers as Redox-Controlled Polymer Carriers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Guirong Qiu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Li Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Shengdong Mu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Yanru Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Qiuxia Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Yue Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| |
Collapse
|
50
|
Zhong Q, Mi L, Metwalli E, Bießmann L, Philipp M, Miasnikova A, Laschewsky A, Papadakis CM, Cubitt R, Schwartzkopf M, Roth SV, Wang J, Müller-Buschbaum P. Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)-block-polystyrene) 3 block copolymer films. SOFT MATTER 2018; 14:6582-6594. [PMID: 30052259 DOI: 10.1039/c8sm00965a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of chain architecture on the swelling and thermal response of thin films obtained from an amphiphilic three-arm star-shaped thermo-responsive block copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene ((PMDEGA-b-PS)3) is investigated by in situ neutron reflectivity (NR) measurements. The PMDEGA and PS blocks are micro-phase separated with randomly distributed PS nanodomains. The (PMDEGA-b-PS)3 films show a transition temperature (TT) at 33 °C in white light interferometry. The swelling capability of the (PMDEGA-b-PS)3 films in a D2O vapor atmosphere is better than that of films from linear PS-b-PMDEGA-b-PS triblock copolymers, which can be attributed to the hydrophilic end groups and limited size of the PS blocks in (PMDEGA-b-PS)3. However, the swelling kinetics of the as-prepared (PMDEGA-b-PS)3 films and the response of the swollen film to a temperature change above the TT are significantly slower than that in the PS-b-PMDEGA-b-PS films, which may be related to the conformation restriction by the star-shape. Unlike in the PS-b-PMDEGA-b-PS films, the amount of residual D2O in the collapsed (PMDEGA-b-PS)3 films depends on the final temperature. It decreases from (9.7 ± 0.3)% to (7.0 ± 0.3)% or (6.0 ± 0.3)% when the final temperatures are set to 35 °C, 45 °C and 50 °C, respectively. This temperature-dependent reduction of embedded D2O originates from the hindrance of chain conformation from the star-shaped chain architecture.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China. and Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Ezzeldin Metwalli
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Lorenz Bießmann
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Martine Philipp
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Anna Miasnikova
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Andre Laschewsky
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany and Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Christine M Papadakis
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble, France
| | - Matthias Schwartzkopf
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, Notkestr. 85, 22607 Hamburg, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, Notkestr. 85, 22607 Hamburg, Germany and KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Jiping Wang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|