1
|
Thirupathi K, Santhamoorthy M, Suresh R, Wadaan MA, Lin MC, Kim SC, Kumarasamy K, Phan TTV. Synthesis of bis(2-aminoethyl)amine functionalized mesoporous silica (SBA-15) adsorbent for selective adsorption of Pb 2+ ions from wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:357. [PMID: 39083123 DOI: 10.1007/s10653-024-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Rapid growth in the industry has released large quantities of contaminants, particularly metal discharges into the environment. Heavy metal poisoning in water bodies has become a major problem due to its toxicity to living organisms. In this study, we developed a 3-chloropropyl triethoxysilane incorporated mesoporous silica nanoparticle (SBA-15) based adsorbent utilizing the sol-gel process and Pluronic 123 (P123) as a structure-directing surfactant. Furthermore, the produced SBA-15 NPs were functionalized with bis(2-aminoethyl)amine (BDA) using the surface grafting approach. The physical and chemical properties of the prepared SBA-15@BDA NPs were determined using a variety of instruments, including small-angle X-ray diffraction (SAXS), Fourier-transform infrared (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption, thermogravimetric, particle size distribution, and zeta potential analysis. The MSN has a large surface area of up to 574 m2/g, a pore volume of 0.57 cm3/g, and a well-ordered mesoporous nanostructure with an average pore size of 3.6 nm. The produced SBA-15@BDA NPs were used to adsorb selectively to lead (Pd2+) ions from an aqueous solution. The adsorption study was performed under various conditions, including the influence of solution pH, adsorbent dose, adsorption kinetics, adsorption selectivity in the presence of competing metal ions, and reusability. The results of the kinetic study demonstrated that SBA-15@BDA NPs absorb selectively Pb2+ ions via chemisorption. The SBA-15@BDA NPs show Pb2+ ions with a maximum adsorption capacity of ~ 88% and an adsorbed quantity of approximately ~ 112 mg/g from the studied aqueous solution. The adsorption mechanism relies on coordination bonding between Pb2+ ions and surface-functionalized amine groups on SBA-15@BDA NPs. Furthermore, the proposed SBA-15@BDA NPs adsorbent demonstrated excellent reusability over five cycles without significantly reducing adsorption performance. As a consequence, SBA-15@BDA NPs might serve as an effective adsorbent for the selective removal of Pb2+ ions from aqueous effluent.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam, Dharmapuri, Tamil Nadu, 635111, India
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Ranganathan Suresh
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, R.O.C
| | - Seong-Cheol Kim
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, R.O.C..
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam.
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam.
| |
Collapse
|
2
|
Mubaiwa B, Lerata MS, Sibuyi NRS, Meyer M, Samaai T, Bolton JJ, Antunes EM, Beukes DR. Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1319. [PMID: 36770324 PMCID: PMC9920385 DOI: 10.3390/ma16031319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The use of natural products as chemotherapeutic agents is well established. However, many are associated with undesirable side effects, including high toxicity and instability. Previous reports on the cytotoxic activity of pyrroloiminoquinones isolated from Latrunculid sponges against cancer cell lines revealed extraordinary activity at IC50 of 77nM for discorhabdins. Their general lack of selectivity against the cancer and normal cell lines, however, precludes further development. In this study, extraction of a South African Latrunculid sponge produced three known pyrroloiminoquinone metabolites (14-bromodiscorhabdin C (5), Tsitsikammamine A (6) and B (7)). The assignment of the structures was established using standard 1D and 2D NMR experiments. To mitigate the lack of selectivity, the compounds were loaded onto gold nanoparticles synthesized using the aqueous extract of a brown seaweed, Sargassum incisifolium (sAuNPs). The cytotoxicity of the metabolites alone, and their sAuNP conjugates, were evaluated together with the known anticancer agent doxorubicin and its AuNP conjugate. The compound-AuNP conjugates retained their strong cytotoxic activity against the MCF-7 cell line, with >90% of the pyrroloiminoquinone-loaded AuNPs penetrating the cell membrane. Loading cytotoxic natural products onto AuNPs provides an avenue in overcoming some issues hampering the development of new anticancer drugs.
Collapse
Affiliation(s)
- Byron Mubaiwa
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Mookho S. Lerata
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre (DST/Mintek NIC), Bio-Labels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre (DST/Mintek NIC), Bio-Labels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Toufiek Samaai
- Department of Environmental Affairs (Oceans and Coasts), Cape Town 8000, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - John J. Bolton
- Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Edith M. Antunes
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Denzil R. Beukes
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
3
|
V. K. AD, Udduttula A, Jaiswal AK. Unveiling the secrets of marine-derived fucoidan for bone tissue engineering-A review. Front Bioeng Biotechnol 2023; 10:1100164. [PMID: 36698636 PMCID: PMC9868180 DOI: 10.3389/fbioe.2022.1100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Biomedical uses for natural polysaccharides of marine origin are growing in popularity. The most prevalent polysaccharides, including alginates, agar, agarose and carrageenan, are found in seaweeds. One among these is fucoidan, which is a sulfated polysaccharide derived from brown algae. Compared to many of the biomaterials of marine origin currently in research, it is more broadly accessible and less expensive. This polysaccharide comes from the same family of brown algae from which alginate is extracted, but has garnered less research compared to it. Although it was the subject of research beginning in the 1910's, not much has been done on it since then. Few researchers have focused on its potential for biomedical applications; nevertheless, a thorough knowledge of the molecular mechanisms behind its diverse features is still lacking. This review provides a quick outline of its history, sources, and organization. The characteristics of this potential biomaterial have also been explored, with a thorough analysis concentrating on its use in bone tissue engineering. With the preclinical research completed up to this point, the fucoidan research status globally has also been examined. Therefore, the study might be utilized as a comprehensive manual to understand in depth the research status of fucoidan, particularly for applications related to bone tissue engineering.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,*Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
4
|
Cao Y, Lee S, Kim K, Kwak JY, Kang SH. Real-time six-dimensional spatiotemporal tracking of single anisotropic nanoparticles in live cells by integrated multifunctional light-sheet nanoscopy. Mikrochim Acta 2023; 190:54. [PMID: 36642770 PMCID: PMC9841004 DOI: 10.1007/s00604-023-05633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/24/2022] [Indexed: 01/17/2023]
Abstract
An integrated multifunctional light-sheet nanoscopy (iMLSN) combined with differential interference contrast, total internal reflection, epifluorescence, a super-resolution radial fluctuation-stream module, and a wavelength-dependent light sheet was developed to simultaneously realize the six-dimensional (6D) vector-valued (three coordinates + rotational dynamics (azimuth and elevation angles) + transport speed) tracking of anisotropic nanoparticles in single living cells. The wavelength-dependent asymmetric scattering of light by gold nanorods was used to trigger signals depending on the polarizer angle, and real-time photo-switching was achieved by turning the polarizer, obtaining a series of super-resolution images, and tracking using different polarization directions and two channels. This technique was employed to directly observe native gold nanorods (AuNRs; 5 nm diameter × 15 nm length) and surface-functionalized AuNRs during their endocytosis and transport at the upper and attaching side membrane regions of single living cells, revealing that the AuNRs bound to the membrane receptors. The nanorods were subsequently internalized and transported away from the original entry spots. Detailed dynamic information regarding the rotation properties and endocytosis speed during the transmembrane process was also acquired for each region. The developed technique can be considered useful for the real-time monitoring of intracellular transport at various regions in single living cells, as well as for 6D vector-valued non-fluorescence super-resolution imaging and tracking.
Collapse
Affiliation(s)
- Yingying Cao
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-Si, Gyeonggi-Do 17104 Republic of Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-Si, Gyeonggi-Do 17104 Republic of Korea
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, Yongin-Si, Gyeonggi-Do 17104 Republic of Korea
| | - Jong-Young Kwak
- Department of Pharmacology, Ajou University School of Medicine, 164 World Cup-Ro, Yeongtong-Gu, Suwon, 16499 Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-Si, Gyeonggi-Do 17104 Republic of Korea ,Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-Si, Gyeonggi-Do 17104 Republic of Korea
| |
Collapse
|
5
|
Huang Z, Chen G, Deng F, Li Y. Nanostructured Graphdiyne: Synthesis and Biomedical Applications. Int J Nanomedicine 2022; 17:6467-6490. [PMID: 36573204 PMCID: PMC9789722 DOI: 10.2147/ijn.s383707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Graphdiyne (GDY) is a 2D carbon allotrope that features a one-atom-thick network of sp- and sp2-hybridized carbon atoms with high degrees of π conjugation. Due to its distinct electronic, chemical, mechanical, and magnetic properties, GDY has attracted great attention and shown great potential in various fields, such as catalysis, energy storage, and the environment. Preparation of GDY with various nanostructures, including 0D quantum dots, 1D nanotubes/nanowires/nanoribbons, 2D nanosheets/nanowalls/ordered stripe arrays, and 3D nanospheres, greatly improves its function and has propelled its applications forward. High biocompatibility and stability make GDY a promising candidate for biomedical applications. This review introduces the latest developments in fabrication of GDY-based nanomaterials with various morphologies and summarizes their propective use in the biomedical domain, specifically focusing on their potential advantages and applications for biosensing, cancer diagnosis and therapy, radiation protection, and tissue engineering.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Santhamoorthy M, Vy Phan TT, Ramkumar V, Raorane CJ, Thirupathi K, Kim SC. Thermo-Sensitive Poly (N-isopropylacrylamide-co-polyacrylamide) Hydrogel for pH-Responsive Therapeutic Delivery. Polymers (Basel) 2022; 14:polym14194128. [PMID: 36236077 PMCID: PMC9572693 DOI: 10.3390/polym14194128] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Stimuli-response polymeric nanoparticles have emerged as a carrier system for various types of therapeutic delivery. In this study, we prepared a dual pH- and thermo-sensitive copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG), using N-isopropyl acrylamide (NIPAm) and acrylamide (AAm) as comonomers. The synthesized PNIPAm-co-PAAm HG was characterized using various instrumental characterizations. Moreover, the PNIPAm-co-PAAm HG's thermoresponsive phase transition behavior was investigated, and the results showed that the prepared HG responds to temperature changes. In vitro drug loading and release behavior of PNIPAm-co-PAAm HG was investigated using Curcumin (Cur) as the model cargo under different pH and temperature conditions. The PNIPAm-co-PAAm HG showed pH and temperature-responsive drug release behavior and demonstrated about 65% Cur loading efficiency. A nearly complete release of the loaded Cur occurred from the PNIPAm-co-PAAm HG over 4 h at pH 5.5 and 40 °C. The cytotoxicity study was performed on a liver cancer cell line (HepG2 cells), which revealed that the prepared PNIPAm-co-PAAm HG showed good biocompatibility, suggesting that it could be applied as a drug delivery carrier. Moreover, the in vitro cytocompatibility test (MTT assay) results revealed that the PNIPAm-co-PAAm HG is biocompatible. Therefore, the PNIPAm-co-PAAm HG has the potential to be useful in the delivery of drugs in solid tumor-targeted therapy.
Collapse
Affiliation(s)
- Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (M.S.); (K.T.); (S.-C.K.)
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | | | - Kokila Thirupathi
- Department of Physics, Sri Moogambigai College of Arts and Science for Women, Palacode 636808, India
- Correspondence: (M.S.); (K.T.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (M.S.); (K.T.); (S.-C.K.)
| |
Collapse
|
7
|
Manivasagan P, Khan F, Rajan Dhatchayeny D, Park S, Joe A, Han HW, Seo SH, Thambi T, Giang Phan VH, Kim YM, Kim CS, Oh J, Jang ES. Antibody-targeted and streptomycin-chitosan oligosaccharide-modified gold nanoshells for synergistic chemo-photothermal therapy of drug-resistant bacterial infection. J Adv Res 2022:S2090-1232(22)00190-4. [PMID: 36041689 DOI: 10.1016/j.jare.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022] Open
Abstract
Despite the many advanced strategies that are available, rapid gene mutation in multidrug-resistant bacterial infections remains a major challenge. Combining new therapeutic strategies such as chemo-photothermal therapy (PTT) with high antibacterial efficiency against drug-resistant Listeria monocytogenes (LM) is urgently needed. Here, we report synergistic chemo-PTT against drug-resistant LM based on antibody-targeted and streptomycin-chitosan oligosaccharide-modified gold nanoshells (anti-STR-CO-GNSs) as all-in-one nanotheranostic agents for the first time, which was used for accurate antibacterial applications. The anti-STR-CO-GNSs showed excellent photothermal conversion efficiency (31.97%) and were responsive to near-infrared (NIR) and pH dual stimuli-triggered antibiotic release, resulting in outstanding chemo-photothermal effects against LM. In vitro chemo-photothermal effect of anti-STR-CO-GNSs with laser irradiation caused a greater antibacterial effect (1.37%), resulting in more rapid killing of LM and prevention of LM regrowth. Most importantly, the mice receiving the anti-STR-CO-GNSs with laser irradiation specifically at the sites of LM infections healed almost completely, leaving only scars on the surface of the skin and resulting in superior inhibitory effects from combined chemo-PTT. Overall, our findings suggest that chemo-PTT using smart biocompatible anti-STR-CO-GNSs is a favorable potential alternative to combat the increasing threat of drug-resistant LM, which opens a new door for clinical anti-infection therapy in the future.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Fazlurrahman Khan
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Durai Rajan Dhatchayeny
- Department of Information and Communications Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ara Joe
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Hyo-Won Han
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Sun-Hwa Seo
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea; New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea.
| |
Collapse
|
8
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
9
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
10
|
Shi H, Lin S, Wang Y, Lou J, Hu Y, Chen Y, Zhang Q. Ruthenium photosensitizer anchored gold nanorods for synergistic photodynamic and photothermal therapy. Dalton Trans 2022; 51:6846-6854. [PMID: 35438705 DOI: 10.1039/d2dt00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium polypyridyl complexes have been widely used as bioprobes and photosensitizers. However, several disadvantages including slow cellular uptake, nonspecific binding with biomolecules and toxicity limit their applications. In this study, a nanocarrier of human serum albumin coated gold nanorods was developed to deliver a ruthenium photosensitizer for PDT/PTT combination therapy. The HSA coating endowed the nanodrug with high biocompatibility and stability under physiological conditions. Ru-GNR-HSANPs generate 1O2 and hydroxyl radicals to kill cancer cells under blue light irradiation, and exhibit excellent photothermal anticancer effects under 808 nm light irradiation. Significant synergistic anticancer effects were achieved by combined PDT/PTT therapy. Importantly, Ru-GNR-HSANPs can have the synergistic PDT/PTT functions with no need of drug release from the carrier.
Collapse
Affiliation(s)
- Hongdong Shi
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Simin Lin
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yi Wang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Jingxue Lou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yatao Hu
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yuyu Chen
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
11
|
Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta Biomater 2022; 141:408-417. [PMID: 35032718 DOI: 10.1016/j.actbio.2022.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
Given that there is lack of effective therapies for castration-resistant prostate cancer (CRPC), the combination of photothermal (PTT), photodynamic (PDT), and chemical therapy (CT) has emerged as a prominent strategy. Tumor-targeted delivery and controlled release of antitumor drug are key-elements of any combined therapy. Considering these important elements, we designed and constructed tumor microenvironment (TME)-activated nanoprobes (PGP/CaCO3@IR820/DTX-HA). The CaCO3 shell could efficiently entrap the photosensitizer IR820 and the chemotherapeutic docetaxel (DTX) on the surface of pentagonal gold prisms (PGPs) to prevent elimination from the circulation, and it could act as a TME-trigger to achieve TME-responsive drug release. After modification with hyaluronic acid, PGP/CaCO3@IR820/DTX-HA was capable of synergistic TME-triggered PTT/PDT/CT and tumor-targeted delivery. Our in vitro and in vivo studies demonstrate that PGP/CaCO3@IR820/DTX-HA could achieve synergistic antitumor effects following near-infrared (NIR)-light irradiation. In addition, using the NIR fluorescence signal from IR820 and the photoacoustic (PA) signal from PGPs, i.e., through multimodal fluorescence/photoacoustic imaging, we could monitor the in vivo distribution and excretion of PGP/CaCO3@IR820/DTX-HA. Therefore, it can be concluded that PGP/CaCO3@IR820/DTX-HA shows promising clinical translational potential as a treatment for CRPC. STATEMENT OF SIGNIFICANCE: Utilizing pentagonal gold prisms (PGPs), we constructed a multifunctional nanoplatform (PGP/CaCO3@IR820/DTX-HA) for effectively delivering agents into the tumor microenvironment (TME) for the diagnosis and therapy of castration-resistant prostate cancer (CRPC). The synthetic nanoplatform can satisfy TME-activated synergistic photothermal therapy (PTT)/photodynamic therapy (PDT)/chemical therapy (CT) and NIR fluorescence imaging/photoacoustic (PA) imaging. Hyaluronic acid (HA) on the surface of nanoplatform allowed the specific tumor-targeting capacity and biocompatibility. In conclusion, PGP/CaCO3@IR820/DTX-HA could be a promising integrated nanoplatform for CRPC diagnosis and treatment.
Collapse
|
12
|
Emami F, Banstola A, Jeong JH, Yook S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Zhang X, Wei Z, Xue C. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit Rev Food Sci Nutr 2022; 62:8935-8953. [PMID: 34132606 DOI: 10.1080/10408398.2021.1937042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many bioactive ingredients with health effects such as antioxidant, anti-inflammatory and neuroprotective possess low bioavailability due to poor solubility and sensitivity. Fucoidan is an ideal material for encapsulating bioactive ingredients because of its unique physicochemical and biological properties, which can improve the function and application of bioactive ingredients. Nevertheless, there is still a lack of review about the physicochemical properties as well as functionalities of fucoidan and the application of fucoidan-based delivery systems in functional food. Hence, in this review, recent advances on the structure, chemical modification, physicochemical properties and biological activity of fucoidan are summarized. This review systematacially describes the recent update on the fucoidan as a wall material for delivering nutraceuticals with a broad discussion on various types of delivery systems ranging from nanoparticles, nanoparticle/bead complexes, emulsions, edible films, nanocapsules and hydrogels. Futhermore, the technical scientific issues of the application of fucoidan in the field of food are emphasized. On the basis of more comprehensive and deeper understandings, the review ends with a concluding remark on future directions of fucoidan-based delivery systems for purposes. Novel fucoidan-based delivery systems such as aerogels, Pickering emulsions, emulsion-filled-hydrogels, liposomes-in-fucoidan, co-delivery systems of bioactive igredients can be designed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
Hu B, Zhao Z, Gao X, Song X, Xu Z, Xu K, Tang B. Se-modified gold nanorods for enhancing the efficiency of photothermal therapy: avoiding the off-target problem induced by biothiols. J Mater Chem B 2021; 9:8832-8841. [PMID: 34636390 DOI: 10.1039/d1tb01392k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor-targeting gold nanorods (AuNRs) assembled through Au-S bonds have been widely used for photothermal therapy (PTT) via intravenous injection. However, with extended in vivo circulation times, biothiols can replace some S-modified targeting ligands on the surface of the AuNRs, which lowers their targeting efficacy towards cancer cells, resulting in a non-ideal PTT effect. To address this problem, herein, we utilized Se-modified AuNRs to establish a dual functional nanoprobe (Casp-RGD-Se-AuNRs) for improving the therapeutic effect and real-time monitoring of Caspase-9 levels to indicate the degree of cell apoptosis. The experiments demonstrated that the Casp-RGD-Se-AuNRs are better at avoiding interference from biothiols than the S-modified nanoprobe (Casp-RGD-S-AuNRs) for extended blood-circulation times after intravenous injection, significantly improving the PTT efficacy via more effectively targeting cancer cells. Simultaneously, the change of Caspase-9 levels visually shows the degree of apoptosis. Moreover, an in vivo study showed that, compared with the S-modified nanoprobe, the Se-modified nanoprobe exhibits a higher delivery efficiency to the tumor region after intravenous injection (accumulation in the tumor increased by 87%) and a better anticancer efficacy under NIR light irradiation (the tumor inhibition rate increased 6-fold). This work provides a valuable strategy to overcome the off-target problem, and new ideas for avoiding interference by biomolecules during blood circulation.
Collapse
Affiliation(s)
- Bo Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Zengteng Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoxiao Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Zihao Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
16
|
Evaluation of the Targeting and Therapeutic Efficiency of Anti-EGFR Functionalised Nanoparticles in Head and Neck Cancer Cells for Use in NIR-II Optical Window. Pharmaceutics 2021; 13:pharmaceutics13101651. [PMID: 34683944 PMCID: PMC8537270 DOI: 10.3390/pharmaceutics13101651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Gold nanoparticles have been indicated for use in a diagnostic and/or therapeutic role in several cancer types. The use of gold nanorods (AuNRs) with a surface plasmon resonance (SPR) in the second near-infrared II (NIR-II) optical window promises deeper anatomical penetration through increased maximum permissible exposure and lower optical attenuation. In this study, the targeting and therapeutic efficiency of anti-epidermal growth factor receptor (EGFR)-antibody-functionalised AuNRs with an SPR at 1064 nm was evaluated in vitro. Four cell lines, KYSE-30, CAL-27, Hep-G2 and MCF-7, which either over- or under-expressed EGFR, were used once confirmed by flow cytometry and immunofluorescence. Optical microscopy demonstrated a significant difference (p < 0.0001) between targeted AuNRs (tAuNRs) and untargeted AuNRs (uAuNRs) in all four cancer cell lines. This study demonstrated that anti-EGFR functionalisation significantly increased the association of tAuNRs with each EGFR-positive cancer cell. Considering this, the MTT assay showed that photothermal therapy (PTT) significantly increased cancer cell death (>97%) in head and neck cancer cell line CAL-27 using tAuNRs but not uAuNRs, apoptosis being the major mechanism of cell death. This successful targeting and therapeutic outcome highlight the future use of tAuNRs for molecular photoacoustic imaging or tumour treatment through plasmonic photothermal therapy.
Collapse
|
17
|
Li Y, Hu P, Wang X, Hou X, Liu F, Jiang X. Integrin α vβ 3-targeted polydopamine-coated gold nanostars for photothermal ablation therapy of hepatocellular carcinoma. Regen Biomater 2021; 8:rbab046. [PMID: 34457350 PMCID: PMC8387661 DOI: 10.1093/rb/rbab046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Photothermal therapy (PTT) has emerged as a promising cancer therapeutic method. In this study, Arg-Gly-Asp (RGD) peptide-conjugated polydopamine-coated gold nanostars (Au@PDA-RGD NPs) were prepared for targeting PTT of hepatocellular carcinoma (HCC). A polydopamine (PDA) shell was coated on the surface of gold nanostars by the oxidative self-polymerization of dopamine (termed as Au@PDA NPs). Au@PDA NPs were further functionalized with polyethylene glycol and RGD peptide to improve biocompatibility as well as selectivity toward the HCC cells. Au@PDA-RGD NPs showed an intense absorption at 822 nm, which makes them suitable for near-infrared-excited PTT. Our results indicated that the Au@PDA-RGD NPs were effective for the PTT therapy of the αVβ3 integrin receptor-overexpressed HepG2 cells in vitro. Further antitumor mechanism studies showed that the Au@PDA-RGD NPs-based PTT induced human liver cancer cells death via the mitochondrial–lysosomal and autophagy pathways. In vivo experiments showed that Au@PDA-RGD NPs had excellent tumor treatment efficiency and negligible side effects. Thus, our study showed that Au@PDA-RGD NPs could offer an excellent nanoplatform for PTT of HCC.
Collapse
Affiliation(s)
- Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, China
| | - Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, China
| | - Xiali Wang
- Clinical Laboratory, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, China
| | - Xu Hou
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, No. 67 Dongchang West Road, Liaocheng 252000, China
| | - Xiaohong Jiang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, China.,School of Basic Medical Sciences, Shandong University, No.44 Wenhua West Road, Jinan 250012, China
| |
Collapse
|
18
|
Lu Y, Peng Z, Zhu D, Jia Y, Taledaohan A, Li Y, Liu J, Wang Y, Wang Y. RGD Peptide and PAD4 Inhibitor-Loaded Gold Nanorods for Chemo-Photothermal Combined Therapy to Inhibit Tumor Growth, Prevent Lung Metastasis and Improve Biosafety. Int J Nanomedicine 2021; 16:5565-5580. [PMID: 34429600 PMCID: PMC8379711 DOI: 10.2147/ijn.s319210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose A targeted drug delivery system that combines protein-arginine deiminase type-4 (PAD4) inhibitors YW3-56 (356) with PTT of NPs is constructed to both decrease the accumulation of gold in metabolic organs and reduce the dose of chemotherapeutic agents. Patients and Methods In vitro cytotoxicity test and in vivo S180 tumor-bearing mice model were used to compare antitumor activity of 356-modified gold nanospheres and nanorods. The A549 tumor-bearing mice model was also exploited in antitumor assessment. In addition, ICP-MS, blood cell analyzer and blood biochemistry analyzer are applied for assessing the biosafety of NPs. Results Both 356-modified gold nanospheres and nanorods showed antitumor activity. However, 356-loaded gold nanorods are found to have better tumor inhibitory activity than 356-loaded gold nanospheres in the presence of laser and without laser irradiation. Thus, 356-loaded gold nanorods are selected to be applied for chemo-photothermal combined therapy on in vivo. We find that combination therapy could inhibit tumor growth and reduce lung tumor metastasis and inflammatory infiltration compared with individual therapy. It triggers apoptosis in tumor tissue observed by TUNEL assay and TEM pictures. Conclusion Thus, an RGD targeting and PAD4 inhibitor-loaded system are established based on chemo-photothermal combined therapy. It could inhibit tumor growth, prevent lung metastasis and improve biosafety.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Zidong Peng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Yijiang Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Yuanming Li
- Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Jiawang Liu
- Medicinal Chemistry Core, The University of Tennessee Health Science Center, 579 College of Pharmacy Building, Memphis, TN, 38163, USA
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| |
Collapse
|
19
|
Huang WY, Lai CH, Peng SL, Hsu CY, Hsu PH, Chu PY, Feng CL, Lin YH. Targeting Tumor Cells with Nanoparticles for Enhanced Co-Drug Delivery in Cancer Treatment. Pharmaceutics 2021; 13:1327. [PMID: 34575403 PMCID: PMC8465501 DOI: 10.3390/pharmaceutics13091327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) is a fatal malignant tumor, and effective therapies to attenuate its progression are lacking. Nanoparticle (NP)-based solutions may enable the design of novel treatments to eliminate GC. Refined, receptor-targetable NPs can selectively target cancer cells and improve the cellular uptake of drugs. To overcome the current limitations and enhance the therapeutic effects, epigallocatechin-3-gallate (EGCG) and low-concentration doxorubicin (DX) were encapsulated in fucoidan and d-alpha-tocopherylpoly (ethylene glycol) succinate-conjugated hyaluronic acid-based NPs for targeting P-selectin-and cluster of differentiation (CD)44-expressing gastric tumors. The EGCG/DX-loaded NPs bound to GC cells and released bioactive combination drugs, demonstrating better anti-cancer effects than the EGCG/DX combination solution. In vivo assays in an orthotopic gastric tumor mouse model showed that the EGCG/DX-loaded NPs significantly increased the activity of gastric tumors without inducing organ injury. Overall, our EGCG/DX-NP system exerted a beneficial effect on GC treatment and may facilitate the development of nanomedicine-based combination chemotherapy against GC in the future.
Collapse
Affiliation(s)
- Wen-Ying Huang
- Department of Applied Cosmetology, Hung-Kuang University, Taichung 433304, Taiwan;
| | - Chih-Ho Lai
- Molecular Infectious Disease Research Center, Department of Microbiology and Immunology, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 333323, Taiwan;
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan;
| | - Che-Yu Hsu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-Y.H.); (P.-Y.C.)
| | - Po-Hung Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Pei-Yi Chu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-Y.H.); (P.-Y.C.)
| | - Chun-Lung Feng
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-Y.H.); (P.-Y.C.)
- Center for Advanced Pharmaceutics and Drug Delivery Research, Department and Institute of Pharmacology, Institute of Biopharmaceutical Sciences, Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
20
|
Doan VHM, Nguyen VT, Mondal S, Vo TMT, Ly CD, Vu DD, Ataklti GY, Park S, Choi J, Oh J. Fluorescence/photoacoustic imaging-guided nanomaterials for highly efficient cancer theragnostic agent. Sci Rep 2021; 11:15943. [PMID: 34354208 PMCID: PMC8342712 DOI: 10.1038/s41598-021-95660-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Imaging modalities combined with a multimodal nanocomposite contrast agent hold great potential for significant contributions in the biomedical field. Among modern imaging techniques, photoacoustic (PA) and fluorescence (FL) imaging gained much attention due to their non-invasive feature and the mutually supportive characteristic in terms of spatial resolution, penetration depth, imaging sensitivity, and speed. In this present study, we synthesized IR783 conjugated chitosan-polypyrrole nanocomposites (IR-CS-PPy NCs) as a theragnostic agent used for FL/PA dual-modal imaging. A customized FL and photoacoustic imaging system was constructed to perform required imaging experiments and create high-contrast images. The proposed nanocomposites were confirmed to have great biosafety, essentially a near-infrared (NIR) absorbance property with enhanced photostability. The in vitro photothermal results indicate the high-efficiency MDA-MB-231 breast cancer cell ablation ability of IR-CS-PPy NCs under 808 nm NIR laser irradiation. The in vivo PTT study revealed the complete destruction of the tumor tissues with IR-CS-PPy NCs without further recurrence. The in vitro and in vivo results suggest that the demonstrated nanocomposites, together with the proposed imaging systems could be an effective theragnostic agent for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Vu Hoang Minh Doan
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Thi Mai Thien Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dinh Dat Vu
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Gebremedhin Yonatan Ataklti
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jaeyeop Choi
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea.
- Ohlabs Corp., Busan, 48513, Republic of Korea.
| |
Collapse
|
21
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
22
|
Lu KY, Jheng PR, Lu LS, Rethi L, Mi FL, Chuang EY. Enhanced anticancer effect of ROS-boosted photothermal therapy by using fucoidan-coated polypyrrole nanoparticles. Int J Biol Macromol 2020; 166:98-107. [PMID: 33091478 DOI: 10.1016/j.ijbiomac.2020.10.091] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Nanomaterial mediated cancer/tumor photo driven hyperthermia has obtained great awareness. Nevertheless, it is a challenge for improving the hyperthermic efficacy lacking resistance to stimulated thermal stress. We thus developed a bioinspired nano-platform utilizing inclusion complexation between photosensitive polypyrrole (Ppy) nanoparticles (NP) and fucoidan (FU). This FU-Ppy NP proved to be an excellent P-selectin-mediated, lung cancer-cell/tumor targeting delivery and specific accumulation, could augment cancer/tumor oxidative stress levels through producing cellular reactive oxygen species. Potent ROS/photothermal combinational therapeutic effects were exhibited by the bioinspired FU-Ppy NP through a selective P-selectin cancer/tumor targeting aptitude for the lung cancer cells/tumor compared with other nano-formulations. The usage of FU-Ppy NP also involves the potential mechanism of suppressing the biological expression of tumor vascular endothelial growth factor (VEGF). This FU biological macromolecule-amplified photothermally therapeutic nano-platform has promising potential for future medical translation in eradicating numerous tumors.
Collapse
Affiliation(s)
- Kun-Ying Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC; Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC
| | - Fwu-Long Mi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital,111, Sec.3, Xinglong Road, Wenshan District, Taipei 116, Taiwan, ROC.
| |
Collapse
|
23
|
da Silva AB, Rufato KB, de Oliveira AC, Souza PR, da Silva EP, Muniz EC, Vilsinski BH, Martins AF. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int J Biol Macromol 2020; 161:977-998. [DOI: 10.1016/j.ijbiomac.2020.06.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
|
24
|
Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. NANOSCALE ADVANCES 2020; 2:3764-3787. [PMID: 36132791 PMCID: PMC9419294 DOI: 10.1039/d0na00472c] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles (GNPs) have generated keen interest among researchers in recent years due to their excellent physicochemical properties. In general, GNPs are biocompatible, amenable to desired functionalization, non-corroding, and exhibit size and shape dependent optical and electronic properties. These excellent properties of GNPs exhibit their tremendous potential for use in diverse biomedical applications. Herein, we have evaluated the recent advancements of GNPs to highlight their exceptional potential in the biomedical field. Special focus has been given to emerging biomedical applications including bio-imaging, site specific drug/gene delivery, nano-sensing, diagnostics, photon induced therapeutics, and theranostics. We have also elaborated on the basics, presented a historical preview, and discussed the synthesis strategies, functionalization methods, stabilization techniques, and key properties of GNPs. Lastly, we have concluded this article with key findings and unaddressed challenges. Overall, this review is a complete package to understand the importance and achievements of GNPs in the biomedical field.
Collapse
Affiliation(s)
- Suneev Anil Bansal
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University HP India 174103
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI) S. A. S. Nagar Punjab 140306 India
| | - Javad Karimi
- Department of Biology, Faculty of Sciences, Shiraz University Shiraz 71454 Iran
| | - Amrinder Pal Singh
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
| | - Suresh Kumar
- Department of Applied Science, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
| |
Collapse
|
25
|
Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci 2020; 8:5241-5259. [PMID: 32996922 DOI: 10.1039/d0bm01158d] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging anti-tumor immunotherapy has made significant progress in clinical application. However, single immunotherapy is not effective for all anti-tumor treatments, owing to the low objective response rate and the risk of immune-related side effects. Meanwhile, photothermal therapy (PTT) has attracted significant attention because of its non-invasiveness, spatiotemporal controllability and small side effects. Combining PTT with immunotherapy overcomes the issue that single photothermal therapy cannot eradicate tumors with metastasis and recurrence. However, it improves the therapeutic effect of immunotherapy, as the photothermal therapy usually promotes release of tumor-related antigens, triggers immune response by the immunogenic cell death (ICD), thereby, endowing unique synergistic mechanisms for cancer therapy. This review summarizes recent research advances in utilizing nanomedicines for PTT in combination with immunotherapy to improve the outcome of cancer treatment. The strategies include immunogenic cell death, immune agonists and cancer vaccines, immune checkpoint blockades and tumor specific monoclonal antibodies, and small-molecule immune inhibitors. The combination of synergized PTT-immunotherapy with other therapeutic strategies is also discussed.
Collapse
Affiliation(s)
- Tongyi Shang
- The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | | | | | | |
Collapse
|
26
|
Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int J Mol Sci 2020; 21:E6018. [PMID: 32825618 PMCID: PMC7504566 DOI: 10.3390/ijms21176018] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common invasive tumor in women and the second leading cause of cancer-related death. Nanomedicine raises high expectations for millions of patients as it can provide better, more efficient, and affordable healthcare, and it has the potential to develop novel therapeutics for the treatment of solid tumors. In this regard, targeted therapies can be encapsulated into nanocarriers, and these nanovehicles are guided to the tumors through conjugation with antibodies-the so-called antibody-conjugated nanoparticles (ACNPs). ACNPs can preserve the chemical structure of drugs, deliver them in a controlled manner, and reduce toxicity. As certain breast cancer subtypes and indications have limited therapeutic options, this field provides hope for the future treatment of patients with difficult to treat breast cancers. In this review, we discuss the application of ACNPs for the treatment of this disease. Given the fact that ACNPs have shown clinical activity in this clinical setting, special emphasis on the role of the nanovehicles and their translation to the clinic is placed on the revision.
Collapse
Affiliation(s)
- Alberto Juan
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Francisco J. Cimas
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad Oncología Traslacional, 02071 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer-CSIC, IBSAL- Salamanca and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
27
|
Getiren B, Çıplak Z, Gökalp C, Yıldız N. Novel approach in synthesizing ternary GO‐Fe
3
O
4
‐PPy nanocomposites for high Photothermal performance. J Appl Polym Sci 2020. [DOI: 10.1002/app.48837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bengü Getiren
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| | - Zafer Çıplak
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| | - Ceren Gökalp
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| | - Nuray Yıldız
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| |
Collapse
|
28
|
Multimodal theranostics augmented by transmembrane polymer-sealed nano-enzymatic porous MoS 2 nanoflowers. Int J Pharm 2020; 586:119606. [PMID: 32634458 DOI: 10.1016/j.ijpharm.2020.119606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Developing an all-in-one multimodal theranostic platform that can synergistically integrate sensitive photoacoustic (PA) imaging, enhanced photothermal therapy (PTT) and photodynamic therapy (PDT) as well as the nano-enzyme activated chemodynamic therapy (CDT) presents a great challenge for the current nanomedicine design. Herein, a simple hydrothermal method was used to prepare porous molybdenum disulfide (MoS2) nanoflowers. These nanoflowers were assembled by three dimensional (3D)-stacked MoS2 nanosheets with plentiful pores and large surfaces, which thus exhibited enhanced photothermal conversion via light trapping and peroxidase (POD)-like activity via active defects exposure. Consequently, this 3D-MoS2 nanostructure could be well-sealed by polyethylene glycol-polyethylenimine polymer modified with nucleolar translocation signal sequence of the LIM Kinase 2 protein (LNP) via strong electrostatic interaction, which not only benefited to stably deliver anticancer drug doxorubicin (DOX) into the tumor cells for pH/NIR-responsive chemotherapy, but also provided strong photoacoustic, photothermal performances and stimulated generation of reactive oxygen species (ROS) for imaging-guided PTT/PDT/CDT combined therapy. This work promised a simple all-in-one multimodal theranostic platform to augment the potential antitumoral therapeutic outcomes.
Collapse
|
29
|
Tran PHL, Tran TTD. Current Designs and Developments of Fucoidan-based Formulations for Cancer Therapy. Curr Drug Metab 2020; 20:933-941. [PMID: 31589118 DOI: 10.2174/1389200220666191007154723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Natural nanostructure materials have been involved in antitumor drug delivery systems due to their biocompatibility, biodegradation, and bioactive properties. METHODS These materials have contributed to advanced drug delivery systems in the roles of both bioactive compounds and delivery nanocarriers. Fucoidan, a valuable ocean material used in drug delivery systems, has been exploited in research on cancer and a variety of other diseases. RESULTS Although the uniqueness, structure, properties, and health benefits of fucoidan have been mentioned in various prominent reviews, current developments and designs of fucoidan-based formulations still need to be assessed to further develop an effective anticancer therapy. In this review, current important formulations using fucoidan as a functional material and as an anticancer agent will be discussed. This article will also provide a brief principle of the methods that incorporate functional nanostructure materials in formulations exploiting fucoidan. CONCLUSION Current research and future perspectives on the use of fucoidan in anticancer therapy will advance innovative and important products for clinical uses.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
30
|
Etman SM, Elnaggar YS, Abdallah OY. “Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring”. Int J Biol Macromol 2020; 147:799-808. [DOI: 10.1016/j.ijbiomac.2019.11.191] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
|
31
|
Pinto RJB, Bispo D, Vilela C, Botas AMP, Ferreira RAS, Menezes AC, Campos F, Oliveira H, Abreu MH, Santos SAO, Freire CSR. One-Minute Synthesis of Size-Controlled Fucoidan-Gold Nanosystems: Antitumoral Activity and Dark Field Imaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1076. [PMID: 32121128 PMCID: PMC7084562 DOI: 10.3390/ma13051076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles (AuNPs) are one of the most studied nanosystems with great potential for biomedical applications, including cancer therapy. Although some gold-based systems have been described, the use of green and faster methods that allow the control of their properties is of prime importance. Thus, the present study reports a one-minute microwave-assisted synthesis of fucoidan-coated AuNPs with controllable size and high antitumoral activity. The NPs were synthesized using a fucoidan-enriched fraction extracted from Fucus vesiculosus, as the reducing and capping agent. The ensuing monodispersed and spherical NPs exhibit tiny diameters between 5.8 and 13.4 nm for concentrations of fucoidan between 0.5 and 0.05% (w/v), respectively, as excellent colloidal stability in distinct solutions and culture media. Furthermore, the NPs present antitumoral activity against three human tumor cell lines (MNT-1, HepG2, and MG-63), and flow cytometry in combination with dark-field imaging confirmed the cellular uptake of NPs by MG-63 cell line.
Collapse
Affiliation(s)
- Ricardo J. B. Pinto
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (D.B.); (C.V.); (S.A.O.S.)
| | - Daniela Bispo
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (D.B.); (C.V.); (S.A.O.S.)
| | - Carla Vilela
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (D.B.); (C.V.); (S.A.O.S.)
| | - Alexandre M. P. Botas
- Phantom-G, Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.P.B.); (R.A.S.F.)
| | - Rute A. S. Ferreira
- Phantom-G, Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.P.B.); (R.A.S.F.)
| | - Ana C. Menezes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.); (F.C.); (H.O.)
| | - Fábio Campos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.); (F.C.); (H.O.)
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.); (F.C.); (H.O.)
| | - Maria H. Abreu
- ALGAplus—Prod. e Comerc. De Algas e Seus Derivados, Lda., 3830-196 Ílhavo, Portugal;
| | - Sónia A. O. Santos
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (D.B.); (C.V.); (S.A.O.S.)
| | - Carmen S. R. Freire
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (D.B.); (C.V.); (S.A.O.S.)
| |
Collapse
|
32
|
Fucoidan-based nanostructures: A focus on its combination with chitosan and the surface functionalization of metallic nanoparticles for drug delivery. Int J Pharm 2020; 575:118956. [DOI: 10.1016/j.ijpharm.2019.118956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
|
33
|
Lei S, He Z, Chen T, Guo X, Zeng Z, Shen Y, Jiang J. Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:470. [PMID: 31747939 PMCID: PMC6868788 DOI: 10.1186/s13046-019-1388-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. METHODS In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. RESULTS linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. CONCLUSION The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Shan Lei
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China.,Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Zhirui Zeng
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Yiyi Shen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China. .,Hubei Key Laboratory of Digestive System Disease of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
34
|
Zhang H, Wang Y, Zhong H, Li J, Ding C. Near-Infrared Light-Activated Pt@Au Nanorings-Based Probe for Fluorescence Imaging and Targeted Photothermal Therapy of Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:5012-5020. [DOI: 10.1021/acsabm.9b00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hui Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P.R. China
| | - Yiming Wang
- College of Sciences, Northeastern University, Shenyang 110004, P.R. China
| | - Hua Zhong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jie Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
35
|
Manivasagan P, Nguyen VT, Jun SW, Hoang G, Mondal S, Kim H, Doan VHM, Kim J, Kim CS, Oh J. Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. J Control Release 2019; 311-312:26-42. [DOI: 10.1016/j.jconrel.2019.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
|
36
|
Farahavar G, Abolmaali SS, Gholijani N, Nejatollahi F. Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. Biomater Sci 2019; 7:4000-4016. [PMID: 31355391 DOI: 10.1039/c9bm00931k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent advances in nanotechnology, such as the development of various types of nanoparticles and hybrid nanomaterials, have revolutionized nanomedicine. The small size, customizable surface, enhanced solubility, and multi-functionality endow the nanoparticles with an ability to interact with complex cellular and biological functions in new ways. Furthermore, these systems can deliver drugs to specific tissues and provide a targeted therapy. For this purpose, different categories of molecules, particularly antibodies, have been used as ligands. Antibody-conjugated nanomaterials can significantly enhance the efficiency of nanomedicines, especially in the field of cancer. This review is focused on three major medical applications of antibody-conjugated nanomaterials, namely, therapeutic, diagnostic and theranostic applications. To provide comprehensive information on the topic and an overview of these hybrid nanomaterials for biomedical applications, a brief summary of nanomaterials and antibodies is given. Moreover, the review has depicted the potential applications of antibody-conjugated nanomaterials in different fields and their capabilities to empower nanomedicine, particularly in relation to the treatment and detection of malignancies.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Foroogh Nejatollahi
- Shiraz HIV/AIDS research center, Institute of health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Manivasagan P, Hoang G, Santha Moorthy M, Mondal S, Minh Doan VH, Kim H, Vy Phan TT, Nguyen TP, Oh J. Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy. Carbohydr Polym 2019; 211:360-369. [DOI: 10.1016/j.carbpol.2019.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
|
38
|
Zhang Y, Chang J, Huang F, Yang L, Ren C, Ma L, Zhang W, Dong H, Liu J, Liu J. Acid-Triggered in Situ Aggregation of Gold Nanoparticles for Multimodal Tumor Imaging and Photothermal Therapy. ACS Biomater Sci Eng 2019; 5:1589-1601. [PMID: 33405632 DOI: 10.1021/acsbiomaterials.8b01623] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photothermal agents with high photothermal transfer efficiencies in the near-infrared (NIR) region are important for enhanced photothermal therapy (PTT) of tumors. Herein, we developed a strategy for the acid-triggered in situ aggregation of a system based on peptide-conjugated gold nanoparticles (GNPs). In an acidic environment, the GNPs formed large aggregates in solution, in cell lysates, and in tumor tissues, as observed by transmission electron microscopy (TEM). As a consequence of the aggregation, their UV-vis absorbance in the NIR region was greatly increased, and laser irradiation of the GNPs resulted in a dramatic increase in the temperatures of solutions and tumors that contained the GNP system. When exposed to NIR irradiation, the aggregates formed by the GNP system under acidic conditions were capable of producing a sufficient level of hyperthermia to destroy cancer cells both in vitro and in vivo. Interestingly, the GNP aggregates showed enhanced properties in multiple imaging modalities, including computed tomography (CT), photoacoustic (PA), and photothermal (PT) imaging. Thus, we have developed a novel probe for enhanced multimodal tumor imaging. These findings prove that a strategy involving the acid-triggered in situ aggregation of a GNP system can increase the photothermal transfer efficiency for low to high energy conversion, thus boosting the therapeutic specificity and antitumor efficacy of PTT and facilitating multimodal imaging.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Jinglin Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Lin Ma
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, PR China
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| |
Collapse
|
39
|
Jin N, Zhang Q, Yang M, Yang M. Detoxification and functionalization of gold nanorods with organic polymers and their applications in cancer photothermal therapy. Microsc Res Tech 2019; 82:670-679. [DOI: 10.1002/jemt.23213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Na Jin
- Institute of Applied Bioresource, College of Animal SciencesZhejiang University Zhejiang Hangzhou People's Republic of China
| | - Qing Zhang
- School of Materials Science and EngineeringZhejiang University Zhejiang Hangzhou People's Republic of China
| | - Manyi Yang
- Institute of Applied Bioresource, College of Animal SciencesZhejiang University Zhejiang Hangzhou People's Republic of China
| | - Mingying Yang
- Institute of Applied Bioresource, College of Animal SciencesZhejiang University Zhejiang Hangzhou People's Republic of China
| |
Collapse
|
40
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
41
|
Li D. AIEgen functionalized inorganic–organic hybrid nanomaterials for cancer diagnosis and therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00411d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIEgen functionalized inorganic–organic hybrid nanomaterials with multifunctions can be used for cancer diagnosis and imaging-guided synergistic therapy.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Automobile Materials of MOE
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
42
|
Phan TTV, Bui NQ, Cho SW, Bharathiraja S, Manivasagan P, Moorthy MS, Mondal S, Kim CS, Oh J. Photoacoustic Imaging-Guided Photothermal Therapy with Tumor-Targeting HA-FeOOH@PPy Nanorods. Sci Rep 2018; 8:8809. [PMID: 29891947 PMCID: PMC5995888 DOI: 10.1038/s41598-018-27204-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer theragnosis agents with both cancer diagnosis and therapy abilities would be the next generation of cancer treatment. Recently, nanomaterials with strong absorption in near-infrared (NIR) region have been explored as promising cancer theragnosis agents for bio-imaging and photothermal therapy (PTT). Herein, we reported the synthesis and application of a novel multifunctional theranostic nanoagent based on hyaluronan (HA)-coated FeOOH@polypyrrole (FeOOH@PPy) nanorods (HA-FeOOH@PPy NRs) for photoacoustic imaging (PAI)-guided PTT. The nanoparticles were intentionally designed with rod-like shape and conjugated with tumor-targeting ligands to enhance the accumulation and achieve the entire tumor distribution of nanoparticles. The prepared HA-FeOOH@PPy NRs showed excellent biocompatible and physiological stabilities in different media. Importantly, HA-FeOOH@PPy NRs exhibited strong NIR absorbance, remarkable photothermal conversion capability, and conversion stability. Furthermore, HA-FeOOH@PPy NRs could act as strong contrast agents to enhance PAI, conducting accurate locating of cancerous tissue, as well as precise guidance for PTT. The in vitro and in vivo photothermal anticancer activity results of the designed nanoparticles evidenced their promising potential in cancer treatment. The tumor-bearing mice completely recovered after 17 days of PTT treatment without obvious side effects. Thus, our work highlights the great potential of using HA-FeOOH@PPy NRs as a theranostic nanoplatform for cancer imaging-guided therapy.
Collapse
Affiliation(s)
- Thi Tuong Vy Phan
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nhat Quang Bui
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Subramaniyan Bharathiraja
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Panchanathan Manivasagan
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Madhappan Santha Moorthy
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
43
|
Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Nguyen TP, Kim H, Phan TTV, Lee KD, Oh J. Biocompatible Chitosan Oligosaccharide Modified Gold Nanorods as Highly Effective Photothermal Agents for Ablation of Breast Cancer Cells. Polymers (Basel) 2018; 10:E232. [PMID: 30966267 PMCID: PMC6415155 DOI: 10.3390/polym10030232] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 12/13/2022] Open
Abstract
Photothermal therapy (PTT) using biocompatible nanomaterials have recently attracted much attention as a novel candidate technique for cancer therapy. In this work we report the performance of newly synthesized multidentate chitosan oligosaccharide modified gold nanorods (AuNRs-LA-COS) as novel agents for PTT of cancer cells due to their excellent biocompatibility, photothermal stability, and high absorption in the near-infrared (NIR) region. The AuNRs-LA-COS exhibit a strong NIR absorption peak at 838 nm with a mean length of 26 ± 3.1 nm and diameter of 6.8 ± 1.7 nm, respectively. The temperature of AuNRs-LA-COS rapidly reached 52.6 °C for 5 min of NIR laser irradiation at 2 W/cm². The AuNRs-LA-COS had very low cytotoxicity and exhibited high efficiency for the ablation of breast cancer cells in vitro. The tumor-bearing mice were completely ablated without tumor recurrence after photothermal treatment with AuNRs-LA-COS (25 µg/mL) under laser irradiation. In summary, this study demonstrated that AuNRs-LA-COS with laser irradiation as novel agents pave an alternative way for breast cancer therapy and hold great promise for clinical trials in the near future.
Collapse
Affiliation(s)
| | | | | | - Sudip Mondal
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Thanh Phuoc Nguyen
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 48513, Korea.
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Thi Tuong Vy Phan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine, 262 Gamcheon-ro, Seo-Gu, Busan 602-702, Korea.
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
44
|
Wang C, Xu C, Xu L, Sun C, Yang D, Xu J, He F, Gai S, Yang P. A novel core-shell structured upconversion nanorod as a multimodal bioimaging and photothermal ablation agent for cancer theranostics. J Mater Chem B 2018; 6:2597-2607. [PMID: 32254478 DOI: 10.1039/c7tb02842c] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A multifunctional core-shell nanocomposite based on noble metal plasmons coated with upconversion material has emerged as a promising cancer theranostics nanoplatform that integrates properties such as multimodal imaging, photothermal effects, good biocompatibility, and efficient therapy. However, a reasonable combination of plasmons and upconversion materials, as well as increased penetration depth, has always challenged the anti-cancer efficiency. Here, a unique kind of fluorescent thermal-magnetic resonance core-shell upconversion nanostructure has been designed and fabricated to simultaneously achieve photothermal therapy (PTT) and multimodal imaging. Gold nanorods (GNRs) are used as the plasmon cores and NaGdF4 with rare-earth Yb3+/Er3+ ions co-doping are used as the upconversion luminescence (UCL) shells, merging into upconversion nanorods (UCNRs) of GNRs@NaGdF4:Yb3+,Er3+. An NaGdF4 shell synthesized by a hydrothermal method can substitute for the cetyltrimethylammonium bromide (CTAB) on the surface of GNRs, which offers the benefits of reducing toxicity and increasing biocompatibility. More significantly, the red and green emission of Yb3+/Er3+ couples convert near-infrared (NIR) into visible light, appropriately overlapping with absorbance of GNRs, which improves the photothermal conversion efficiency. Meanwhile, we designed small and low-aspect-ratio GNR cores for the absorption of UCNRs in vivo. Verification with evidence from in vivo and in vitro assays shows that these core-shell UCNRs exhibit a talented potential application in multimodal bioimaging and PTT.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhu F, Tan G, Jiang Y, Yu Z, Ren F. Rational design of multi-stimuli-responsive gold nanorod–curcumin conjugates for chemo-photothermal synergistic cancer therapy. Biomater Sci 2018; 6:2905-2917. [DOI: 10.1039/c8bm00691a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The as-prepared Au NR@Curcumin exhibited significant contribution to chemo-photothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Falian Zhu
- Department of Pharmacy
- Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
| | - Guozhu Tan
- Department of Pharmacy
- Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
| | - Yaodong Jiang
- Department of Urology
- Nanfang Hospital
- Southern Medical University
- Guangzhou, 510515
- China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences
- Guangdong Provincial Key Laboratory of New Drug Screening
- Southern Medical University
- Guangzhou, 510515
- China
| | - Fei Ren
- Department of Pharmacy
- Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
| |
Collapse
|
46
|
Kim H, Nguyen VP, Manivasagan P, Jung MJ, Kim SW, Oh J, Kang HW. Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors. Oncotarget 2017; 8:113719-113733. [PMID: 29371941 PMCID: PMC5768358 DOI: 10.18632/oncotarget.23092] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
The current research demonstrates the feasible biomedical application of AuNPs coated with doxorubicin (Dox)-loaded fucoidan (Fu) for dual-chemotherapy and photothermal treatment (PTT) on eye tumors in vitro and in vivo. Marine-derived Fu was used as a capping agent to achieve high photostability for AuNPs, and Dox as a FDA-approved anti-cancer drug was added to induce chemotherapy. The synthesized Dox-Fu@AuNPs exhibited high cytotoxicity on the tumor cells and strong light absorption for temperature increase in vitro. After intratumoral injection of Dox-Fu@AuNPs in the rabbit eye tumors, PTT-assisted Dox-Fu@AuNPs entailed the complete removal of the eye tumors without recurrence for 14 days after the treatment. Photoacoustic image contrast from the tumor regions was enhanced due to selective light absorption by the administered Dox-Fu@AuNPs. Therefore, the proposed Dox-Fu@AuNPs can be a potential nano-theranostic material for treating and diagnosing the eye tumors.
Collapse
Affiliation(s)
- Hyejin Kim
- Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Pukyong National University, Busan, South Korea
| | - Van Phuc Nguyen
- Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Pukyong National University, Busan, South Korea
| | - Panchanathan Manivasagan
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea
| | - Min Jung Jung
- Department of Pathology, Kosin University College of Medicine, Busan, South Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, South Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Pukyong National University, Busan, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Pukyong National University, Busan, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea
| |
Collapse
|
47
|
Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Seo H, Dae Lee K, Oh J. Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol 2017; 38:745-761. [PMID: 29124966 DOI: 10.1080/07388551.2017.1398713] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent years, marine natural pigments have emerged as a powerful alternative in the various fields of food, cosmetic, and pharmaceutical industries because of their excellent biocompatibility, bioavailability, safety, and stability. Marine organisms are recognized as a rich source of natural pigments such as chlorophylls, carotenoids, and phycobiliproteins. Numerous studies have shown that marine natural pigments have considerable medicinal potential and promising applications in human health. In this review, we summarize the marine natural pigments as potential sources for therapeutic applications, including: antioxidant, anticancer, antiangiogenic, anti-obesity, anti-inflammatory activities, drug delivery, photothermal therapy (PTT), photodynamic therapy (PDT), photoacoustic imaging (PAI), and wound healing. Marine natural pigments will offer a better platform for future theranostic applications.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Subramaniyan Bharathiraja
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Madhappan Santha Moorthy
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Sudip Mondal
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Hansu Seo
- b Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus) , Pukyong National University , Busan , Republic of Korea
| | - Kang Dae Lee
- c Department of Otolaryngology Head and Neck Surgery , Kosin University Gospel Hospital, Kosin University College of Medicine , Busan , Republic of Korea
| | - Junghwan Oh
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea.,b Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus) , Pukyong National University , Busan , Republic of Korea
| |
Collapse
|