1
|
Li X, Zhang M, Zhang H, Wang Z, Zhang H. Upconversion nanoparticle-based fluorescence resonance energy transfer sensing platform for the detection of cathepsin B activity in vitro and in vivo. Mikrochim Acta 2023; 190:181. [PMID: 37046118 DOI: 10.1007/s00604-023-05771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
A simple fluorescence resonance energy transfer (FRET) sensing platform (termed as USP), comprised of upconversion nanoparticles (UCNPs) as the energy donor and Cy5 as the energy acceptor, has been synthesized for cathepsin B (CTSB) activity detection in vitro and in vivo. When Cy5-modified peptide substrate (peptide-Cy5) of CTSB is covalently linked on the surface of UCNPs, the FRET between the UCNPs (excitation: 980 nm; emission: 541 nm/655 nm) and Cy5 (excitation: 645 nm) leads to a reduction in the red upconversion luminescence (UCL) signal intensity of UCNPs. Cy5 can be liberated from UCNPs in the presence of CTSB through the cleavage of peptide-Cy5 by CTSB, leading to the recovery of the red UCL signal of UCNPs. Because the green UCL signal of UCNPs remains constant during the CTSB digestion, it can be considered as an internal reference. The findings demonstrate the ability of USP to detect CTSB with the linear detection ranges of 1 to 100 ng·mL-1 in buffer and 2 × 103 to 1 × 105 cells in 0.2 mL cell lysates. The limits of detection (LODs) are 0.30 ng·mL-1 in buffer and 887 cells in 0.2 mL of cell lysates (S/N = 3). The viability of USP to detect CTSB activity in tumor-bearing mice is has further been investigated using in vivo fluorescent imaging.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Meiling Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
2
|
Decorating rare-earth fluoride upconversion nanoparticles on AuNRs@Ag core–shell structure for NIR light-mediated photothermal therapy and bioimaging. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Ansari AA, Parchur AK, Labis JP, Shar MA, Khan A. Highly hydrophilic CaF2:Yb/Er upconversion nanoparticles: Structural, morphological, and optical properties. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020; 18:154. [PMID: 33121496 PMCID: PMC7596946 DOI: 10.1186/s12951-020-00713-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Haojie Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Hao Shi
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haitao Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin,, 300350, China
| | - Mengxi Zhu
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
5
|
Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors. Acta Biomater 2020; 104:167-175. [PMID: 31923719 DOI: 10.1016/j.actbio.2020.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Currently, it is still a great challenge to develop tumor targeting nanoparticles with high sensitivity and high resolution for improving the non-invasive detection ability of colorectal cancer (CRC) at an early stage. In this study, NaErF4:Yb@NaGdF4:Yb core@shell upconversion nanoparticles (UCNPs) were prepared with high upconversion luminescence (UCL) emission in red light region through adjusting the doping ratios of Er and Yb elements in the core. For biomedical applications, the carboxyl-terminated silica shell was introduced to transfer the as-prepared UCNPs from the organic phase to the aqueous phase, and allowed conjugation with peptide ligands derived from the l-SP5 peptide (i.e., l-SP5-H and l-SP5-C), respectively. Due to the tumor-targeting affinity of the PSP motif in the peptide ligands, the as-prepared peptide functionalized UCNPs (UCNP@SiO2-l-SP5-H and UCNP@SiO2-l-SP5-C) can be used as an active tumor targeting contrast agents for UCL/T1-weighted magnetic resonance (MR) dual-mode imaging. Both the in vitro and in vivo experimental results demonstrated that UCNP@SiO2-l-SP5-C has relatively high affinity for the HCT116 CRC subtype. Moreover, UCNP@SiO2-l-SP5-C can visualize ultra-small subcutaneous xenografted HCT116 tumors (c.a. 13 mm3 in volume) by in vivo UCL imaging. STATEMENT OF SIGNIFICANCE: 1. High red emission UCNPs were synthesized for tumor-targeting dual-mode bioimaging. 2. With tumor-binding affinity peptide, UCNP@SiO2-l-SP5-C shows high HCT116 tumor targeting ability. 3. UCNP@SiO2-l-SP5-C successfully achieves sensitive detection of ultrasmall HCT116 tumors.
Collapse
|
6
|
Chen Y, Fei X, Ye C, Qian Q, Ye Z, Xie S, Chen J, Zhu M, Ran N, Hou M, Xu L, Yu Z. Acute hepatotoxicity of multimodal targeted imaging contrast agent NaLuF 4:Gd,Yb,Er-PEG/PEI-FA in mice. J Toxicol Sci 2020; 44:621-632. [PMID: 31474743 DOI: 10.2131/jts.44.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the past few decades, upconversion nanoparticles (abbreviated as UCNPs) have been more widely applied in the biomedical fields, such as in vitro and in vivo upconversion fluorescent bioimaging, photodynamic therapy, biological macromolecular detection, imaging mediated drug delivery and so on. But meanwhile, there is still not much research on the acute toxicity of upconversion nanoparticles in vivo, such as acute hepatotoxicity. In this work, we studied the in vivo biodistribution and acute hepatotoxicity of multimodal targeted contrast agent NaLuF4:Gd,Yb,Er-PEG/PEI-FA nanoprobe, which were synthesized by the solvothermal method and modified with Polyethylene glycol (PEG), Polyetherimide (PEI), folic acid (FA) on the surface. The acute hepatotoxicity in mice was systematically assessed after tail vein injection of different concentration of UCNPs. The results showed that NaLuF4:Gd,Yb,Er-PEG/PEI-FA nanoparticles with an average diameter of 44.5 ± 10.4 nm, and three typical upconversion fluorescence emission bands at 520 nm, 540 nm and 660 nm under the excitation of 980 nm laser. In vivo distribution experiments results demonstrated that approximately 87% of UCNPs injected through the tail vein accumulate in the liver. In the acute hepatotoxicity test, the intravenously injection dose of UCNPs was 10, 40, 70 and 100 mg/kg, respectively. The body weight, blood routine, serum biochemistry, histomorphology and liver oxidative stress were detected and observed no significant acute hepatotoxicity damage under the injection dose of 100 mg/kg. In conclusion, NaLuF4:Gd,Yb,Er-PEG/PEI-FA nanoprobes are safe and reliable, and have potential applications in the field of tumor targeted multimodal imaging.
Collapse
Affiliation(s)
- Yuan Chen
- School of Medicine, Shaoxing University, China
| | - Xiaoxiao Fei
- Cixi Maternity & Child Health Care Hospital, China
| | - Chenqiao Ye
- School of Medicine, Shaoxing University, China
| | | | - Zhiqiu Ye
- School of Medicine, Shaoxing University, China
| | - Siqi Xie
- School of Medicine, Shaoxing University, China
| | - Jiamin Chen
- School of Medicine, Shaoxing University, China
| | | | - Na Ran
- School of Medicine, Shaoxing University, China
| | - Mingsheng Hou
- Shaoxing Hospital of Traditional Chinese Medicine, China
| | - Lin Xu
- Affiliated Hospital of Shaoxing University, China
| | - Zhangsen Yu
- School of Medicine, Shaoxing University, China
| |
Collapse
|
7
|
Chen Z, Liu G, Zhang X, Sui J, Dong X, Yu W, Song C. Synthesis of multifunctional rare-earth fluoride/Ag nanowire nanocomposite for efficient therapy of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109940. [DOI: 10.1016/j.msec.2019.109940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023]
|
8
|
Chen Z, Liu G, Cui Z, Liu Q, Hong F, Yu W, Dong X, Song C. Fabrication of NaYF 4:Yb 3+,Tm 3+-modified Ag nanocubes with upconversion luminescence and photothermal conversion properties. RSC Adv 2019; 9:20778-20785. [PMID: 35515559 PMCID: PMC9065802 DOI: 10.1039/c9ra03852c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022] Open
Abstract
Herein, uniform Ag nanocube@NaYF4:Yb3+,Tm3+ multifunctional nanocomposites were constructed by a facile synthetic strategy. Following the successful synthesis of Ag nanocubes, cubic phase NaYF4:Yb3+,Tm3+ upconversion luminescent nanocrystals were modified on the surface of the Ag nanocubes, enhanced the mutual assistance of energy and versatility of the materials. Upon irradiation with a near-infrared laser, the nanocomposites exhibited excellent upconversion fluorescence and good photothermal conversion capability. Furthermore, the potential biological applications and biosafety of the Ag@NaYF4:Yb3+,Tm3+ nanocomposites were also demonstrated; the obtained nanocomposites could achieve a good bactericidal performance and photothermal treatment of cancer cells, and they could be potentially applied in the biomedical field as a promising agent. Furthermore, this method provides a facile approach for synthesizing a multifunctional nanocomposite with different properties. Ag nanocubes@NaYF4:Yb3+,Tm3+ multifunctional nanocomposites with florescence and photothermal ability are fabricated by a facile strategy, which enhance the mutual assistance of energy and biological application.![]()
Collapse
Affiliation(s)
- Ziyu Chen
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology Changchun 130022 P. R. China +86-431-85383815 +86-431-85582574
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology Changchun 130022 P. R. China +86-431-85383815 +86-431-85582574
| | - Zhenhai Cui
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130021 P. R. China
| | - Qixin Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology Changchun 130022 P. R. China +86-431-85383815 +86-431-85582574
| | - Feng Hong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology Changchun 130022 P. R. China +86-431-85383815 +86-431-85582574
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology Changchun 130022 P. R. China +86-431-85383815 +86-431-85582574
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology Changchun 130022 P. R. China +86-431-85383815 +86-431-85582574
| | - Chao Song
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology Changchun 130022 P. R. China +86-431-85383815 +86-431-85582574
| |
Collapse
|
9
|
He K, Chen H, Wu C, Liu M, Zhang Y. An l-cysteine-mediated iodide-catalyzed reaction for the detection of I −. NEW J CHEM 2019. [DOI: 10.1039/c8nj04944k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a highly selective and eco-friendly fluorescent sensor consisting of upconversion (UCNPs) and gold nanoparticles (AuNPs) was developed for the detection of iodide (I−).
Collapse
Affiliation(s)
- Kaili He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University
- Changsha 410081
- P. R. China
| | - Hongyu Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University
- Changsha 410081
- P. R. China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University
- Changsha 410081
- P. R. China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University
- Changsha 410081
- P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University
- Changsha 410081
- P. R. China
| |
Collapse
|
10
|
Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Yu Z, Xia Y, Xing J, Li Z, Zhen J, Jin Y, Tian Y, Liu C, Jiang Z, Li J, Wu A. Y 1-receptor-ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. NANOSCALE 2018; 10:17038-17052. [PMID: 29850734 DOI: 10.1039/c8nr02387e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Achieving efficient photodynamic therapy (PDT) in deeper biological tissue is still the biggest bottleneck that limits its widespread application in clinic. Although deeper biological tissue PDT could be realized through a combination of upconversion nanoparticles with a photosensitizer, issues with particle-size-induced upconversion fluorescence (UF) reduction and the related in vivo toxicity still cannot be solved properly. In this study, we synthesized Y1Rs-ligand [Pro30, Nle31, Bpa32, Leu34]NPY(28-36) (NPY)-modified and photosensitizer MC540-loaded LiLuF4:Yb,Er@nLiGdF4@mSiO2 multifunctional nanocomposites (MNPs) with a core-multishell structure and ultrasmall size. Their in vitro and in vivo breast tumor targeting, trimodality imaging performance, PDT therapeutic efficacy, and acute toxicity were evaluated. Our results demonstrated that the core-multishell MNPs(MC540) could achieve excellent UF imaging, and that doping with Gd3+ and Lu3+ rare earth ions could enhance the MR and CT imaging performance. In addition, the mSiO2 shell provided a higher loading rate for the photosensitizer MC540, and the DSPE-PEG thin layer coating outside the MNPs(MC540) further improved the water solubility and biocompatibility, reducing the acute toxicity of the nanocomposites. Finally, the NPY modification enhanced the targetability of MNPs(MC540)/DSPE-PEG-NPY to breast tumors, improving the trimodality UF, CT, and MR imaging performance and PDT efficacy for Y1-receptor-overexpressed breast cancer. In general, our developed multifunctional nanocomposites can serve as a theranostic agent with low toxicity, providing great potential for their use in clinical breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zhangsen Yu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xiang LJ, Zhu XJ, Zhang HH, Yang L, Deng KX, Liu Y, Ye MS, Hu L, Yang XY, Zhou HP. A water-soluble, upconverting Sr 2Yb 0.3Gd 0.7F 7:Er 3+/Tm 3+@PSI oAm bio-probe for in vivo trimodality imaging. NANOSCALE 2018; 10:14414-14420. [PMID: 29897095 DOI: 10.1039/c8nr03220c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multi-modality in vivo bioimaging has great renown for offering more comprehensive information in medical diagnosis and research. Incorporating different bioimaging capabilities into one biocompatible nanoprobe requires an elegant structural design. Considering optical and magnetic properties, X-ray absorption ability, and clinical safety, we prepared a water-soluble and upconverting PSIoAm-modified Sr2Yb0.3Gd0.7F7:Er3+/Tm3+ bio-probe that not only had high photostability and excellent cell membrane permeability, but could also distinguish the four types of cancer cells and normal cells tested within the scope of our study. What's more, it could realize the in vivo trimodality imaging of upconversion fluorescence, X-ray computed tomography and magnetic resonance. The histological analysis of visceral sections further demonstrated that the multifunctional bio-probe was highly safe, which could be applied to clinical diagnosis.
Collapse
Affiliation(s)
- Li-Jun Xiang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, 230601, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ren H, Long Z, Shen X, Zhang Y, Sun J, Ouyang J, Na N. Sandwich DNA Hybridization Fluorescence Resonance Energy-Transfer Strategy for miR-122 Detection by Core-Shell Upconversion Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25621-25628. [PMID: 29969017 DOI: 10.1021/acsami.8b03429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An upconversion nanoparticle (UCNP)-based fluorescence resonance energy-transfer (FRET) strategy is normally restricted by the complicated preparations, low energy-transfer efficiency, and the challenge on improving specificity. Herein, simple DNA-functionalized UCNPs were designed as energy donors for constructing a FRET-based probe to detect the liver-specific microRNA 122 (miR-122). To improve FRET efficiency, UCNPs were constructed with confined core-shell structures, in which emitting ions were precisely located in the thin shell to make them close enough to external energy acceptors. Subsequently, capture DNA was simply functionalized on the outer surface of UCNPs based on ligand exchange that contributed to shortening the energy-transfer distance without extra modification. To gain high specificity, the donor-to-acceptor distance of FRET was controlled by a sandwich DNA hybridization structure using two shorter DNAs with designed complementary sequences (capture DNA and dye-labeled report DNA) to capture the longer target of miR-122. Therefore, the sensitive detection of miR-122 was achieved based on the decreased signals of UCNPs and the increased signals of the dye labeled on reported DNA. With good biocompatibility, this method has been further applied to cancer cell imaging and in vivo imaging, which opened up a new avenue to the sensitive detection and imaging of microRNA in biological systems.
Collapse
Affiliation(s)
- Hong Ren
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
- The Aerospace City School of the High School Affiliated to Renmin University of China , Beijing 100087 , China
| | - Zi Long
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Xiaotong Shen
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jianghui Sun
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
14
|
Feng Y, Chen H, Shao B, Zhao S, Wang Z, You H. Renal-Clearable Peptide-Functionalized Ba 2GdF 7 Nanoparticles for Positive Tumor-Targeting Dual-Mode Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25511-25518. [PMID: 29989405 DOI: 10.1021/acsami.8b07129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Considering the dilemma between the effective tumor targeting and the avoidance of potential toxicity, it is desired to design nanoprobes with positive tumor-targeting and good renal clearance ability. In the present work, we developed epidermal growth factor receptor (EGFR)-targeted peptide-functionalized Ba2GdF7 nanoparticles (termed as pEGFR-targeted Ba2GdF7 NPs) for positive tumor-targeting magnetic resonance imaging and X-ray computed tomography (MRI/CT) dual-mode bioimaging. The positive tumor-targeting ability of pEGFR-targeted Ba2GdF7 NPs is achieved by conjugation of EGFR-targeted peptides on the 6.5 nm Ba2GdF7 NP surface through the formation of Gd-phosphonate coordinate bonds. The pEGFR-targeted Ba2GdF7 NPs display desirable cytocompatibility in the test concentration range and high binding affinity with lung cancer cells. In vivo MR and CT imaging results demonstrate that the pEGFR-targeted Ba2GdF7 NPs are able to be accumulated and detained within an engrafted A549 lung carcinoma, which enhances both MR and CT contrast in the tumor tissue. Systematic in vivo experimental results further demonstrate that the pEGFR-targeted Ba2GdF7 NPs have favorable in vivo renal clearance kinetics as well as reasonable in vivo biocompatibility.
Collapse
Affiliation(s)
- Yang Feng
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongda Chen
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | - Shuang Zhao
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | | |
Collapse
|
15
|
Ma S, Zhang J, Xia S, Yin W, Qin Y, Lei R, Kong J, Mei L, Li J, Xin G, Li G. Three-dimensional angiography fused with CT/MRI for multimodal imaging of nanoparticles based on Ba 4Yb 3F 17:Lu 3+,Gd 3+ . NANOSCALE 2018; 10:13402-13409. [PMID: 29971300 DOI: 10.1039/c8nr03054e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designing nanosized multi-modality contrast agents for high-resolution imaging is challenging since most agents are only useful for single-mode imaging. In this work, we successfully synthesized biocompatible polyethylene glycol (PEG-) and l-glutamine (GLN-) modified Ba4Yb3F17:Lu3+,Gd3+ nanoparticles (LNPs@PEG@GLN) that can be employed as a multi-modality contrast agent. Fluorescence dye-modified LNPs@PEG@GLN nanoparticles can be used for computed tomography (CT), magnetic resonance imaging (MRI), and fluorescence imaging (FI). They display high X-ray absorption, outstanding T2-weighted imaging capability, and good fluorescence uptake. Furthermore, LNPs@PEG@GLN enhances contrast efficiencies for different imaging modalities in vivo. Interestingly, LNPs@PEG@GLN is a promising agent for CT angiography. These nanoparticles could be a promising contrast agent for multi-modality imaging and diagnosing vascular diseases.
Collapse
Affiliation(s)
- Sihan Ma
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang G, Qian K, Mei X. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T 1&T 2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy. NANOSCALE 2018; 10:10467-10478. [PMID: 29799598 DOI: 10.1039/c8nr02429d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe3O4-Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T1&T2-MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| | - Kun Qian
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| | - Xifan Mei
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| |
Collapse
|
17
|
Li CY, Cao D, Qi CB, Kang YF, Song CY, Xu DD, Zheng B, Pang DW, Tang HW. Combining Holographic Optical Tweezers with Upconversion Luminescence Encoding: Imaging-Based Stable Suspension Array for Sensitive Responding of Dual Cancer Biomarkers. Anal Chem 2018; 90:2639-2647. [DOI: 10.1021/acs.analchem.7b04299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cheng-Yu Li
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Di Cao
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chu-Bo Qi
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- Hubei Cancer Hospital, Wuhan 430079, People’s Republic of China
| | - Ya-Feng Kang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chong-Yang Song
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dang-Dang Xu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bei Zheng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
18
|
Feng Y, Shao B, Zhao S, You H. Surfactant-free aqueous synthesis of novel Ba3Gd2F12:Ln3+ nanocrystals with luminescence properties. CrystEngComm 2018. [DOI: 10.1039/c8ce01538d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Novel Ba3Gd2F12:Ln3+ (Ln = Eu, Dy, Tb, Ce, Er, Tm, and Yb) nanocrystals with multicolor emissions have been prepared via a surfactant-free aqueous hydrothermal route for the first time.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of the Science and Technology of China
| | - Baiqi Shao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Shuang Zhao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of the Science and Technology of China
| | - Hongpeng You
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
19
|
Liu K, Yan X, Xu YJ, Dong L, Hao LN, Song YH, Li F, Su Y, Wu YD, Qian HS, Tao W, Yang XZ, Zhou W, Lu Y. Sequential growth of CaF2:Yb,Er@CaF2:Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis. Biomater Sci 2017; 5:2403-2415. [DOI: 10.1039/c7bm00797c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is a significant challenge to develop nanoscale magnetic resonance imaging (MRI) contrast agents with high performance of relaxation.
Collapse
|