1
|
Adzavon KP, Zhao W, Khattak SN, Sheng W. Cholesterol-modified peptide nanomicelles as a promising platform for cancer therapy: A review. Int J Biol Macromol 2025; 311:143456. [PMID: 40274168 DOI: 10.1016/j.ijbiomac.2025.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Drug resistance, systemic toxicity, low solubility, and rapid clearance are common issues with chemotherapy drugs and other molecules used to treat cancer. The development of new therapeutic compounds and nanotherapy offers a solution to these issues. Therapeutic peptides have attracted great interest among these molecules due to their unique advantages, including low immunogenicity, efficient cellular internalization, deep tissue penetration, and low systemic toxicity. They have shown promise in cancer treatment by inducing apoptosis, necrosis, or cell lysis and promoting immunotherapy. In addition, peptides can deliver a range of cargoes, such as drugs, nucleic acids, imaging agents, and nanoparticles, and can specifically target cancer cells. However, problems such as their short half-life and low solubility limit their therapeutic use. Recent developments have addressed these constraints through structural alterations and nanoparticle formulations. In particular, cholesterol modification makes it possible for peptides to self-assemble into nanomicelles, which enhances their stability, half-life, and cell penetration. In this review, therapeutic peptides are presented as a versatile and successful cancer treatment option. The potential of cholesterol-modified peptide micelles as a reliable drug, nucleic acid, and imaging agent delivery system is also examined.
Collapse
Affiliation(s)
- Kodzo Prosper Adzavon
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Weijian Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Sameena Noor Khattak
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wang Sheng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Bellavita R, Barra T, Braccia S, Prisco M, Valiante S, Lombardi A, Leone L, Pisano J, Esposito R, Nastri F, D’Errico G, Falanga A, Galdiero S. Engineering Multifunctional Peptide-Decorated Nanofibers for Targeted Delivery of Temozolomide across the Blood-Brain Barrier. Mol Pharm 2025; 22:1920-1938. [PMID: 40091203 PMCID: PMC11979881 DOI: 10.1021/acs.molpharmaceut.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
A nanoplatform based on self-assembling peptides was developed with the ability to effectively transport and deliver a wide range of moieties across the blood-brain barrier (BBB) for the treatment of glioblastoma. Its surface was functionalized to have a targeted release of TMZ thanks to the targeting peptide that binds to EGFRvIII, which is overexpressed on tumor cells, and gH625, which acts as an enhancer of penetration. Furthermore, the on-demand release of TMZ was achieved through matrix metalloproteinase-9 (MMP-9) cleavage. Nanofibers were characterized for their stability, critical aggregation concentration, and morphology. Next, the effect on both 2D and 3D glioblastoma/astrocytoma (U-87) and glioma (U-118) cell lines was evaluated. The Annexin V/Propidium iodide showed an increase in necrotic and apoptotic cells, and the morphological analysis allowed to discover that both U-118 and U-87 spheroids are smaller in surface, perimeter, and Feret's diameter when treated with NF-TMZ. The developed nanofiber was demonstrated to permeate the BBB in vitro in a 3D spheroidal biodynamic BBB model. Finally, there were no cytotoxic effects of nanofibers without the drug on spheroids, while a significant decrease in viability was observed when NF-TMZ was used. Overall, these results open new opportunities for the evaluation of the efficacy and safety of this nanoplatform in in vivo studies.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| | - Teresa Barra
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Simone Braccia
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| | - Marina Prisco
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Salvatore Valiante
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Assunta Lombardi
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Linda Leone
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Jessica Pisano
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Rodolfo Esposito
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Flavia Nastri
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Gerardino D’Errico
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
- CSGI
(Unit of Naples), Via
Cintia, Naples 80126, Italy
| | - Annarita Falanga
- Department
of Agricultural Science, University of Naples
Federico II, Via Università
100, Portici, Portici 80055, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| |
Collapse
|
3
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
4
|
Shirvalilou S, Khoei S, Afzalipour R, Ghaznavi H, Shirvaliloo M, Derakhti Z, Sheervalilou R. Targeting the undruggable in glioblastoma using nano-based intracellular drug delivery. Med Oncol 2024; 41:303. [PMID: 39470962 DOI: 10.1007/s12032-024-02546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Glioblastoma (GBM) is a highly prevalent and aggressive brain tumor in adults with limited treatment response, leading to a 5-year survival rate of less than 5%. Standard therapies, including surgery, radiation, and chemotherapy, often fall short due to the tumor's location, hypoxic conditions, and the challenge of complete removal. Moreover, brain metastases from cancers such as breast and melanoma carry similarly poor prognoses. Recent advancements in nanomedicine offer promising solutions for targeted GBM therapies, with nanoparticles (NPs) capable of delivering chemotherapy drugs or radiation sensitizers across the blood-brain barrier (BBB) to specific tumor sites. Leveraging the enhanced permeability and retention effect, NPs can preferentially accumulate in tumor tissues, where compromised BBB regions enhance delivery efficiency. By modifying NP characteristics such as size, shape, and surface charge, researchers have improved circulation times and cellular uptake, enhancing therapeutic efficacy. Recent studies show that combining photothermal therapy with magnetic hyperthermia using AuNPs and magnetic NPs induces ROS-dependent apoptosis and immunogenic cell death providing dual-targeted, immune-activating approaches. This review discusses the latest NP-based drug delivery strategies, including gene therapy, receptor-mediated transport, and multi-modal approaches like photothermal-magnetic hyperthermia combinations, all aimed at optimizing therapeutic outcomes for GBM.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| | - Zahra Derakhti
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
5
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
6
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
7
|
Singh IR, Aggarwal N, Srivastava S, Panda JJ, Mishra J. Small Peptide-Based Nanodelivery Systems for Cancer Therapy and Diagnosis. J Pharmacol Exp Ther 2024; 390:30-44. [PMID: 37977815 DOI: 10.1124/jpet.123.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Developing nano-biomaterials with tunable topology, size, and surface characteristics has shown tremendously favorable benefits in various biologic and clinical applications. Among various nano-biomaterials, peptide-based drug delivery systems offer multiple merits over other synthetic systems due to their enhanced bio- and cytocompatibility and desirable biochemical and biophysical properties. Currently, around 100 peptide-based drugs are clinically available for numerous therapeutic purposes. In conjugation with chemotherapeutic moieties, peptides demonstrate a remarkable ability to reduce nonspecific drug effects by improving drug targetability at cancer sites. This review encompasses a wide-ranging role played by different peptide-based nanostructures in cancer theranostics. Section 1 introduces the rising concern about cancer as a disease and further describes peptide-based nanomaterials as biomedical agents to tackle the ailment. The subsequent section explores the mechanistic pathways behind the self-assembly of peptides to form hierarchically distinct assemblies. The crux of our review lies in an exhaustive exploration of the applications of various types of peptide-based nanostructures in cancer therapy and diagnosis. SIGNIFICANCE STATEMENT: Peptide-based drug delivery systems possess superior biocompatibility, biochemical, and biophysical properties compared to other synthetic alternatives. The development of these nano-biomaterials with customizable topology, size, and surface characteristics have shown promising outcomes in biomedical contexts. Peptides in conjunction with chemotherapeutic agents exhibit the ability to enhance drug targetability at cancer sites, reducing nonspecific drug effects. This comprehensive review emphasizes the pivotal role of diverse peptide-based nanostructures as cancer theranostics, elucidating their potential in revolutionizing cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Imocha Rajkumar Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Swapnil Srivastava
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jibanananda Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| |
Collapse
|
8
|
Kim H, Taslakjian B, Kim S, Tirrell MV, Guler MO. Therapeutic Peptides, Proteins and their Nanostructures for Drug Delivery and Precision Medicine. Chembiochem 2024; 25:e202300831. [PMID: 38408302 DOI: 10.1002/cbic.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Peptide and protein nanostructures with tunable structural features, multifunctionality, biocompatibility and biomolecular recognition capacity enable development of efficient targeted drug delivery tools for precision medicine applications. In this review article, we present various techniques employed for the synthesis and self-assembly of peptides and proteins into nanostructures. We discuss design strategies utilized to enhance their stability, drug-loading capacity, and controlled release properties, in addition to the mechanisms by which peptide nanostructures interact with target cells, including receptor-mediated endocytosis and cell-penetrating capabilities. We also explore the potential of peptide and protein nanostructures for precision medicine, focusing on applications in personalized therapies and disease-specific targeting for diagnostics and therapeutics in diseases such as cancer.
Collapse
Affiliation(s)
- HaRam Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Boghos Taslakjian
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Sarah Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Matthew V Tirrell
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| |
Collapse
|
9
|
Aoki K, Manabe A, Kimura H, Katoh Y, Inuki S, Ohno H, Nonaka M, Oishi S. Mirror-Image Single-Domain Antibody for a Novel Nonimmunogenic Drug Scaffold. Bioconjug Chem 2023; 34:2055-2065. [PMID: 37883660 DOI: 10.1021/acs.bioconjchem.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Immunogenic responses by protein therapeutics often lead to reduced therapeutic effects and/or adverse effects via the generation of neutralizing antibodies and/or antidrug antibodies (ADA). Mirror-image proteins of the variable domain of the heavy chain of the heavy chain antibody (VHH) are potential novel protein therapeutics with high-affinity binding to target proteins and reduced immunogenicity because these mirror-image VHHs (d-VHHs) are less susceptible to proteolytic degradation in antigen-presenting cells (APCs). In this study, we investigated the preparation protocols of d-VHHs and their biological properties, including stereoselective target binding and immunogenicity. Initially, we established a facile synthetic process of two model VHHs [anti-GFP VHH and PMP12A2h1 (monomeric VHH of caplacizumab)] and their mirror-image proteins by three-step native chemical ligations (NCLs) from four peptide segments. The folded synthetic VHHs (l-anti-GFP VHH and l-PMP12A2h1) bound to the target proteins (EGFP and vWF-A1 domain, respectively), while their mirror-image proteins (d-anti-GFP VHH and d-PMP12A2h1) showed no binding to the native proteins. For biodistribution studies, l-VHH and d-VHH with single radioactive indium diethylenetriamine-pentaacid (111In-DTPA) labeling at the C-terminus were designed and synthesized by the established protocol. The distribution profiles were essentially similar between l-VHH and d-VHH, in which the probes accumulated in the kidney within 15 min after intravenous administration in mice, because of the small molecular size of VHHs. Comparative assessment of the immunogenicity responses revealed that d-VHH-induced levels of ADA generation were significantly lower than those of native VHH, regardless of the peptide sequences and administration routes. The resulting scaffold investigated should be applicable in the design of d-VHHs with various C-terminal CDR3 sequences, which can be identified by screening using display technologies.
Collapse
Affiliation(s)
- Keisuke Aoki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Asako Manabe
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Kimura
- Laboratory of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motohiro Nonaka
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
10
|
Liu X, Cao Z, Wang W, Zou C, Wang Y, Pan L, Jia B, Zhang K, Zhang W, Li W, Hao Q, Zhang Y, Zhang W, Xue X, Lin W, Li M, Gu J. Engineered Extracellular Vesicle-Delivered CRISPR/Cas9 for Radiotherapy Sensitization of Glioblastoma. ACS NANO 2023; 17:16432-16447. [PMID: 37646615 PMCID: PMC10510715 DOI: 10.1021/acsnano.2c12857] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Radiotherapy is a mainstay of glioblastoma (GBM) treatment; however, the development of therapeutic resistance has hampered the efficacy of radiotherapy, suggesting that additional treatment strategies are needed. Here, an in vivo loss-of-function genome-wide CRISPR screen was carried out in orthotopic tumors in mice subjected to radiation treatment to identify synthetic lethal genes associated with radiotherapy. Using functional screening and transcriptome analyses, glutathione synthetase (GSS) was found to be a potential regulator of radioresistance through ferroptosis. High GSS levels were closely related to poor prognosis and relapse in patients with glioma. Mechanistic studies demonstrated that GSS was associated with the suppression of radiotherapy-induced ferroptosis in glioma cells. The depletion of GSS resulted in the disruption of glutathione (GSH) synthesis, thereby causing the inactivation of GPX4 and iron accumulation, thus enhancing the induction of ferroptosis upon radiotherapy treatment. Moreover, to overcome the obstacles to broad therapeutic translation of CRISPR editing, we report a previously unidentified genome editing delivery system, in which Cas9 protein/sgRNA complex was loaded into Angiopep-2 (Ang) and the trans-activator of the transcription (TAT) peptide dual-modified extracellular vesicle (EV), which not only targeted the blood-brain barrier (BBB) and GBM but also permeated the BBB and penetrated the tumor. Our encapsulating EVs showed encouraging signs of GBM tissue targeting, which resulted in high GSS gene editing efficiency in GBM (up to 67.2%) with negligible off-target gene editing. These results demonstrate that a combination of unbiased genetic screens, and CRISPR-Cas9-based gene therapy is feasible for identifying potential synthetic lethal genes and, by extension, therapeutic targets.
Collapse
Affiliation(s)
- Xiao Liu
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Zhengcong Cao
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Weizhong Wang
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Cheng Zou
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Yingwen Wang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Luxiang Pan
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Bo Jia
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Kuo Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Wangqian Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Weina Li
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Qiang Hao
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Yingqi Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Wei Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Xiaochang Xue
- The
Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry,
The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, 710000, China
| | - Wei Lin
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Meng Li
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Jintao Gu
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| |
Collapse
|
11
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
12
|
Xi X, Lei F, Gao K, Li J, Liu R, Karpf AR, Bronich TK. Ligand-installed polymeric nanocarriers for combination chemotherapy of EGFR-positive ovarian cancer. J Control Release 2023; 360:872-887. [PMID: 37478915 DOI: 10.1016/j.jconrel.2023.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Combination chemotherapeutic drugs administered via a single nanocarrier for cancer treatment provides benefits in reducing dose-limiting toxicities, improving the pharmacokinetic properties of the cargo and achieving spatial-temporal synchronization of drug exposure for maximized synergistic therapeutic effects. In an attempt to develop such a multi-drug carrier, our work focuses on functional multimodal polypeptide-based polymeric nanogels (NGs). Diblock copolymers poly (ethylene glycol)-b-poly (glutamic acid) (PEG-b-PGlu) modified with phenylalanine (Phe) were successfully synthesized and characterized. Self-assembly behavior of the resulting polymers was utilized for the synthesis of NGs with hydrophobic domains in cross-linked polyion cores coated with inert PEG chains. The resulting NGs were small (ca. 70 nm in diameter) and were able to encapsulate the combination of drugs with different physicochemical properties such as cisplatin and neratinib. Drug combination-loaded NGs exerted a selective synergistic cytotoxicity towards EGFR overexpressing ovarian cancer cells. Moreover, we developed ligand-installed EGFR-targeted NGs and tested them as an EGFR-overexpressing tumor-specific delivery system. Both in vitro and in vivo, ligand-installed NGs displayed preferential associations with EGFR (+) tumor cells. Ligand-installed NGs carrying cisplatin and neratinib significantly improved the treatment response of ovarian cancer xenografts. We also confirmed the importance of simultaneous administration of the dual drug combination via a single NG system which provides more therapeutic benefit than individual drug-loaded NGs administered at equivalent doses. This work illustrates the potential of our carrier system to mediate efficient delivery of a drug combination to treat EGFR overexpressing cancers.
Collapse
Affiliation(s)
- Xinyuan Xi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Fan Lei
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Keliang Gao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
14
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
15
|
Luan X, Kong H, He P, Yang G, Zhu D, Guo L, Wei G. Self-Assembled Peptide-Based Nanodrugs: Molecular Design, Synthesis, Functionalization, and Targeted Tumor Bioimaging and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205787. [PMID: 36440657 DOI: 10.1002/smll.202205787] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Functional nanomaterials as nanodrugs based on the self-assembly of inorganics, polymers, and biomolecules have showed wide applications in biomedicine and tissue engineering. Ascribing to the unique biological, chemical, and physical properties of peptide molecules, peptide is used as an excellent precursor material for the synthesis of functional nanodrugs for highly effective cancer therapy. Herein, recent progress on the design, synthesis, functional regulation, and cancer bioimaging and biotherapy of peptide-based nanodrugs is summarized. For this aim, first molecular design and controllable synthesis of peptide nanodrugs with 0D to 3D structures are presented, and then the functional customization strategies for peptide nanodrugs are presented. Then, the applications of peptide-based nanodrugs in bioimaging, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) are demonstrated and discussed in detail. Furthermore, peptide-based drugs in preclinical, clinical trials, and approved are briefly described. Finally, the challenges and potential solutions are pointed out on addressing the questions of this promising research topic. This comprehensive review can guide the motif design and functional regulation of peptide nanomaterials for facile synthesis of nanodrugs, and further promote their practical applications for diagnostics and therapy of diseases.
Collapse
Affiliation(s)
- Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
16
|
Mansour S, Adhya I, Lebleu C, Dumpati R, Rehan A, Chall S, Dai J, Errasti G, Delacroix T, Chakrabarti R. Identification of a novel peptide ligand for the cancer-specific receptor mutation EGFRvIII using high-throughput sequencing of phage-selected peptides. Sci Rep 2022; 12:20725. [PMID: 36456600 PMCID: PMC9715707 DOI: 10.1038/s41598-022-25257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report here the selection and characterization of a novel peptide ligand using phage display targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer: ovarian cancer, breast cancer and glioblastoma, but not in normal tissues. A 12-mer random peptide library was screened against EGFRvIII. Phage-selected peptides were sequenced in high-throughput by next generation sequencing (NGS), and their diversity was studied to identify highly abundant clones expected to bind with the highest affinities to EGFRvIII. The enriched peptides were characterized and their binding capacity towards stable cell lines expressing EGFRvIII, EGFR wild type (EGFR WT), or a low endogenous level of EGFR WT was confirmed by flow cytometry analysis. The best peptide candidate, VLGREEWSTSYW, was synthesized, and its binding specificity towards EGFRvIII was validated in vitro. Additionally, computational docking analysis suggested that the identified peptide binds selectively to EGFRvIII. The novel VLGREEWSTSYW peptide is thus a promising EGFRvIII-targeting agent for future applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sourour Mansour
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Indranil Adhya
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Coralie Lebleu
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Rama Dumpati
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Ahmed Rehan
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Santu Chall
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Jingqi Dai
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Gauthier Errasti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Thomas Delacroix
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Raj Chakrabarti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France ,Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India ,Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Ste 110, Mount Laurel, NJ 08054 USA
| |
Collapse
|
17
|
Zhao Q, Liu J, Liu S, Han J, Chen Y, Shen J, Zhu K, Ma X. Multipronged Micelles-Hydrogel for Targeted and Prolonged Drug Delivery in Chronic Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46224-46238. [PMID: 36201628 DOI: 10.1021/acsami.2c12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chronic diabetic wounds are a growing threat globally. Many aspects contribute to its deterioration, including bacterial infection, unbalanced microenvironment, dysfunction of cell repair, etc. In this work, we designed a multipronged micelles-hydrogel platform loaded with curcumin and rifampicin (CRMs-hydrogel) for bacteria-infected chronic wound treatment. The curcumin- and rifampicin-loaded micelles (CRMs) exhibited both MMP9-responsive and epidermal growth factor receptor (EGFR)-targeting abilities. On the one hand, drugs could be released from micelles due to responsive disassembly by MMP9, a matrix metalloproteinase overexpressed in a chronic wound environment; on the other hand, CRMs showed specific targeting to EGFR on epithelial cells and fibroblasts and therefore increased intracellular drug delivery. The thermosensitive CRMs-hydrogel could form strong adhesion with the wound area and served as a suitable matrix for sustained release of CRMs directly at the wound bed, with excellent intracellular and extracellular bacterial elimination efficiency and wound healing promotion capability. We found that a single dose of CRMs-hydrogel achieved 99% antibacterial rate at the MRSA-infected diabetic wound, which effectively reduced inflammatory response and promoted the neovascularization and re-epithelialization process, with nearly half reduction of the skin barrier regeneration period. Collectively, our thermosensitive, MMP9-responsive, and targeted micelles-hydrogel nanoplatform is promising for chronic wound treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Translational Research Center, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing102218, China
| | - Suhan Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Junhua Han
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yingxian Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Kui Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Xiaowei Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
18
|
Liu X, Cao Z, Liu N, Gao G, Du M, Wang Y, Cheng B, Zhu M, Jia B, Pan L, Zhang W, Jiang Y, He W, Xu L, Zhang W, An Q, Guo Q, Gu J. Kill two birds with one stone: Engineered exosome-mediated delivery of cholesterol modified YY1-siRNA enhances chemoradiotherapy sensitivity of glioblastoma. Front Pharmacol 2022; 13:975291. [PMID: 36059990 PMCID: PMC9438942 DOI: 10.3389/fphar.2022.975291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor of the central nervous system in adults. Irradiation (IR) and temozolomide (TMZ) play an extremely important role in the treatment of GBM. However, major impediments to effective treatment are postoperative tumor recurrence and acquired resistance to chemoradiotherapy. Our previous studies confirm that Yin Yang 1 (YY1) is highly expressed in GBM, whereby it is associated with cell dedifferentiation, survival, and therapeutic resistance. Targeted delivery of small interfering RNA (siRNA) without blood-brain barrier (BBB) restriction for eradication of GBM represents a promising approach for therapeutic interventions. In this study, we utilize the engineering technology to generate T7 peptide-decorated exosome (T7-exo). T7 is a peptide specifically binding to the transferrin receptor. T7-exo shows excellent packaging and protection of cholesterol-modified Cy3-siYY1 while quickly releasing payloads in a cytoplasmic reductive environment. The engineered exosomes T7-siYY1-exo could deliver more effciently to GBM cells both in vitro and in vivo. Notably, in vitro experiments demonstrate that T7-siYY1-exo can enhance chemoradiotherapy sensitivity and reverse therapeutic resistance. Moreover, T7-siYY1-exo and TMZ/IR exert synergistic anti-GBM effect and significantly improves the survival time of GBM bearing mice. Our findings indicate that T7-siYY1-exo may be a potential approach to reverse the chemoradiotherapy resistance in GBM.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- The First Affiliated Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhengcong Cao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Nannan Liu
- Experimental Teaching Center of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Guangxun Gao
- The First Affiliated Hospital, The Fourth Military Medical University, Xi’an, China
| | - Mingrui Du
- The Second Affiliated Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yingwen Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Boyang Cheng
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Maorong Zhu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Bo Jia
- The First Affiliated Hospital, The Fourth Military Medical University, Xi’an, China
| | - Luxiang Pan
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Yuran Jiang
- The Third Affiliated Hospital, The Forth Military Medical University, Xi’an, China
| | - Wei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Linlin Xu
- The First Affiliated Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Qunxing An
- The First Affiliated Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Qunxing An, ; Qingdong Guo, ; Jintao Gu,
| | - Qingdong Guo
- The First Affiliated Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Qunxing An, ; Qingdong Guo, ; Jintao Gu,
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Qunxing An, ; Qingdong Guo, ; Jintao Gu,
| |
Collapse
|
19
|
Kumar R, Dkhar DS, Kumari R, Supratim Mahapatra D, Srivastava A, Dubey VK, Chandra P. Ligand conjugated lipid-based nanocarriers for cancer theranostics. Biotechnol Bioeng 2022; 119:3022-3043. [PMID: 35950676 DOI: 10.1002/bit.28205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022]
Abstract
Cancer is one of the major health-related issues affecting the population worldwide and subsequently accounts for the second-largest death. Genetic and epigenetic modifications in oncogenes or tumor suppressor genes affect the regulatory systems that lead to the initiation and progression of cancer. Conventional methods, including chemotherapy/radiotherapy/appropriate combinational therapy and surgery, are being widely used for theranostics of cancer patients. Surgery is useful in treating localized tumors, but it is ineffective in treating metastatic tumors, which spread to other organs and result in a high recurrence rate and death. Also, the therapeutic application of free drugs is related to substantial issues such as poor absorption, solubility, bioavailability, high degradation rate, short shelf-life, and low therapeutic index. Therefore, these issues can be sorted out using nano lipid-based carriers (NLBCs) as promising drug delivery carriers. Still, at most, they fail to achieve site targeted drug delivery and detection. This can be achieved by selecting a specific ligand/antibody for its cognate receptor molecule expressed on the surface of cancer cell. In this review, we have mainly discussed the various types of ligands used to decorate NLBCs. A list of the ligands used to design nanocarriers to target malignant cells has been extensively undertaken. The approved ligand decorated lipid-based nanomedicines with their clinical status has been explained in tabulated form to provide a wider scope to the readers regarding ligand coupled NLBCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Divya Supratim Mahapatra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
20
|
Taghipour YD, Zarebkohan A, Salehi R, Rahimi F, Torchilin VP, Hamblin MR, Seifalian A. An update on dual targeting strategy for cancer treatment. J Control Release 2022; 349:67-96. [PMID: 35779656 DOI: 10.1016/j.jconrel.2022.06.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 12/18/2022]
Abstract
The key issue in the treatment of solid tumors is the lack of efficient strategies for the targeted delivery and accumulation of therapeutic cargoes in the tumor microenvironment (TME). Targeting approaches are designed for more efficient delivery of therapeutic agents to cancer cells while minimizing drug toxicity to normal cells and off-targeting effects, while maximizing the eradication of cancer cells. The highly complicated interrelationship between the physicochemical properties of nanoparticles, and the physiological and pathological barriers that are required to cross, dictates the need for the success of targeting strategies. Dual targeting is an approach that uses both purely biological strategies and physicochemical responsive smart delivery strategies to increase the accumulation of nanoparticles within the TME and improve targeting efficiency towards cancer cells. In both approaches, either one single ligand is used for targeting a single receptor on different cells, or two different ligands for targeting two different receptors on the same or different cells. Smart delivery strategies are able to respond to triggers that are typical of specific disease sites, such as pH, certain specific enzymes, or redox conditions. These strategies are expected to lead to more precise targeting and better accumulation of nano-therapeutics. This review describes the classification and principles of dual targeting approaches and critically reviews the efficiency of dual targeting strategies, and the rationale behind the choice of ligands. We focus on new approaches for smart drug delivery in which synthetic and/or biological moieties are attached to nanoparticles by TME-specific responsive linkers and advanced camouflaged nanoparticles.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine and Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, South Africa
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
21
|
Wang X, Wu C, Liu S, Peng D. Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives. Drug Deliv 2022; 29:1370-1383. [PMID: 35532094 PMCID: PMC9090367 DOI: 10.1080/10717544.2022.2069881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Brain cancer is the most aggressive one among various cancers. It has a drastic impact on people's lives because of the failure in treatment efficacy of the currently employed strategies. Various strategies used to relieve pain in brain cancer patients and to prolong survival time include radiotherapy, chemotherapy, and surgery. Nevertheless, several inevitable limitations are accompanied by such treatments due to unsatisfactory curative effects. Generally, the treatment of cancers is very challenging due to many reasons including drugs’ intrinsic factors and physiological barriers. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are the two additional hurdles in the way of therapeutic agents to brain tumors delivery. Combinatorial and targeted therapies specifically in cancer show a very promising role where nanocarriers’ based formulations are designed primarily to achieve tumor-specific drug release. A dual-targeting strategy is a versatile way of chemotherapeutics delivery to brain tumors that gets the aid of combined ligands and mediators that cross the BBB and reaches the target site efficiently. In contrast to single targeting where one receptor or mediator is targeted, the dual-targeting strategy is expected to produce a multiple-fold increase in therapeutic efficacy for cancer therapy, especially in brain tumors. In a nutshell, a dual-targeting strategy for brain tumors enhances the delivery efficiency of chemotherapeutic agents via penetration across the blood-brain barrier and enhances the targeting of tumor cells. This review article highlights the ongoing status of the brain tumor therapy enhanced by nanoparticle based delivery with the aid of dual-targeting strategies. The future perspectives in this regard have also been highlighted.
Collapse
Affiliation(s)
- Xiande Wang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, China
| | - Cheng Wu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shiming Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Deqing Peng
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
22
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Song L, Chen XW, Liu Y, Wang H, Li JQ. Synthetic polymer material modified by d-peptide and its targeted application in the treatment of non-small cell lung cancer. Int J Pharm 2022; 619:121651. [PMID: 35288222 DOI: 10.1016/j.ijpharm.2022.121651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
Liposomes functionalized with targeted material offer a breakthrough compared with passive drug delivery. Here, we designed a polymer material, VAP-PEG3350-DSPE (VAP-PEG-DSPE), modified with a d-peptide VAP ligand that combines tumor-homing VAP with GRP78 receptor, a cancer marker on the membranes of many cancer cells. This paper establishes a docetaxel-loaded lipid nanodisk modified with multifunctional material to evaluate its anti-NSCLC efficacy in vivo. Additionally, the present study verified that VAP-conjugated nanodisks adapt to the developed tumor vasculature of the lung cancer microenvironment, making it a promising nanocarrier for NSCLC-targeting therapy. Moreover, in vitro and in vivo experiments demonstrated the targeting ability of VAP-DISK/DTX to tumor cells. Lung slices of mice also demonstrated the safety of VAP-DISK/DTX. The encapsulation efficiency of docetaxel-disks (VAP-DISK/DTX) was as high as 92.46±4.48%. Encapsulating anti-cancer drugs in lipid nanoparticles is thus an effective mechanism to change the pharmacokinetic and pharmacodynamic characteristics of drugs.
Collapse
Affiliation(s)
- Lianhua Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiao-Wen Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, PR China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Yu Liu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, PR China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Hao Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, PR China.
| | - Jian-Qi Li
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, PR China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, PR China.
| |
Collapse
|
24
|
Cui J, Xu Y, Tu H, Zhao H, Wang H, Di L, Wang R. Gather wisdom to overcome barriers: Well-designed nano-drug delivery systems for treating gliomas. Acta Pharm Sin B 2022; 12:1100-1125. [PMID: 35530155 PMCID: PMC9069319 DOI: 10.1016/j.apsb.2021.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the special physiological and pathological characteristics of gliomas, most therapeutic drugs are prevented from entering the brain. To improve the poor prognosis of existing therapies, researchers have been continuously developing non-invasive methods to overcome barriers to gliomas therapy. Although these strategies can be used clinically to overcome the blood‒brain barrier (BBB), the accurate delivery of drugs to the glioma lesions cannot be ensured. Nano-drug delivery systems (NDDS) have been widely used for precise drug delivery. In recent years, researchers have gathered their wisdom to overcome barriers, so many well-designed NDDS have performed prominently in preclinical studies. These meticulous designs mainly include cascade passing through BBB and targeting to glioma lesions, drug release in response to the glioma microenvironment, biomimetic delivery systems based on endogenous cells/extracellular vesicles/protein, and carriers created according to the active ingredients of traditional Chinese medicines. We reviewed these well-designed NDDS in detail. Furthermore, we discussed the current ongoing and completed clinical trials of NDDS for gliomas therapy, and analyzed the challenges and trends faced by clinical translation of these well-designed NDDS.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Haiyan Tu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Huacong Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Honglan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
- Corresponding author. Tel./fax: +86 15852937869.
| |
Collapse
|
25
|
Qi N, Zhang S, Zhou X, Duan W, Gao D, Feng J, Li A. Combined integrin α vβ 3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J Nanobiotechnology 2021; 19:446. [PMID: 34949198 PMCID: PMC8705194 DOI: 10.1186/s12951-021-01180-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023] Open
Abstract
The integrin αvβ3 receptor and Lactoferrin receptor (LfR) are over-expressed in both cerebral microvascular endothelial cells and glioma cells. RGD tripeptide and Lf can specifically bind with integrin αvβ3 receptor and LfR, respectively. In our study, RGD and Lf dual-modified liposomes loaded with docetaxel (DTX) were designed to enhance the brain targeting effect and treatment of glioma. Our in vitro studies have shown that RGD-Lf-LP can significantly enhance the cellular uptake of U87 MG cells and human cerebral microvascular endothelial cells (hCMEC/D3) when compared to RGD modified liposomes (RGD-LP) and Lf modified liposomes (Lf-LP). Free RGD and Lf competitively reduced the cellular uptake of RGD-Lf-LP, in particular, free RGD played a main inhibitory effect on cellular uptake of RGD-Lf-LP in U87 MG cells, yet free Lf played a main inhibitory effect on cellular uptake of RGD-Lf-LP in hCMEC/D3 cells. RGD-Lf-LP can also significantly increase penetration of U87 MG tumor spheroids, and RGD modification plays a dominating role on promoting the penetration of U87 MG tumor spheroids. The results of in vitro BBB model were shown that RGD-Lf-LP-C6 obviously increased the transport of hCMEC/D3 cell monolayers, and Lf modification plays a dominating role on increasing the transport of hCMEC/D3 cell monolayers. In vivo imaging proved that RGD-Lf-LP shows stronger targeting effects for brain orthotopic gliomas than that of RGD-LP and Lf-LP. The result of tissue distribution confirmed that RGD-LF-LP-DTX could significantly increase brain targeting after intravenous injection. Furthermore, RGD-LF-LP-DTX (a dose of 5 mg kg−1 DTX) could significantly prolong the survival time of orthotopic glioma-bearing mice. In summary, RGD and LF dual modification are good combination for brain targeting delivery, RGD-Lf-LP-DTX could enhance brain targeting effects, and is thus a promising chemotherapeutic drug delivery system for treatment of glioma. ![]()
Collapse
Affiliation(s)
- Na Qi
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.,Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Shangqian Zhang
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xiantai Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Wenjuan Duan
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Duan Gao
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Jianfang Feng
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530299, China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
26
|
Wu Z, Dai L, Tang K, Ma Y, Song B, Zhang Y, Li J, Lui S, Gong Q, Wu M. Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics. Regen Biomater 2021; 8:rbab062. [PMID: 34868634 PMCID: PMC8634494 DOI: 10.1093/rb/rbab062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumour, with a median survival of 3 months without treatment and 15 months with treatment. Early GBM diagnosis can significantly improve patient survival due to early treatment and management procedures. Magnetic resonance imaging (MRI) using contrast agents is the preferred method for the preoperative detection of GBM tumours. However, commercially available clinical contrast agents do not accurately distinguish between GBM, surrounding normal tissue and other cancer types due to their limited ability to cross the blood–brain barrier, their low relaxivity and their potential toxicity. New GBM-specific contrast agents are urgently needed to overcome the limitations of current contrast agents. Recent advances in nanotechnology have produced alternative GBM-targeting contrast agents. The surfaces of nanoparticles (NPs) can be modified with multimodal contrast imaging agents and ligands that can specifically enhance the accumulation of NPs at GBM sites. Using advanced imaging technology, multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses in addition to an increased amount of clinical diagnostic information. NPs can also serve as drug delivery systems for GBM treatments. This review focuses on the research progress for GBM-targeting MRI contrast agents as well as MRI-guided GBM therapy.
Collapse
Affiliation(s)
- Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lixiong Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ke Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Lucana MC, Arruga Y, Petrachi E, Roig A, Lucchi R, Oller-Salvia B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021; 13:2065. [PMID: 34959346 PMCID: PMC8708026 DOI: 10.3390/pharmaceutics13122065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation bio- and nano-therapeutics. However, the proteolytic susceptibility of peptides is one of the major limitations of their activity in biological environments. Numerous strategies have been devised to chemically enhance the resistance of peptides to proteolysis, ranging from N- and C-termini protection to cyclization, and including backbone modification, incorporation of amino acids with non-canonical side chains and conjugation. Since conjugation of nanocarriers or other cargoes to peptides for targeting and cell penetration may already provide some degree of shielding, the question arises about the relevance of using protease-resistant sequences for these applications. Aiming to answer this question, here we provide a critical review on protease-resistant targeting peptides and cell-penetrating peptides (CPPs). Two main approaches have been used on these classes of peptides: enantio/retro-enantio isomerization and cyclization. On one hand, enantio/retro-enantio isomerization has been shown to provide a clear enhancement in peptide efficiency with respect to parent L-amino acid peptides, especially when applied to peptides for drug delivery to the brain. On the other hand, cyclization also clearly increases peptide transport capacity, although contribution from enhanced protease resistance or affinity is often not dissected. Overall, we conclude that although conjugation often offers some degree of protection to proteolysis in targeting peptides and CPPs, modification of peptide sequences to further enhance protease resistance can greatly increase homing and transport efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamí Oller-Salvia
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain; (M.C.L.); (Y.A.); (E.P.); (A.R.); (R.L.)
| |
Collapse
|
28
|
Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021; 608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
The treatment effect of chemotherapeutics is often impeded by nonspecific biodistribution and limited biocompatibility. Polymeric core-shell nanocarriers (PCS NCs) composed of a polymer core and at least one shell have been widely applied for cancer therapy and have shown great potential in selectively delivering chemotherapeutic drugs to tumor sites. These PCS NCs can effectively ameliorate the delivery efficiency and therapeutic index of anticarcinogens by prolonging drug residence in the bloodstream, enhancing tumor tissue drug penetration, facilitating cellular drug uptake, controlling the spatiotemporal release of payloads, or codelivering two or more bioactive agents. This review summarizes recently published literature on using PCS NCs to transport chemotherapeutic drugs with poor aqueous solubility and discusses their design principles, structural features, functional properties, and potential limitations.
Collapse
|
29
|
Deng Y, Sun Z, Wang L, Wang M, Yang J, Li G. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front Med 2021; 16:157-175. [PMID: 34570311 DOI: 10.1007/s11684-021-0884-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Cancer imposes a severe threat to people's health and lives, thus pressing a huge medical and economic burden on individuals and communities. Therefore, early diagnosis of cancer is indispensable in the timely prevention and effective treatment for patients. Exosome has recently become an attractive cancer biomarker in noninvasive early diagnosis because of the unique physiology and pathology functions, which reflects remarkable information regarding the cancer microenvironment, and plays an important role in the occurrence and evolution of cancer. Meanwhile, biosensors have gained great attention for the detection of exosomes due to their superior properties, such as convenient operation, real-time readout, high sensitivity, and remarkable specificity, suggesting promising biomedical applications in the early diagnosis of cancer. In this review, the latest advances of biosensors regarding the assay of exosomes were summarized, and the superiorities of exosomes as markers for the early diagnosis of cancer were evaluated. Moreover, the recent challenges and further opportunities of developing effective biosensors for the early diagnosis of cancer were discussed.
Collapse
Affiliation(s)
- Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
30
|
Abstract
Despite cancer nanomedicine celebrates already thirty years since its introduction, together with the achievements and progress in cancer treatment area, it still undergoes serious disadvantages that must be addressed. Since the first observation that macromolecules tend to accumulate in tumor tissue due to fenestrated endothelial of vasculature, considered as the “royal gate” in drug delivery field, more than dozens of nanoformulations have been approved and introduced into the practice for cancer treatment. Lipid, polymeric, and hybrid nanocarriers are biocompatible nano-drug delivery systems (NDDs) having suitable physicochemical properties and modulate payload release in response to specific chemical or physical stimuli. Biopharmaceutical properties of NDDs and their efficacy in animal models and humans can significantly affect their impact and perspective in nanomedicine. One of the future directions could be focusing on personalized cancer treatment, considering the heterogeneity and complexity of each patient tumor tissue and the designing of multifunctional targeted NDDs combining synthetic nanomaterials and biological components, like cellular membranes, circulating proteins, RNAi/DNAi, which enforce the efficacy of NDDs and boost their therapeutic effect.
Collapse
|
31
|
Liu M, Fang X, Yang Y, Wang C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front Bioeng Biotechnol 2021; 9:701504. [PMID: 34277592 PMCID: PMC8281044 DOI: 10.3389/fbioe.2021.701504] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Receptor-targeting peptides have been extensively pursued for improving binding specificity and effective accumulation of drugs at the site of interest, and have remained challenging for extensive research efforts relating to chemotherapy in cancer treatments. By chemically linking a ligand of interest to drug-loaded nanocarriers, active targeting systems could be constructed. Peptide-functionalized nanostructures have been extensively pursued for biomedical applications, including drug delivery, biological imaging, liquid biopsy, and targeted therapies, and widely recognized as candidates of novel therapeutics due to their high specificity, well biocompatibility, and easy availability. We will endeavor to review a variety of strategies that have been demonstrated for improving receptor-specificity of the drug-loaded nanoscale structures using peptide ligands targeting tumor-related receptors. The effort could illustrate that the synergism of nano-sized structures with receptor-targeting peptides could lead to enrichment of biofunctions of nanostructures.
Collapse
Affiliation(s)
- Mingpeng Liu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Conventional Nanosized Drug Delivery Systems for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.
Collapse
|
33
|
Ratajczyk T, Buntkowsky G, Gutmann T, Fedorczyk B, Mames A, Pietrzak M, Puzio Z, Szkudlarek PG. Magnetic Resonance Signal Amplification by Reversible Exchange of Selective PyFALGEA Oligopeptide Ligands Towards Epidermal Growth Factor Receptors. Chembiochem 2020; 22:855-860. [PMID: 33063920 DOI: 10.1002/cbic.202000711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/13/2022]
Abstract
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1 H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1 H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.
Collapse
Affiliation(s)
- Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Bartłomiej Fedorczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Zuzanna Puzio
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | | |
Collapse
|
34
|
Rysenkova KD, Klimovich PS, Shmakova AA, Karagyaur MN, Ivanova KA, Aleksandrushkina NA, Tkachuk VA, Rubina KA, Semina EV. Urokinase receptor deficiency results in EGFR-mediated failure to transmit signals for cell survival and neurite formation in mouse neuroblastoma cells. Cell Signal 2020; 75:109741. [PMID: 32822758 DOI: 10.1016/j.cellsig.2020.109741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
Urokinase-type plasminogen activator uPA and its receptor (uPAR) are the central players in extracellular matrix proteolysis, which facilitates cancer invasion and metastasis. EGFR is one of the important components of uPAR interactome. uPAR/EGFR interaction controls signaling pathways that regulate cell survival, proliferation and migration. We have previously established that uPA binding to uPAR stimulates neurite elongation in neuroblastoma cells, while blocking uPA/uPAR interaction induces neurite branching and new neurite formation. Here we demonstrate that blocking the uPA binding to uPAR with anti-uPAR antibody decreases the level of pEGFR and its downstream pERK1/2, but does increase phosphorylation of Akt, p38 and c-Src Since long-term uPAR blocking results in a severe DNA damage, accompanied by PARP-1 proteolysis and Neuro2a cell death, we surmise that Akt, p38 and c-Src activation transmits a pro-apoptotic signal, rather than a survival. Serum deprivation resulting in enhanced neuritogenesis is accompanied by an upregulated uPAR mRNA expression, while EGFR mRNA remains unchanged. EGFR activation by EGF stimulates neurite growth only in uPAR-overexpressing cells but not in control or uPAR-deficient cells. In addition, AG1478-mediated inhibition of EGFR activity impedes neurite growth in control and uPAR-deficient cells, but not in uPAR-overexpressing cells. Altogether these data implicate uPAR as an important regulator of EGFR and ERK1/2 signaling, representing a novel mechanism which implicates urokinase system in neuroblastoma cell survival and differentiation.
Collapse
Affiliation(s)
- K D Rysenkova
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - P S Klimovich
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Shmakova
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - M N Karagyaur
- Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - K A Ivanova
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - N A Aleksandrushkina
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - V A Tkachuk
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - K A Rubina
- Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| | - E V Semina
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Cai H, Liu W, Liu X, Li Z, Feng T, Xue Y, Liu Y. Advances and Prospects of Vasculogenic Mimicry in Glioma: A Potential New Therapeutic Target? Onco Targets Ther 2020; 13:4473-4483. [PMID: 32547078 PMCID: PMC7247597 DOI: 10.2147/ott.s247855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Vasculogenic mimicry (VM) is the formation of a “vessel-like” structure without endothelial cells. VM exists in vascular-dependent solid tumors and is a special blood supply source involved in the highly invasive tumor progression. VM is observed in a variety of human malignant tumors and is closely related to tumor proliferation, invasion, and recurrence. Here, we review the mechanism, related signaling pathways, and molecular regulation of VM in glioma and discuss current research problems and the potential future applications of VM in glioma treatment. This review may provide a new viewpoint for glioma therapy.
Collapse
Affiliation(s)
- Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Wenjing Liu
- Department of Geriatrics, First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Zhiqing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Tianda Feng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| |
Collapse
|
37
|
Ferraris C, Cavalli R, Panciani PP, Battaglia L. Overcoming the Blood-Brain Barrier: Successes and Challenges in Developing Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours. Int J Nanomedicine 2020; 15:2999-3022. [PMID: 32431498 PMCID: PMC7201023 DOI: 10.2147/ijn.s231479] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade gliomas are still characterized by a poor prognosis, despite recent advances in surgical treatment. Chemotherapy is currently practiced after surgery, but its efficacy is limited by aspecific toxicity on healthy cells, tumour cell chemoresistance, poor selectivity, and especially by the blood–brain barrier (BBB). Thus, despite the large number of potential drug candidates, the choice of effective chemotherapeutics is still limited to few compounds. Malignant gliomas are characterized by high infiltration and neovascularization, and leaky BBB (the so-called blood–brain tumour barrier); surgical resection is often incomplete, leaving residual cells that are able to migrate and proliferate. Nanocarriers can favour delivery of chemotherapeutics to brain tumours owing to different strategies, including chemical stabilization of the drug in the bloodstream; passive targeting (because of the leaky vascularization at the tumour site); inhibition of drug efflux mechanisms in endothelial and cancer cells; and active targeting by exploiting carriers and receptors overexpressed at the blood–brain tumour barrier. Within this concern, a suitable nanomedicine-based therapy for gliomas should not be limited to cytotoxic agents, but also target the most important pathogenetic mechanisms, including cell differentiation pathways and angiogenesis. Moreover, the combinatorial approach of cell therapy plus nanomedicine strategies can open new therapeutical opportunities. The major part of attempted preclinical approaches on animal models involves active targeting with protein ligands, but, despite encouraging results, a few number of nanomedicines reached clinical trials, and most of them include drug-loaded nanocarriers free of targeting ligands, also because of safety and scalability concerns.
Collapse
Affiliation(s)
- Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Pier Paolo Panciani
- Clinic of Neurosurgery, Spedali Civili and University of Brescia, Brescia, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
38
|
Yang Y, Li Y, Chen K, Zhang L, Qiao S, Tan G, Chen F, Pan W. Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy. Int J Nanomedicine 2020; 15:2885-2902. [PMID: 32425522 PMCID: PMC7188338 DOI: 10.2147/ijn.s249205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Poor site-specific delivery and insufficient intracellular drug release in tumors are inherent disadvantages to successful chemotherapy. In this study, an extraordinary polymeric micelle nanoplatform was designed for the efficient delivery of paclitaxel (PTX) by combining dual receptor-mediated active targeting and stimuli response to intracellular reduction potential. Methods The dual-targeted redox-sensitive polymer, folic acid-hyaluronic acid-SS-vitamin E succinate (FHSV), was synthesized via an amidation reaction and characterized by 1H-NMR. Then, PTX-loaded FHSV micelles (PTX/FHSV) were prepared by a dialysis method. The physiochemical properties of the micelles were explored. Moreover, in vitro cytological experiments and in vivo animal studies were carried out to evaluate the antitumor efficacy of polymeric micelles. Results The PTX/FHSV micelles exhibited a uniform, near-spherical morphology (148.8 ± 1.4 nm) and a high drug loading capacity (11.28% ± 0.25). Triggered by the high concentration of glutathione, PTX/FHSV micelles could quickly release their loaded drug into the release medium. The in vitro cytological evaluations showed that, compared with Taxol or single receptor-targeted micelles, FHSV micelles yielded higher cellular uptake by the dual receptor-mediated endocytosis pathway, thus leading to significantly superior cytotoxicity and apoptosis in tumor cells but less cytotoxicity in normal cells. More importantly, in the in vivo antitumor experiments, PTX/FHSV micelles exhibited enhanced tumor accumulation and produced remarkable tumor growth inhibition with minimal systemic toxicity. Conclusion Our results suggest that this well-designed FHSV polymer has promising potential for use as a vehicle of chemotherapeutic drugs for precise cancer therapy.
Collapse
Affiliation(s)
- Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yunjian Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Kai Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Sen Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guoxin Tan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Zhejiang 312500, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
39
|
Li J, Chai Z, Lu J, Xie C, Ran D, Wang S, Zhou J, Lu W. ɑ vβ 3-targeted liposomal drug delivery system with attenuated immunogenicity enabled by linear pentapeptide for glioma therapy. J Control Release 2020; 322:542-554. [PMID: 32277962 DOI: 10.1016/j.jconrel.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/20/2023]
Abstract
Owing to the binding capacity to ɑvβ3 integrin overexpressed on glioma, vasculogenic mimicry and neovasculature, the peptide c(RGDyK) has been exploited pervasively to functionalize nanocarriers for targeted delivery of bioactives. The former study in our group substantiated the immunotoxicity of c(RGDyK)-modified liposome, and this unfavorable immunogenicity is known to compromise blood circulation, targeting efficacy and therapeutic outcome. Therefore, we need to find a superior alternative ligand in order to evade the exquisite immuno-sensitization. We developed mn by structure-guided peptide design and retro-inverso isomerization technique, which was experimentally substantiated to have exceptional binding affinity to ɑvβ3 integrin. Besides mn does not have affinity toward normal liver cells and kidney cells, which c(RGDyK) possesses in a certain degree. Warranting that mn and c(RGDyK) anchored ɑvβ3, we formulated peptide-tethered liposomes and investigated in vivo bio-fate. Compared with c(RGDyK)-modified liposome, mn-modified liposome presented longer blood circulation and reduced ingestion by Kupffer cells with decreased retention in liver accordingly, benefitting from attenuated anti-liposome IgG and IgM response elicited by multiple sequential doses. Those merits strengthened the anti-glioma efficacy of ɑvβ3-targeted doxorubicin-loaded liposomes, proving the importance of immunocompatibility in process of targeted drug delivery.
Collapse
Affiliation(s)
- Jinyang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Zhilan Chai
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Jiasheng Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Danni Ran
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China; The Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China.
| |
Collapse
|
40
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
41
|
Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020; 156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Despite many endeavors to treat malignant gliomas in the last decades, the median survival of patients has not significantly improved. The infiltrative nature of high-grade gliomas and the impermeability of the blood-brain barrier to the most therapeutic agents remain major hurdles, impeding an efficacious treatment. Theranostic platforms bridging diagnosis and therapeutic modalities aim to surmount the current limitations in diagnosis and therapy of glioma. Gold nanoparticles (AuNPs) due to their biocompatibility and tunable optical properties have widely been utilized for an assortment of theranostic purposes. In this Review, applications of AuNPs as imaging probes, drug/gene delivery systems, radiosensitizers, photothermal transducers, and multimodal theranostic agents in malignant gliomas are discussed. This Review also aims to provide a perspective on cancer theranostic applications of AuNPs in future clinical trials.
Collapse
|
42
|
Ran D, Zhou J, Chai Z, Li J, Xie C, Mao J, Lu L, Zhang Y, Wu S, Zhan C, Lu W. All-stage precisional glioma targeted therapy enabled by a well-designed D-peptide. Theranostics 2020; 10:4073-4087. [PMID: 32226540 PMCID: PMC7086363 DOI: 10.7150/thno.41382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Uncontrollable cell proliferation and irreversible neurological damage make glioma one of the most deadly diseases in clinic. Besides the multiple biological barriers, glioma stem cells (GSCs) that are responsible for the maintenance and recurrence of tumor tissues also hinder the therapeutic efficacy of chemotherapy. Therefore, all-stage precisional glioma targeted therapy regimens that could efficiently deliver drugs to glioma cells and GSCs after overcoming multiple barriers have received increasing scrutiny. Methods: A polymeric micelle-based drug delivery system was developed by modifying a "Y-shaped" well-designed ligand of both GRP78 protein and quorum sensing receptor to achieve all-stage precisional glioma targeting, then we evaluated the targeting ability and barrier penetration ability both in vitro and in vivo. In order to achieve all-stage precisional therapy, we need kill both GSCs and glioma related cells. Parthenolide (PTL) has been investigated for its selective toxicity to glioma stem cells while Paclitaxel (PTX) and Temozolomide (TMZ) are widely used in experimental and clinical therapy of glioma respectively. So the in vivo anti-glioma effect of combination therapy was evaluated by Kaplan-Meier survival analysis and immunohistochemical (IHC) examination of tumor tissues. Results: The "Y-shaped" well-designed peptide, termed DWVAP, exhibited excellent glioma (and GSCs) homing and barrier penetration ability. When modified on micelle surface, DWVAP peptide significantly enhanced accumulation of micelles in brain and glioma. In addition, DWVAP micelles showed no immunogenicity and cytotoxicity, which could guarantee their safety when used in vivo. Treatment of glioma-bearing mice with PTL loaded DWVAP modified PEG-PLA micelles plus PTX loaded DWVAP modified PEG-PLA micelles or PTL loaded DWVAP modified PEG-PLA micelles plus TMZ showed improved anti-tumor efficacy in comparison to PTL and PTX loaded unmodified micelles or PTL loaded unmodified micelles plus TMZ. Conclusion: Combination of all-stage targeting strategy and concomitant use of chemotherapeutics and stem cell inhibitors could achieve precise targeted therapy for glioma.
Collapse
|
43
|
Kang S, Duan W, Zhang S, Chen D, Feng J, Qi N. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics 2020; 10:4308-4322. [PMID: 32292496 PMCID: PMC7150489 DOI: 10.7150/thno.41322] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023] Open
Abstract
Rationale: The dual-targeted drug delivery system was designed for enhancing permeation of the blood-brain barrier (BBB) and providing an anti-glioma effect. As transferrin receptor (TfR) is over-expressed by the brain capillary endothelial (hCMEC/D3) and glioma cells, a mouse monoclonal antibody, RI7217, with high affinity and selectivity for TfR, was used to study the brain targeted drug delivery system. Muscone, an ingredient of traditional Chinese medicine (TCM) musk, was used as the "guide" drug to probe the permeability of the BBB for drug delivery into the cerebrospinal fluid. This study investigated the combined effects of TCM aromatic resuscitation and modern receptor-targeted technology by the use of muscone/RI7217 co-modified docetaxel (DTX) liposomes for enhanced drug delivery to the brain for anti-glioma effect. Methods: Cellular drug uptake from the formulations was determined using fluorescence microscopy and flow cytometry. The drug penetrating ability into tumor spheroids were visualized using confocal laser scanning microscopy (CLSM). In vivo glioma-targeting ability of formulations was evaluated using whole-body fluorescent imaging system. The survival curve study was performed to evaluate the anti-glioma effect of the formulations. Results: The results showed that muscone and RI7217 co-modified DTX liposomes enhanced uptake into both hCMEC/D3 and U87-MG cells, increased penetration to the deep region of U87-MG tumor spheroids, improved brain targeting in vivo and prolonged survival time of nude mice bearing tumor. Conclusion: Muscone and RI7217 co-modified DTX liposomes were found to show improved brain targeting and enhanced the efficacy of anti-glioma drug treatment in vivo.
Collapse
|
44
|
Sun Z, Wang L, Wu S, Pan Y, Dong Y, Zhu S, Yang J, Yin Y, Li G. An Electrochemical Biosensor Designed by Using Zr-Based Metal-Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes with Practical Application. Anal Chem 2020; 92:3819-3826. [PMID: 32024367 DOI: 10.1021/acs.analchem.9b05241] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is one of the most fatal tumors in the brain, and its early diagnosis remains technically challenging due to the complex repertoires of oncogenic alterations and blood-brain barrier (BBB). GBM-derived specific exosomes can cross the BBB and circulate in body fluids, so they can be noninvasive biomarkers for the early diagnosis of GBM. Herein, we propose a sensitive and label-free electrochemical biosensor designed by using Zr-based metal-organic frameworks (Zr-MOFs) for the detection of GBM-derived exosomes with practical application. In the design, a peptide ligand can specifically bind with human epidermal growth factor receptor (EGFR) and EGFR variant (v) III mutation (EGFRvIII), which are overexpressed on the GBM-derived exosomes. Meanwhile, Zr-MOFs encapsulated with methylene blue can absorb on the surface of the exosomes due to the interaction between Zr4+ and the intrinsic phosphate groups outside of exosomes. Consequently, the concentration of exosomes can be directly quantified by monitoring the electroactive molecules inside MOFs, ranging from 9.5 × 103 to 1.9 × 107 particles/μL with the detection of limit of 7.83 × 103 particles/μL. Furthermore, this proposed biosensor can distinguish GBM patients from healthy groups, demonstrating the great prospect for early clinical diagnosis.
Collapse
Affiliation(s)
- Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanhong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yu Dong
- Department of Neurosurgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, P. R. China
| | - Sha Zhu
- Department of Oncology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214000, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
45
|
Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma. J Mol Med (Berl) 2019; 97:1575-1588. [PMID: 31673738 DOI: 10.1007/s00109-019-01843-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/10/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Glioblastoma is one of the most aggressive types of brain tumor. Epidermal growth factor receptors (EGFRs) are overexpressed in glioma, and EGFR amplifications and mutations lead to rapid proliferation and invasion. EGFR-targeted therapy might be an effective treatment for glioma. Gefitinib (Ge) is an EGFR tyrosine kinase inhibitor (TKI), and Golgi phosphoprotein 3 (GOLPH3) expression is associated with worse glioma prognosis. Downregulation of GOLPH3 could promote EGFR degradation. Here, an angiopep-2 (A2)-modified cationic lipid-poly (lactic-co-glycolic acid) (PLGA) nanoparticle (A2-N) was developed that can release Ge and GOLPH3 siRNA (siGOLPH3) upon entering glioma cells and therefore acts as a combinatorial anti-tumor therapy. The in vitro and in vivo studies proved that A2-N/Ge/siGOLPH3 successfully crossed the blood-brain barrier (BBB) and targeted glioma. Released siGOLPH3 effectively silenced GOLPH3 mRNA expression and further promoted EGFR and p-EGFR degradation. Released Ge also markedly inhibited EGFR signaling. This combined EGFR-targeted action achieved remarkable anti-glioma effects and could be a safe and effective treatment for glioma. KEY MESSAGES: Angiopep-2-modified cationic lipid polymer can penetrate the BBB. Gefitinib can inhibit EGFR signaling and block the autophosphorylation of critical tyrosine residues on EGFR. GOLPH3 siRNA can be transfected into glioma and downregulate GLOPH3 expression. A2-N/Ge/siGOLPH3 can inhibit glioma growth.
Collapse
|
46
|
Liu X, Du C, Li H, Jiang T, Luo Z, Pang Z, Geng D, Zhang J. Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1860-1872. [PMID: 31579072 PMCID: PMC6753680 DOI: 10.3762/bjnano.10.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
In this work, a peptide-modified, biodegradable, nontoxic, brain-tumor-targeting nanoprobe based on superparamagnetic iron oxide nanoparticles (SPIONs) (which have been commonly used as T 2-weighted magnetic resonance (MR) contrast agents) was successfully synthesized and applied for accurate molecular MR imaging and sensitive optical imaging. PEPHC1, a short peptide which can specifically bind to epidermal growth factor receptor variant III (EGFRvIII) that is overexpressed in glioblastoma, was conjugated with SPIONs to construct the nanoprobe. Both in vitro and in vivo MR and optical imaging demonstrated that the as-constructed nanoprobe was effective and sensitive for tumor targeting with desirable biosafety. Given its desirable properties such as a 100 nm diameter (capable of penetration of the blood-brain barrier) and bimodal imaging capability, this novel and versatile multimodal nanoprobe could bring a new perspective for elucidating intracranial glioblastoma preoperative diagnosis and the accuracy of tumor resection.
Collapse
Affiliation(s)
- Xianping Liu
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Chengjuan Du
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Haichun Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Ting Jiang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zimiao Luo
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| |
Collapse
|
47
|
Nosrati H, Tarantash M, Bochani S, Charmi J, Bagheri Z, Fridoni M, Abdollahifar MA, Davaran S, Danafar H, Kheiri Manjili H. Glutathione (GSH) Peptide Conjugated Magnetic Nanoparticles As Blood–Brain Barrier Shuttle for MRI-Monitored Brain Delivery of Paclitaxel. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01420] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mahsa Tarantash
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 94171-71946, Iran
| | | | - Jalil Charmi
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | | | | | - Mohammad-Amin Abdollahifar
- Department of Anatomical Sciences and Biology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | | | | |
Collapse
|
48
|
Zhao J, Yan C, Chen Z, Liu J, Song H, Wang W, Liu J, Yang N, Zhao Y, Chen L. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. J Colloid Interface Sci 2019; 540:66-77. [PMID: 30634060 DOI: 10.1016/j.jcis.2019.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/14/2023]
Abstract
Multifunctional nanoparticles (NPs) with high blood-stability, tumor-targeting ability, and stimuli-bioresponsive drug release behaviors are urgently demanded. Herein, folic acid (FA) and galactose (GAL) functionalized, core-crosslinked NPs (CC NPs) with dual-targeting and pH/redox-bioresponsive properties were developed based on amphiphilic FA-poly(6-O-methacryloyl-d-galactopyranose)-b-poly[2-(diisopropylamino) ethyl methacrylate-co-pyridyl disulfide methylacrylate] [FA-PMAgGP-b-P(DPA-co-PDEMA), termed as FA-PMgDP] block copolymers, and then investigated for facilitated hepatoma-targeting delivery of doxorubicin (DOX). A series of PMgDP copolymers were synthesized though two-step RAFT copolymerization followed by acid-induced acetal deprotection reaction. Their well-defined chemical structures and compositions were characterized by 1H NMR and gel permeation chromatography. Nano-sized, non-crosslinked PMgDP NPs (PMgDP NC NPs) with sizes of less than 25 nm in aqueous solution were self-assembled via the solvent exchange method, and PMgDP CC NPs were readily prepared in the presence of dithiothreitol. The drug-loading content of PMgDP CC NPs was up to 15.8% and its entrapment efficiency was 89.0%. In normal physiological conditions, 11.6% of DOX was released from DOX-loaded PMgDP CC NPs at 25 h, whereas in analogous intracellular microenvironment, 95.5% was released at 11 h owing to the acid-induced protonation of tertiary amine and reductive cleavage of disulfide bond in the hydrophobic core. In a cellular uptake study, FA and GAL-mediated, active, dual-targeted DOX-loaded FA-PMgDP CC NPs showed a 3.54-fold increase in cellular uptake efficiency to HepG2 cells compared to that of shown by single GAL-targeted, DOX-loaded PMgDP NC NPs. Results of in vitro cytotoxicity study showed that blank FA-PMgDP CC NPs exhibited good biocompatibility, whereas dual-targeting DOX-loaded FA-PMgDP CC NPs increased cell apoptosis. Therefore, the above results indicated that the well-constructed FA-PMgDP CC NPs with multi-synergistic effect may serve as new nanocarriers in the field of precise hepatoma-targeting drug delivery.
Collapse
Affiliation(s)
- Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Caixia Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Ze Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
49
|
Jiang Y, Zhang J, Meng F, Zhong Z. Apolipoprotein E Peptide-Directed Chimeric Polymersomes Mediate an Ultrahigh-Efficiency Targeted Protein Therapy for Glioblastoma. ACS NANO 2018; 12:11070-11079. [PMID: 30395440 DOI: 10.1021/acsnano.8b05265] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The inability to cross the blood-brain barrier (BBB) prevents nearly all chemotherapeutics and biotherapeutics from the effective treatment of brain tumors, rendering few improvements in patient survival rates to date. Here, we report that apolipoprotein E peptide [ApoE, (LRKLRKRLL)2C] specifically binds to low-density lipoprotein receptor members (LDLRs) and mediates superb BBB crossing and highly efficient glioblastoma (GBM)-targeted protein therapy in vivo. The in vitro BBB model studies reveal that ApoE induces 2.2-fold better penetration of the immortalized mouse brain endothelial cell line (bEnd.3) monolayer for chimeric polymersomes (CP) compared to Angiopep-2, the best-known BBB-crossing peptide used in clinical trials for GBM therapy. ApoE-installed CP (ApoE-CP) carrying saporin (SAP) displays a highly specific and potent antitumor effect toward U-87 MG cells with a low half-maximum inhibitory concentration of 14.2 nM SAP. Notably, ApoE-CP shows efficient BBB crossing as well as accumulation and penetration in orthotopic U-87 MG glioblastoma. The systemic administration of SAP-loaded ApoE-CP causes complete growth inhibition of orthotopic U-87 MG GBM without eliciting any observable adverse effects, affording markedly improved survival benefits. ApoE peptide provides an ultrahigh-efficiency targeting strategy for GBM therapy.
Collapse
Affiliation(s)
- Yu Jiang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| |
Collapse
|
50
|
Feng Y, Chen H, Shao B, Zhao S, Wang Z, You H. Renal-Clearable Peptide-Functionalized Ba 2GdF 7 Nanoparticles for Positive Tumor-Targeting Dual-Mode Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25511-25518. [PMID: 29989405 DOI: 10.1021/acsami.8b07129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Considering the dilemma between the effective tumor targeting and the avoidance of potential toxicity, it is desired to design nanoprobes with positive tumor-targeting and good renal clearance ability. In the present work, we developed epidermal growth factor receptor (EGFR)-targeted peptide-functionalized Ba2GdF7 nanoparticles (termed as pEGFR-targeted Ba2GdF7 NPs) for positive tumor-targeting magnetic resonance imaging and X-ray computed tomography (MRI/CT) dual-mode bioimaging. The positive tumor-targeting ability of pEGFR-targeted Ba2GdF7 NPs is achieved by conjugation of EGFR-targeted peptides on the 6.5 nm Ba2GdF7 NP surface through the formation of Gd-phosphonate coordinate bonds. The pEGFR-targeted Ba2GdF7 NPs display desirable cytocompatibility in the test concentration range and high binding affinity with lung cancer cells. In vivo MR and CT imaging results demonstrate that the pEGFR-targeted Ba2GdF7 NPs are able to be accumulated and detained within an engrafted A549 lung carcinoma, which enhances both MR and CT contrast in the tumor tissue. Systematic in vivo experimental results further demonstrate that the pEGFR-targeted Ba2GdF7 NPs have favorable in vivo renal clearance kinetics as well as reasonable in vivo biocompatibility.
Collapse
Affiliation(s)
- Yang Feng
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongda Chen
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | - Shuang Zhao
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | | |
Collapse
|