1
|
Zhang Y, Liu H, Zhang W, Ding Y, Zhang S, Huang X, Chen J, Yang Z, Lin F. Injectable iodine-containing peptide hydrogel for treatment of MRSA infection. Bioact Mater 2025; 47:198-208. [PMID: 39906645 PMCID: PMC11790503 DOI: 10.1016/j.bioactmat.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Iodine is widely acknowledged for its potent antimicrobial properties. However, its clinical utility is often hampered by its unsatisfactory stability, uncontrolled release of active iodine and toxicity in moist environments. In this study, we report a novel iodine-containing hydrogel (I2@Nap-FFGP) designed for sustained iodine delivery under humid physiological and pathological conditions. I2@Nap-FFGP was fabricated using a self-assembling peptide-based hydrogel containing a proline motif to form a stable iodine complex. The resulting hydrogel exhibited excellent biocompatibility and robust antibacterial effect, it significantly inhibited bacteria-associated endometrial infections in mice and effectively alleviated inflammation. Moreover, the hydrogel successfully restored endometrial architecture and function. Notably, I2@Nap-FFGP remarkably improved pregnancy rates in mice with endometritis owing to its therapeutic effects. Our findings highlight the potential of this innovative hydrogel system for stable iodine application under humid and aqueous physiological conditions, offering a promising platform for future antibacterial therapies in clinical settings.
Collapse
Affiliation(s)
- Yu Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Haiyan Liu
- Department of Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Weiqi Zhang
- Department of Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shengyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Xiaowan Huang
- Department of Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Jiali Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| |
Collapse
|
2
|
Estifeeva TM, Nechaeva AM, Le-Deygen IM, Adelyanov AM, Grigoryan IV, Petrovskii VS, Potemkin II, Abramov AA, Prosvirnin AV, Sencha EA, Borozdenko DA, Barmin RA, Mezhuev YO, Gorin DA, Rudakovskaya PG. Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure. BIOMATERIALS ADVANCES 2025; 166:214074. [PMID: 39447238 DOI: 10.1016/j.bioadv.2024.214074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
HYPOTHESIS While albumin-coated microbubbles are routine contrast agents for ultrasound imaging, their short duration of contrast enhancement limits their use, yet can be improved by incorporating protein-copolymer hybrids into microbubble shells. The incorporation of N-vinyl-2-pyrrolidone and acrylic acid copolymer (P(VP-AA)) has been shown to enhance the performance of bovine serum albumin (BSA)-coated microbubbles. However, the impact of the copolymer structural properties on key microbubble characteristics (i.e., concentration, mean diameter and acoustic response) remains poorly understood. Therefore, we hypothesize that the copolymer structure affects its capacity to form micelle-like nanoaggregates, protein-copolymer hybrids, and microbubble shells, ultimately influencing the physicochemical and acoustic properties of the microbubbles. EXPERIMENTS Here we evaluate the production and performance of BSA@P(VP-AA) microbubbles synthesized using a series of P(VP-AA) copolymers with -C8H17 and -C18H37 end groups and molecular weight cutoffs between 3.5 and 15 kDa. Both simulation and experimental data demonstrate that interactions between BSA and the copolymers significantly influence the performance of the resulting microbubbles across the library of 60 formulations. FINDINGS The introduction of -C8H17 terminated copolymers into microbubble shells resulted in up to 200-fold higher concentration, 7-fold greater acoustic response, and 5-fold longer ultrasound contrast enhancement compared to plain BSA microbubbles. The enhanced acoustic performance was sustained during in vivo cardiac ultrasound imaging, without altering liver accumulation after copolymer introduction. These findings underscore how optimizing copolymer structure (specifically the terminal end group and molecular weight) can tailor the formation and performance of protein-copolymer-coated microbubbles, offering valuable insights for designing ultrasound contrast agents.
Collapse
Affiliation(s)
- Tatiana M Estifeeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna M Nechaeva
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Irina M Le-Deygen
- Chemical Enzymology Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Artem M Adelyanov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya V Grigoryan
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander A Abramov
- Laboratory of Experimental Heart Pathology, Institute of Experimental Cardiology, Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia, Moscow 121552, Russia
| | - Anton V Prosvirnin
- Laboratory of Experimental Heart Pathology, Institute of Experimental Cardiology, Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia, Moscow 121552, Russia
| | - Ekaterina A Sencha
- Department of Clinical Ultrasound and Functional Diagnostics, M.F. Vladimirsky Moscow Regional Clinical Research Institute (MONIKI), Moscow 129110, Russia
| | - Denis A Borozdenko
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow 117997, Russia
| | - Roman A Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Yaroslav O Mezhuev
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia; A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Polina G Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
3
|
Olaru I, Stefanache A, Gutu C, Lungu II, Mihai C, Grierosu C, Calin G, Marcu C, Ciuhodaru T. Combating Bacterial Resistance by Polymers and Antibiotic Composites. Polymers (Basel) 2024; 16:3247. [PMID: 39683992 DOI: 10.3390/polym16233247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Since the discovery of antibiotics in the first half of the 20th century, humans have abused this privilege, giving rise to antibiotic-resistant pathogens. Recent research has brought to light the use of antimicrobial peptides in polymers, hydrogels, and nanoparticles (NPs) as a newer and safer alternative to traditional antibiotics. (2) Methods: This review article is a synthesis of the scientific works published in the last 15 years, focusing on the synthesis of polymers with proven antimicrobial properties. (3) Results: After a critical review of the literature was made, information and data about the synthesis and antimicrobial activity of antibacterial polymers and NPs functionalized with antibiotics were extracted. Fluorinated surfactants such as the Quaterfluo® series presented significant antimicrobial effects and could be modulated to contain thioesters to boost this characteristic. Biopolymers like chitosan and starch were also doped with iodine and used as iodophors to deliver iodine atoms directly to pathogens, as well as being antimicrobial on their own. Quaternary phosphonium salts are known for their increased antimicrobial activity compared to ammonium-containing polymers and are more thermally stable. (4) Conclusions: In summary, polymers and polymeric NPs seem like future alternatives to traditional antibiotics. Future research is needed to determine functional doses for clinical use and their toxicity.
Collapse
Affiliation(s)
- Iulia Olaru
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Alina Stefanache
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Ionut Iulian Lungu
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cozmin Mihai
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Gabriela Calin
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Tudor Ciuhodaru
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| |
Collapse
|
4
|
Sun W, Wang ZX, Guo Y, Li C, Gao G, Wu FG. Iodine/soluble starch cryogel: An iodine-based antiseptic with instant water-solubility, improved stability, and potent bactericidal activity. Carbohydr Polym 2024; 340:122217. [PMID: 38857997 DOI: 10.1016/j.carbpol.2024.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024]
Abstract
Iodine (I2) as a broad-spectrum antiseptic has been widely used for treating bacterial infections. However, I2 has low water-solubility and sublimes under ambient conditions, which limits its practical antibacterial applications. The highly specific and sensitive reaction between I2 and starch discovered 200 years ago has been extensively applied in analytical chemistry, but the antibacterial activity of the I2-starch complex is rarely investigated. Herein, we develop a novel type of iodine-based antiseptics, iodine-soluble starch (I2-SS) cryogel, which can dissolve in water instantly and almost completely kill bacteria in 10 min at 2 μg/mL of I2. Although KI3 and the commercially available povidone‑iodine (I2-PVP) solutions show similar antibacterial efficacy, the high affinity of I2 to SS largely enhances the shelf stability of the I2-SS solution with ∼73 % I2 left after one-week storage at room temperature. In sharp contrast, ∼8.5 % and ∼2.5 % I2 are detected in KI3 and I2-PVP solutions, respectively. Mechanistic study reveals that the potent antibacterial effect of I2-SS originates from its attack on multiple bacterial targets. The outstanding antibacterial activity, capability of accelerating wound healing, and good biocompatibility of I2-SS are verified through further in vivo experiments. This work may promote the development of next-generation iodine-based antiseptics for clinical use.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China; Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yuxin Guo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ge Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
5
|
Navidi G, Same S, Allahvirdinesbat M, Nakhostin Panahi P, Dindar Safa K. Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2090-2114. [PMID: 38953859 DOI: 10.1080/09205063.2024.2366638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.
Collapse
Affiliation(s)
- Golnaz Navidi
- Brozek Lab, Chemistry and Biochemistry Department, University of OR, Eugene, Oregon
| | - Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Allahvirdinesbat
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kazem Dindar Safa
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Ma Z, Chen Y, Wang R, Zhu M. Synthesis of polymerizable betulin maleic diester derivative for dental restorative resins with antibacterial activity. Dent Mater 2024; 40:941-950. [PMID: 38719709 DOI: 10.1016/j.dental.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Bisphenol A glycidyl methacrylate (Bis-GMA) is of great importance for dental materials as the preferred monomer. However, the presence of bisphenol-A (BPA) core in Bis-GMA structure causes potential concerns since it is associated with endocrine diseases, developmental abnormalities, and cancer lesions. Therefore, it is desirable to develop an alternative replacement for Bis-GMA and explore the intrinsic relationship between monomer structure and resin properties. METHODS Here, the betulin maleic diester derivative (MABet) was synthesized by a facile esterification reaction using plant-derived betulin and maleic anhydride as raw materials. Its chemical structure was confirmed by 1H and 13C NMR spectra, FT-IR spectra, and HR-MS, respectively. The as-synthesized MABet was then used as polymerizable comonomer to partially or completely substitute Bis-GMA in a 50:50 Bis-GMA: TEGDMA resin (5B5T) to formulate dental restorative resins. These were then determined for the viscosity behavior, light transmittance, real-time degree of conversion, residual monomers, mechanical performance, cytotoxicity, and antibacterial activity against Streptococcus mutans (S. mutans) in detail. RESULTS Among all experimental resins, increasing the MABet concentration to 50 wt% made the resultant 5MABet5T resin have a maximum in viscosity and appear dark yellowish after polymerization. In contrast, the 1MABet4B5T resin with 10 wt% MABet possessed comparable shear viscosity and polymerization conversion (46.6 ± 1.0% in 60 s), higher flexural and compressive strength (89.7 ± 7.8 MPa; 345.5 ± 14.4 MPa) to those of the 5B5T control (48.5 ± 0.6%; 65.7 ± 6.7 MPa; 223.8 ± 57.1 MPa). This optimal resin also had significantly lower S. mutans colony counts (0.35 ×108 CFU/mL) than 5B5T (7.6 ×108 CFU/mL) without affecting cytocompatibility. SIGNIFICANCE Introducing plant-derived polymerizable MABet monomer into dental restorative resins is an effective strategy for producing antibacterial dental materials with superior physicochemical property.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Li X, Xu W, Zhi C. Halogen-powered static conversion chemistry. Nat Rev Chem 2024; 8:359-375. [PMID: 38671189 DOI: 10.1038/s41570-024-00597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
Halogen-powered static conversion batteries (HSCBs) thrive in energy storage applications. They fall into the category of secondary non-flow batteries and operate by reversibly changing the chemical valence of halogens in the electrodes or/and electrolytes to transfer electrons, distinguishing them from the classic rocking-chair batteries. The active halide chemicals developed for these purposes include organic halides, halide salts, halogenated inorganics, organic-inorganic halides and the most widely studied elemental halogens. Aside from this, various redox mechanisms have been discovered based on multi-electron transfer and effective reaction pathways, contributing to improved electrochemical performances and stabilities of HSCBs. In this Review, we discuss the status of HSCBs and their electrochemical mechanism-performance correlations. We first provide a detailed exposition of the fundamental redox mechanisms, thermodynamics, conversion and catalysis chemistry, and mass or electron transfer modes involved in HSCBs. We conclude with a perspective on the challenges faced by the community and opportunities towards practical applications of high-energy halogen cathodes in energy-storage devices.
Collapse
Affiliation(s)
- Xinliang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, China.
| | - Wenyu Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Edis Z, Bloukh SH. Thymol, a Monoterpenoid within Polymeric Iodophor Formulations and Their Antimicrobial Activities. Int J Mol Sci 2024; 25:4949. [PMID: 38732168 PMCID: PMC11084924 DOI: 10.3390/ijms25094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
9
|
Edis Z, Bloukh SH, Sara HA, Bloukh IH. Green Synthesized Polymeric Iodophors with Thyme as Antimicrobial Agents. Int J Mol Sci 2024; 25:1133. [PMID: 38256211 PMCID: PMC10815993 DOI: 10.3390/ijms25021133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern for the future of mankind. Common antibiotics fail in the treatment of microbial infections at an alarming rate. Morbidity and mortality rates increase, especially among immune-compromised populations. Medicinal plants and their essential oils, as well as iodine could be potential solutions against resistant pathogens. These natural antimicrobials abate microbial proliferation, especially in synergistic combinations. We performed a simple, one-pot synthesis to prepare our formulation with polyvinylpyrrolidone (PVP)-complexed iodine (I2), Thymus Vulgaris L. (Thyme), and Aloe Barbadensis Miller (AV). SEM/EDS, UV-vis, Raman, FTIR, and XRD analyses verified the purity, composition, and morphology of AV-PVP-Thyme-I2. We investigated the inhibitory action of the bio-formulation AV-PVP-Thyme-I2 against 10 selected reference pathogens on impregnated sterile discs, surgical sutures, cotton gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thyme-I2 were studied by disc diffusion methods and compared with those of the antibiotics gentamycin and nystatin. The results confirm AV-PVP-Thyme-I2 as a strong antifungal and antibacterial agent against the majority of the tested microorganisms with excellent results on cotton bandages and face masks. After storing AV-PVP-Thyme-I2 for 18 months, the inhibitory action was augmented compared to the fresh formulation. Consequently, we suggest AV-PVP-Thyme-I2 as an antimicrobial agent against wound infections and a spray-on contact killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Hamed Abu Sara
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Iman Haj Bloukh
- College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
10
|
Šišková B, Kožár M, Staroňová R, Shepa I, Hajdučková V, Hudecová P, Kaduková M, Schnitzer M. Antibacterial Effect and Therapy of Chronic Skin Defects Using the Composite Bioscaffold Polycaprolactone/GelitaSpon/Povidone-Iodine in Domestic Dogs. Polymers (Basel) 2023; 15:4201. [PMID: 37959881 PMCID: PMC10647826 DOI: 10.3390/polym15214201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic wounds and the failure of conventional treatment are relatively common in veterinary medicine. Recently, there has been a growing interest in alternative therapeutic approaches and the utilization of biodegradable materials. Their potential application in wound therapy may offer a novel and more suitable option compared to conventional treatment methods. Biodegradable materials can be classified into two main categories: natural, synthetic, and a combination of both, which have the potential to have synergistically enhanced properties. In this study, four domestic dogs with clinical symptoms of chronic wounds were enrolled. These wounds underwent treatment utilizing a novel biodegradable composite material composed of gelatin sponge combined with two electrospun layers of polycaprolactone (PCL) along with polyvinylpyrrolidone (PVP) fibers containing povidone-iodine complex (PVP-I). The initial phase of the study was dedicated to evaluating the antibacterial properties of iodine against Staphylococcus aureus and Escherichia coli. On average, wound healing in domestic dogs took 22 days from the initial treatment, and iodine concentrations demonstrated a significant antibacterial effect against Escherichia coli and Staphylococcus aureus. Based on the favorable outcomes observed in wound management, we believe that the utilization of a blend of natural and synthetic biodegradable materials holds promise as an effective wound therapy option.
Collapse
Affiliation(s)
- Barbora Šišková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (B.Š.); (R.S.)
| | - Martin Kožár
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (B.Š.); (R.S.)
| | - Radka Staroňová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (B.Š.); (R.S.)
| | - Ivan Shepa
- Institute of Material Research, Slovak Academy of Sciences, 040 01 Košice, Slovakia;
| | - Vanda Hajdučková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.H.); (P.H.)
| | - Patrícia Hudecová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.H.); (P.H.)
| | - Michaela Kaduková
- Department of Parasitology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Marek Schnitzer
- Faculty of Mechanical Engineering, Department of Biomedical Engineering and Measurement, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia;
| |
Collapse
|
11
|
Dattilo S, Spitaleri F, Aleo D, Saita MG, Patti A. Solid-State Preparation and Characterization of 2-Hydroxypropylcyclodextrins-Iodine Complexes as Stable Iodophors. Biomolecules 2023; 13:biom13030474. [PMID: 36979409 PMCID: PMC10046614 DOI: 10.3390/biom13030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The use of iodine as antiseptic poses some issues related to its low water solubility and high volatility. Stable solid iodine-containing formulations are highly advisable and currently limited to the povidone-iodine complex. In this study, complexes of molecular iodine with 2-hydroxypropyl α-, β- and γ-cyclodextrins were considered water-soluble iodophors and prepared in a solid state by using three different methods (liquid-assisted grinding, co-evaporation and sealed heating). The obtained solids were evaluated for their iodine content and stability over time in different conditions using a fully validated UV method. The assessment of the actual formation of an inclusion complex in a solid state was carried out by thermal analysis, and the presence of iodine was further confirmed by SEM/EDX and XPS analyses. High levels of iodine content (8.3–10.8%) were obtained with all the tested cyclodextrins, and some influence was exerted by the employed preparation method. Potential use as solid iodophors can be envisaged for these iodine complexes, among which those with 2-hydroxypropyl-α-cyclodextrin were found the most stable, regardless of the preparation technique. The three prepared cyclodextrin–iodine complexes proved effective as bactericides against S. epidermidis.
Collapse
Affiliation(s)
- Sandro Dattilo
- CNR-Istituto per i Polimeri, Compositi e Biomateriali, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | | | - Danilo Aleo
- MEDIVIS-Via Carnazza 34 C, I-95030 Catania, Italy
- Correspondence: (D.A.); (A.P.)
| | | | - Angela Patti
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
- Correspondence: (D.A.); (A.P.)
| |
Collapse
|
12
|
Ye Y, Wang Y, Zhang K, Guo W, Kong T, Ding X, Zhao N, Xu F. Facile fabrication of two-dimensional iodine nanosheets for antibacterial therapy. Biomater Sci 2023; 11:1311-1317. [PMID: 36723355 DOI: 10.1039/d2bm01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, we report a facile approach for the preparation of two-dimensional iodine nanosheets (2D iodine NSs) with good stability and high biocompatibility via an aqueous solvent-assisted ultrasonic route. Due to the large specific surface area of the 2D morphology, iodine NSs effectively interact with bacterial membranes and destroy bacterial integrity, as well as further damaging intracellular DNA, showing prominent antibacterial activity against S. aureus in vitro and in vivo.
Collapse
Affiliation(s)
- Yingmin Ye
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanmin Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianyu Kong
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fujian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Jing L, Cheng C, Wang B, Wang S, Xie R, Xia H, Wang D. Controlled Iodine Phase Transfer of Covalent Organic Framework Membranes for Instant but Sustained Disinfection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:597-609. [PMID: 36578100 DOI: 10.1021/acs.langmuir.2c02892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Freestanding membranes of CuCl2-implanted TpPa covalent organic frameworks (COFs) were mechanochemically produced. The resulting membrane had a high I2 adsorption capacity (566.78 g·mol-1) in cyclohexane, which corresponds to 2.2I2 per unit cell with 1.3I2 immobilized on 3Cl- ions (60%) and 0.9 on 3N atoms (40%). Upon being placed in aqueous media, the membrane released 61.1% of its loaded I2 mainly by its Cl- ions within 10 min and the remaining 38.9% mainly from its N atoms within about 5 h. Thanks to that, the COF membranes loaded with 1.5 mg of I2 could be repetitively utilized to kill about 108 CFU/mL E. coli in 0.5-3 min at least five times, after which the membranes could retain their bactericidal activity for 4 h against 108 CFU/mL E. coli. This highlights the promising application of I2-loaded TpPa-CuCl2 COF membranes for instant and sustained disinfection.
Collapse
Affiliation(s)
- Liping Jing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Chongling Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Bo Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Shun Wang
- College of Chemistry and Materials Engineering, Institute of New Materials and Industrial Technologies, Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou325035, China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| |
Collapse
|
14
|
Song Z, Gu S, Tang T, Wu J. Povidone-iodine enhanced underwater tape. J Mater Chem B 2022; 10:9906-9913. [PMID: 36448473 DOI: 10.1039/d2tb02115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Realizing rapid and stable bonding under humid conditions has remained a challenge in adhesion science and wound dressing. In this study, polyacrylate-based underwater tape with water-enhanced adhesion and antimicrobial performance was designed and synthesized. Good underwater adhesion performance is achieved through the reasonable selection of comonomers, among which 4-hydroxybutyl acrylate (4-HBA) and isobornyl acrylate (IBOA) provide rich hydrogen bond interactions and a rigid side chain stable structure, respectively. The former effectively increases the interface strength between the tape and the substrate, while the latter ensures that the tape can maintain a good cohesion strength under water. Besides, povidone iodine (PVP-I2) as a reinforcing filler and germicidal factor endows the tape with tunable mechanical properties and impressive antimicrobial abilities. This work provides a facile approach to prepare a wet adhesive for medical and industrial fields which can be used as wound dressing and underwater adhesive materials.
Collapse
Affiliation(s)
- Zhihang Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Shiyu Gu
- Stake Key laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jinrong Wu
- Stake Key laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Wang Y, Teng W, Zhang Z, Ma S, Jin Z, Zhou X, Ye Y, Zhang C, Gou Z, Yu X, Ye Z, Ren Y. Remote Eradication of Bacteria on Orthopedic Implants via Delayed Delivery of Polycaprolactone Stabilized Polyvinylpyrrolidone Iodine. J Funct Biomater 2022; 13:jfb13040195. [PMID: 36278664 PMCID: PMC9589933 DOI: 10.3390/jfb13040195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria-associated late infection of the orthopedic devices would further lead to the failure of the implantation. However, present ordinary antimicrobial strategies usually deal with early infection but fail to combat the late infection of the implants due to the burst release of the antibiotics. Thus, to fabricate long-term antimicrobial (early antibacterial, late antibacterial) orthopedic implants is essential to address this issue. Herein, we developed a sophisticated MAO-I2-PCLx coating system incorporating an underlying iodine layer and an upper layer of polycaprolactone (PCL)-controlled coating, which could effectively eradicate the late bacterial infection throughout the implantation. Firstly, micro-arc oxidation was used to form a microarray tubular structure on the surface of the implants, laying the foundation for iodine loading and PCL bonding. Secondly, electrophoresis was applied to load iodine in the tubular structure as an efficient bactericidal agent. Finally, the surface-bonded PCL coating acts as a controller to regulate the release of iodine. The hybrid coatings displayed great stability and control release capacity. Excellent antibacterial ability was validated at 30 days post-implantation via in vitro experiments and in vivo rat osteomyelitis model. Expectedly, it can become a promising bench-to-bedside strategy for current infection challenges in the orthopedic field.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Wangsiyuan Teng
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Zengjie Zhang
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Siyuan Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Zhihui Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Xingzhi Zhou
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Chongda Zhang
- New York University Medical Center, New York University, New York, NY 10016, USA
| | - Zhongru Gou
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaohua Yu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Zhaoming Ye
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Correspondence: (Z.Y.); (Y.R.); Tel.: +86-571-8778-3777 (Z.Y.); +86-027-8804-1911 (ext. 83380) (Y.R.)
| | - Yijun Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Correspondence: (Z.Y.); (Y.R.); Tel.: +86-571-8778-3777 (Z.Y.); +86-027-8804-1911 (ext. 83380) (Y.R.)
| |
Collapse
|
16
|
Antimicrobial Biomaterial on Sutures, Bandages and Face Masks with Potential for Infection Control. Polymers (Basel) 2022; 14:polym14101932. [PMID: 35631817 PMCID: PMC9143446 DOI: 10.3390/polym14101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobial resistance (AMR) is a challenge for the survival of the human race. The steady rise of resistant microorganisms against the common antimicrobials results in increased morbidity and mortality rates. Iodine and a plethora of plant secondary metabolites inhibit microbial proliferation. Antiseptic iodophors and many phytochemicals are unaffected by AMR. Surgical site and wound infections can be prevented or treated by utilizing such compounds on sutures and bandages. Coating surgical face masks with these antimicrobials can reduce microbial infections and attenuate their burden on the environment by re-use. The facile combination of Aloe Vera Barbadensis Miller (AV), Trans-cinnamic acid (TCA) and Iodine (I2) encapsulated in a polyvinylpyrrolidone (PVP) matrix seems a promising alternative to common antimicrobials. The AV-PVP-TCA-I2 formulation was impregnated into sterile discs, medical gauze bandages, surgical sutures and face masks. Morphology, purity and composition were confirmed by several analytical methods. Antimicrobial activity of AV-PVP-TCA-I2 was investigated by disc diffusion methods against ten microbial strains in comparison to gentamycin and nystatin. AV-PVP-TCA-I2 showed excellent antifungal and strong to intermediate antibacterial activities against most of the selected pathogens, especially in bandages and face masks. The title compound has potential use for prevention or treatment of surgical site and wound infections. Coating disposable face masks with AV-PVP-TCA-I2 may be a sustainable solution for their re-use and waste management.
Collapse
|
17
|
Li H, Pan Y, Li C, Yang Z, Rao J, Chen B. Design, synthesis and characterization of lysozyme-gentisic acid dual-functional conjugates with antibacterial/antioxidant activities. Food Chem 2022; 370:131032. [PMID: 34500294 DOI: 10.1016/j.foodchem.2021.131032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
Both microbiological and chemical food spoilages remain to be the major challenges in the food industry's efforts to combat food waste and loss because of the lack of high efficacy food preservatives. In this study, dual-functional conjugates that simultaneously suppress both lipid oxidation and microorganism growth are fabricated by covalently conjugating natural antioxidant gentisic acid (GA) on native antibacterial lysozyme (Lys). The mixing ratio of Lys and GA determines the particle size, morphology, antioxidant activity, and antimicrobial performance of the ensuing conjugates. With more of GA being grafted, a drastic decrease in the net surface charge with the concomitant occurrence of aggregations are observed in the conjugates. The maximum antioxidant activity and antibacterial performance of the conjugates is achieved when Lys:GA molar ratio is 1:112. The findings could guide the rational design of future functional food ingredients that combine multiple natural bioactive compounds to effectively intervene food waste and loss.
Collapse
Affiliation(s)
- Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Chun Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA.
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
18
|
Ma J, Li K, Gu S. Selective strategies for antibacterial regulation of nanomaterials. RSC Adv 2022; 12:4852-4864. [PMID: 35425473 PMCID: PMC8981418 DOI: 10.1039/d1ra08996j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Recalcitrant bacterial infection, as a worldwide challenge, causes large problems for human health and is attracting great attention. The excessive antibiotic-dependent treatment of infections is prone to induce antibiotic resistance. A variety of unique nanomaterials provide an excellent toolkit for killing bacteria and preventing drug resistance. It is of great importance to summarize the design rules of nanomaterials for inhibiting the growth of pathogenic bacteria. We completed a review involving the strategies for regulating antibacterial nanomaterials. First, we discuss the antibacterial manipulation of nanomaterials, including the interaction between the nanomaterial and the bacteria, the damage of the bacterial structure, and the inactivation of biomolecules. Next, we identify six main factors for controlling the antibacterial activity of nanomaterials, including their element composition, size dimensions, surface charge, surface topography, shape selection and modification density. Every factor possesses a preferable standard for maximizing antibacterial activity, providing universal rules for antibacterial regulation of nanomaterials. We hope this comprehensive review will help researchers to precisely design and synthesize nanomaterials, developing intelligent antibacterial agents to address bacterial infections.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Kexin Li
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
19
|
Synthesis of Polymer Nanospheres Conjugated Ce (IV) Complexes for Constructing Double Antibacterial Centers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Glycopolymer N-halamine-modified biochars with high specificity for Escherichia coli eradication. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Liu R, Wang E, Guo Y, Zhou Q, Zheng Y, Zhai J, Zhang K, Zhang B. Enhanced antibacterial properties and promoted cell proliferation in glass ionomer cement by modified with fluorinated graphene-doped. J Appl Biomater Funct Mater 2021; 19:22808000211037487. [PMID: 34428976 DOI: 10.1177/22808000211037487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, we aimed to improve the properties of conventional glass ionomer cement (GIC), including mechanical properties, wear resistance, antibacterial properties and biological activity, by adding fluorinated graphene (FG). Composites of synthesised FG and GIC were examined after being combined at different mass proportions (0, 0.5, 1.0 and 2.0 wt%). The microstructure and morphology of FG prepared via the hydrothermal method was characterised using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The FG/GIC composite was obtained through the blending method and characterised using SEM. Then, the Vickers microhardness and the wear property of the FG/GIC composite-imitated brushing was measured. The plate count and dilution methods (10-fold) were adopted to investigate the antibacterial properties of FG/GIC by incubating Escherichia coli and Staphylococcus aureus. The biocompatibility of FG/GIC containing the adhesion and cytotoxicity of mouse fibroblast cells (L929) was estimated by the MTT and acridine orange (AO) fluorescent staining. Our results demonstrated that the hardness and abrasive wear resistance of the composites increased, and the microhardness parameter changes exhibited a gradual increase as the concentration continued to increase. A 2.0 wt% FG concentration could effectively improve the bacterial inhibition performance of GIC and was directly proportional to the concentration of FG. The composite materials showed no apparent cytotoxicity on normal L929 cells compared to the control group, and the materials exhibited no cytotoxic effect compared to traditional GIC. Thus, FG/GIC has potential therapeutic value in the field of dental treatment.
Collapse
Affiliation(s)
- Ruimin Liu
- Department of Oral and Maxillofacial Surgery, Gansu Provincial Hospital, Lanzhou, PR China
| | - Errui Wang
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Yumeng Guo
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Qiaozhen Zhou
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Yayuan Zheng
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Junkai Zhai
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Kailiang Zhang
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Baoping Zhang
- Department of Stomatology, Lanzhou University, Lanzhou, PR China.,Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
22
|
Highly bioactive and low cytotoxic Si-based NiOOH nanoflowers targeted against various bacteria, including MRSA, and their potential antibacterial mechanism. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Yao Q, Borjihan Q, Qu H, Guo Y, Zhao Z, Qiao L, Li T, Dong A, Liu Y. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination. J Environ Sci (China) 2021; 105:33-43. [PMID: 34130837 DOI: 10.1016/j.jes.2020.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Disposal of the pollutants arising from farming cattle and other livestock threatens the environment and public safety in diverse ways. Herein, we report on the synthesis of engineered biochars using cow dung as raw material, and investigating these biochars as antibacterial agents for water decontamination. By coating the biochars with N-halamine polymer and loading them with active chlorine (i.e., Cl+), we were able to regulate them on demand by tuning the polymer coating and bleaching conditions. The obtained N-halamine-modified biochars were found to be extremely potent against Escherichia coli and Staphylococcus aureus. We also investigated the possibility of using these N-halamine-modified biochars for bacterial decontamination in real-world applications. Our findings indicated that a homemade filter column packed with N-halamine-modified biochars removed pathogenic bacteria from mining sewage, dairy sewage, domestic sewage, and artificial seawater. This proposed strategy could indicate a new way for utilizing livestock pollutants to create on-demand decontaminants.
Collapse
Affiliation(s)
- Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, China
| | - Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Yixuan Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ziying Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Long Qiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ting Li
- College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
24
|
Zhang L, Ma Z, Wang R, Zhu M. Synthesis and Characterization of Methacrylate-Functionalized Betulin Derivatives as Antibacterial Comonomer for Dental Restorative Resins. ACS Biomater Sci Eng 2021; 7:3132-3140. [PMID: 34114805 DOI: 10.1021/acsbiomaterials.1c00563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Secondary caries is the primary cause of composite restoration failures, resulting from marginal leakage and bacterial accumulation in the oral environment. Antibacterial dental composites, especially antibacterial monomers, have emerged as a promising strategy to inhibit secondary caries, which is pivotal to prolonging the lifespan of dental restorations. In this work, monomethacrylate- and dimethacrylate-functionalized betulin derivatives (M1Bet and M2Bet) were synthesized via an esterification reaction and served as antibacterial comonomers to develop novel dental resin formulations, in which M1Bet and M2Bet were incorporated to partially or completely replace bisphenol A glycerolate dimethacrylate (Bis-GMA). The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 50:50 (5B5T). The effect of the resin compositions and the chemical structures of M1Bet and M2Bet on the rheology behavior, optical property, polymerization kinetics, mechanical performance, cell viability, and antibacterial activity of dental resins were systematically investigated. Among all materials, the 1M2Bet4B5T resin with 10 wt % substitution of Bis-GMA by M2Bet exhibited comparable viscosity, higher light transmittance, improved degree of conversion, and mechanical properties compared with 5B5T. After incubation for 24 h, this optimal resin also possessed the best antibacterial activity against Streptococcus mutans, which had a significantly lower bacterial concentration (1.53 × 109 CFU/mL) than 5B5T (9.03 × 109 CFU/mL). Introducing betulin-based comonomers into dental resins is a potential strategy to develop antibacterial dental materials without sacrificing physical-mechanical properties.
Collapse
Affiliation(s)
- Lusi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2021; 8:6867-6882. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic bacteria have become global threats to public health. Since the advent of antibiotics about 100 years ago, their use has been embraced with great enthusiasm because of their effective treatment of bacterial infections. However, the evolution of pathogenic bacteria with resistance to conventional antibiotics has resulted in an urgent need for the development of a new generation of antibiotics. The use of antimicrobial polymers offers the promise of enhancing the efficacy of antimicrobial agents. Of the various antibacterial polymers that effectively eradicate pathogenic bacteria, those that are nanoengineered have garnered significant research interest in their design and biomedical applications. Because of their high surface area and high reactivity, these polymers show greater antibacterial activity than conventional antibacterial agents, by inhibiting the growth or destroying the cell membrane of pathogenic bacteria. This review summarizes several strategies for designing nanoengineered antibacterial polymers, explores the factors that affect their antibacterial properties, and examines key features of their design. It then comments briefly on the future prospects for nanoengineered antibacterial polymers. This review thus provides a feasible guide to developing nanoengineered antibacterial polymers by presenting both broad and in-depth bench research, and it offers suggestions for their potential in biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | |
Collapse
|
26
|
Hoang TPN, Ghori MU, Conway BR. Topical Antiseptic Formulations for Skin and Soft Tissue Infections. Pharmaceutics 2021; 13:558. [PMID: 33921124 PMCID: PMC8071503 DOI: 10.3390/pharmaceutics13040558] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/22/2023] Open
Abstract
Skin and soft tissue infections (SSTIs) are usually acute conditions of inflammatory microbial occupation of the skin layers and underlying soft tissues. SSTIs are one of the most frequent types of infection, typically requiring medical intervention and contribute to morbidity and mortality in both primary care and hospitalised patients. Due to the dramatic rise of antibiotic resistance, antiseptic agents can be potential alternatives for the prevention and treatment of SSTIs. Notably, they are commonly recommended in many global practical guidelines for use in per- and post- operative procedures. A range of antiseptics, including chlorhexidine, triclosan, alcohol, and povidone-iodine, are used and are mainly formulated as traditional, simple dosage forms such as solutions and semi-solids. However, in recent years, there have been studies reporting the potential for nanotechnology in the delivery of antiseptics. In this review, we have collated the scientific literature that focuses on topical antiseptic formulations for prevention and treatment of SSTIs, and have divided findings into traditional and advanced formulations. We conclude that although nanotechnological formulations have demonstrated potential advantages for delivering drugs; nevertheless, there is still scope for traditional formulations and further development of optimised topical formulations to address the rise of antimicrobial resistance.
Collapse
Affiliation(s)
- Thi Phuong Nga Hoang
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (T.P.N.H.); (M.U.G.)
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (T.P.N.H.); (M.U.G.)
| | - Barbara R. Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (T.P.N.H.); (M.U.G.)
- Institute of Skin Integrity and Infections Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
27
|
Yuan Q, Zhao Y, Zhang Z, Tang Y. On-Demand Antimicrobial Agent Release from Functionalized Conjugated Oligomer-Hyaluronic Acid Nanoparticles for Tackling Antimicrobial Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:257-265. [PMID: 33378174 DOI: 10.1021/acsami.0c19283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable drug release is promising for fighting against antimicrobial resistance, which is a critical threat to human health worldwide. Herein, new hyaluronidase-responsive conjugated oligo(thiophene ethynylene) (OTE)-covalently modified hyaluronic acid (OTE-HA) nanoparticles for on-demand release of antimicrobial agents are reported. The synthesis of amphiphilic OTE-HA was carried out by esterification reaction. The resulting macromolecules were self-assembled in water to form nanoparticles, in which the hydrophobic OTE section, as bactericides, formed "cores" and the hydrophilic hyaluronic acid (HA) formed "shells". The OTE-HA nanoparticles avoid bactericide premature leakage and effectively block the dark cytotoxicity of the OTE section, possessing excellent biocompatibility. Using methicillin-resistant Staphylococcus aureus (MRSA) as an example, hyaluronidase, largely secreted by MRSA, can in situ trigger the release of OTE via hydrolyzing OTE-HA nanoparticles into fragments, even disaccharides linked with OTE. Importantly, the OTE section could effectively break cell membranes, leading to bacterial death. The half-maximal inhibitory concentration of the nanoparticles against MRSA is 3.3 μg/mL. The great antibacterial activity of OTE-HA nanoparticles against Gram-positive bacteria Streptococcus pneumoniae further confirms the controllable bactericide delivery mechanism. OTE-HA nanoparticles coated on a surface can also effectively inhibit the growth of bacteria, which holds a remarkable promise in biomedical applications. Therefore, this work provides a favorable strategy of on-demand and in situ drug release for sterilization and defeating antimicrobial resistance.
Collapse
Affiliation(s)
- Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yantao Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
28
|
Xu X, Guan Y. Investigating the Complexation and Release Behaviors of Iodine in Poly(vinylpyrrolidone)-Iodine Systems through Experimental and Computational Approaches. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiang Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yong Guan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Opazo MC, Coronado-Arrázola I, Vallejos OP, Moreno-Reyes R, Fardella C, Mosso L, Kalergis AM, Bueno SM, Riedel CA. The impact of the micronutrient iodine in health and diseases. Crit Rev Food Sci Nutr 2020; 62:1466-1479. [DOI: 10.1080/10408398.2020.1843398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ma. Cecilia Opazo
- Laboratorio de Endocrino-Inmunología, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Endocrine-Immunology Laboratory, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Moreno-Reyes
- Erasme Hospital, Department of Nuclear Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Carlos Fardella
- Millennium Institute on Immunology and Immunotherapy (IMII). Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Mosso
- Millennium Institute on Immunology and Immunotherapy (IMII). Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-Inmunología, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Endocrine-Immunology Laboratory, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
Li X, Wang B, Liang T, Wang R, Song P, He Y. Synthesis of cationic acrylate copolyvidone-iodine nanoparticles with double active centers and their antibacterial application. NANOSCALE 2020; 12:21940-21950. [PMID: 33112328 DOI: 10.1039/d0nr05462c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibacterial materials are rapidly emerging as a primary component in the mitigation of bacterial pathogens, and functional polymers play a vital role in the preparation of antibacterial coatings. In this study, a novel antibacterial polymer with double active centers was synthesized. Firstly, using one-pot soap-free emulsion polymerization technology, the cationic acrylate copolymeric polyvidone (CACPV) was synthesized by copolymerization of four monomers with different functions, which were methyl methacrylate (MMA), N-vinyl-2-pyrrolidone (NVP), γ-methacryloxypropyltrimethoxysilane (MAPTS) and [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC). Secondly, using iodine complexation, the cationic acrylate copolyvidone-iodine (CACPVI) nanoparticles were prepared. After being characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS) and contact angle test, the antibacterial activity of CACPVI was evaluated against the typical human pathogens Escherichia coli (E. coli, Gram-negative) and Staphylococcus aureus (S. aureus, Gram-positive). Additionally, CACPVI was used to improve the antibacterial activities of some materials, such as ink, dye and coatings. It was found that CACPVI presented an excellent antibacterial synergy. When the antibacterial activities were more than 99% at a concentration of 40.00 μg mL-1, CACPVI exhibited long-term antibacterial performance as expected. The antibacterial mechanism of this synergy was also investigated. In summary, a novel antibacterial polymer material with double active centers was successfully synthesized and was widely applied in coating, dye and ink materials for minimizing bacterial infection.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | | | | | | | | | | |
Collapse
|
31
|
Gu ZY, Sun ZH, Guo JZ, Zhao XX, Zhao CD, Li SF, Wang XT, Li WH, Heng YL, Wu XL. High-Rate and Long-Cycle Cathode for Sodium-Ion Batteries: Enhanced Electrode Stability and Kinetics via Binder Adjustment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47580-47589. [PMID: 32969641 DOI: 10.1021/acsami.0c14294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sodium-ion batteries (SIBs) are heralded as promising candidates for grid-scale energy storage systems due to their low cost and abundant sodium resources. Excellent rate capacity and outstanding cycling stability are always the goals for SIBs. Up to now, nearly all attention has been focused on the control of morphology and structure of electrode materials, but the influence of binders on their performance is neglected, especially in cathode materials. Herein, using Na3V2(PO4)2O2F (NVPOF) as a cathode material, the influence of four different binders (sodium alginate, SA; carboxymethylcellulose sodium, CMC; poly(vinylidene fluoride), PVDF; and poly(acrylic latex), LA133) on its electrochemical performance is studied. As a result, when using SA as the binder, the electrochemical performance of the NVPOF electrode is improved significantly, which is mainly because of the high water solubility, rich carboxyl and hydroxyl groups, and high adhesive and cohesive properties of the SA binder, leading to the uniform distribution of active materials NVPOF and carbon black in electrodes, good integrity, low polarization, and superior kinetic properties of the NVPOF electrodes, as demonstrated by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique. More importantly, when coupled with a hard carbon anode, the fabricated sodium-ion full cells also exhibit excellent rate performance, thus providing a preview of their practical application. This work shows that the battery performance can be improved by matching suitable binder systems, which is believed to have great importance for the further optimization of the electrochemical performance of SIBs.
Collapse
Affiliation(s)
- Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Zhong-Hui Sun
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xin-Xin Zhao
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Chen-De Zhao
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shao-Fang Li
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xiao-Tong Wang
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Wen-Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yong-Li Heng
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
32
|
Edis Z, Bloukh SH. Facile Synthesis of Antimicrobial Aloe Vera-"Smart" Triiodide-PVP Biomaterials. Biomimetics (Basel) 2020; 5:E45. [PMID: 32957469 PMCID: PMC7558393 DOI: 10.3390/biomimetics5030045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is an eminent threat for the survival of mankind. Nosocomial infections caused by multidrug resistant microorganisms are a reason for morbidity and mortality worldwide. Plant-based antimicrobial agents are based on synergistic mechanisms which prevent resistance and have been used for centuries against ailments. We suggest the use of cost-effective, eco-friendly Aloe Vera Barbadensis Miller (AV)-iodine biomaterials as a new generation of antimicrobial agents. In a facile, one-pot synthesis, we encapsulated fresh AV gel with polyvinylpyrrolidone (PVP) as a stabilizing agent and incorporated iodine moieties in the form of iodine (I2) and sodium iodide (NaI) into the polymer matrix. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) verified the composition of AV-PVP-I2, AV-PVP-I2-NaI. AV, AV-PVP, AV-PVP-I2, AV-PVP-I2-NaI, and AV-PVP-NaI were tested in-vitro by disc diffusion assay and dip-coated on polyglycolic acid (PGA) sutures against ten microbial reference strains. All the tested pathogens were more susceptible towards AV-PVP-I2 due to the inclusion of "smart" triiodides with halogen bonding in vitro and on dip-coated sutures. The biocomplexes AV-PVP-I2, AV-PVP-I2-NaI showed remarkable antimicrobial properties. "Smart" biohybrids with triiodide inclusions have excellent antifungal and promising antimicrobial activities, with potential use against surgical site infections (SSI) and as disinfecting agents.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman PO Box 346, UAE;
| |
Collapse
|
33
|
Edis Z, Haj Bloukh S, Ibrahim MR, Abu Sara H. "Smart" Antimicrobial Nanocomplexes with Potential to Decrease Surgical Site Infections (SSI). Pharmaceutics 2020; 12:E361. [PMID: 32326601 PMCID: PMC7238257 DOI: 10.3390/pharmaceutics12040361] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of resistant pathogens is a burden on mankind and threatens the existence of our species. Natural and plant-derived antimicrobial agents need to be developed in the race against antibiotic resistance. Nanotechnology is a promising approach with a variety of products. Biosynthesized silver nanoparticles (AgNP) have good antimicrobial activity. We prepared AgNPs with trans-cinnamic acid (TCA) and povidone-iodine (PI) with increased antimicrobial activity. We synthesized also AgNPs with natural cinnamon bark extract (Cinn) in combination with PI and coated biodegradable Polyglycolic Acid (PGA) sutures with the new materials separately. These compounds (TCA-AgNP, TCA-AgNP-PI, Cinn-AgNP, and Cinn-AgNP-PI) and their dip-coated PGA sutures were tested against 10 reference strains of microorganisms and five antibiotics by zone inhibition with disc- and agar-well-diffusion methods. The new compounds TCA-AgNP-PI and Cinn-AgNP-PI are broad spectrum microbicidal agents and therefore potential coating materials for sutures to prevent Surgical Site Infections (SSI). TCA-AgNP-PI inhibits the studied pathogens stronger than Cinn-AgNP-PI in-vitro and on coated sutures. Dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier Transform infrared spectroscopy (FT-IR), Raman, x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the composition of TCA-AgNP-PI and Cinn-AgNP-PI. Smart solutions involving hybrid materials based on synergistic antimicrobial action have promising future perspectives to combat resistant microorganisms.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE;
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE; (S.H.B.); (H.A.S.)
| | - May Reda Ibrahim
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE;
| | - Hamed Abu Sara
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman PO Box 346, UAE; (S.H.B.); (H.A.S.)
| |
Collapse
|
34
|
Hu J, Liu S, Deng W. Dual responsive linalool capsules with high loading ratio for excellent antioxidant and antibacterial efficiency. Colloids Surf B Biointerfaces 2020; 190:110978. [PMID: 32203910 DOI: 10.1016/j.colsurfb.2020.110978] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Linalool is a main component in different naturally derived essential oils, and widely used in household, personal care, food and therapeutic formulations. However, the application is limited due to its high volatility and low stability. In this study, an effective encapsulation with high loading ratio was built up together with thermal-redox dual responsiveness and controlled release properties. The emulsified linalool droplets were modified with carbon-carbon double bonds, followed by the precipitation polymerization with thermal sensitive monomer, N-vinyl caprolactam. The average size and the loading ratio of the prepared linalool capsules were 1.4 μm and 50.41 wt%. The linalool capsules exhibited thermal-redox dual responsive properties and the antioxidant-antibacterial performance. Especially, responding to the stimuli mimicking practical circumstance, the synthesized capsules presented excellent bacteria inhibiting effect. This work may open a new path for fragrance and essential oil encapsulation, enlarging them as the green biological antibacterial agents in different applications.
Collapse
Affiliation(s)
- Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418, Shanghai, PR China.
| | - Shanshan Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418, Shanghai, PR China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418, Shanghai, PR China.
| |
Collapse
|
35
|
Borjihan Q, Zhang Z, Zi X, Huang M, Chen Y, Zhang Y, Dong A. Pyrrolidone-based polymers capable of reversible iodine capture for reuse in antibacterial applications. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121305. [PMID: 31606708 DOI: 10.1016/j.jhazmat.2019.121305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Numerous emerging and re-emerging advanced materials have been successful in capturing iodine pollutants that pose an unprecedented global challenge to public health. However, little attention has been paid to the reutilization of the captured iodine. Herein, we report on a pyrrolidone-based polymer capable of reversible iodine capture for reutilization in antibacterial applications. The pyrrolidone-based polymer poly(N-vinyl-2-pyrrolidone-co-vinyl acetate), denoted as P(VAc-NVP), was synthesized facilely via a one-step radical copolymerization strategy, and the synthesis was regulated by step-by-step optimization, specifically by tuning the feed ratio of NVP to VAc. The as-synthesized P(VAc-NVP) copolymer functioned as an adsorbent for iodine in various solutions, including water/ethanol, cyclohexane, and petroleum ether, in addition to having the special capability of releasing iodine in the presence of starch or bacteria. This opens up a new horizon for its functional practical use as a flexible adsorbent to capture iodine for safe disposal. Interestingly, the P(VAc-NVP) copolymer, after adsorbing iodine, showed antibacterial ability against pathogenic bacteria, including Staphylococcus aureus and Escherichia coli, when a series of simulated and practical antibacterial assays were conducted. It is believed that this proposed strategy based on the synergism of iodine capture and antibacterial use should have great potential for environmental remediation and public healthcare.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xinyuan Zi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Mengxue Huang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yiqi Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
36
|
Sun Y, Wang X, Fan L, Xie X, Miao Z, Ma Y, He T, Zha Z. Facile synthesis of monodisperse chromogenic amylose–iodine nanoparticles as an efficient broad-spectrum antibacterial agent. J Mater Chem B 2020; 8:3010-3015. [DOI: 10.1039/d0tb00161a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodisperse chromogenic amylose–iodine nanoparticles were developed as an efficient broad-spectrum antibacterial agent under the assistance of near-infrared laser irradiation.
Collapse
Affiliation(s)
- Yanbin Sun
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Xianwen Wang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Linxin Fan
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Xianli Xie
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Yan Ma
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Tao He
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| |
Collapse
|
37
|
Edis Z, Haj Bloukh S, Abu Sara H, Bhakhoa H, Rhyman L, Ramasami P. "Smart" Triiodide Compounds: Does Halogen Bonding Influence Antimicrobial Activities? Pathogens 2019; 8:E182. [PMID: 31658760 PMCID: PMC6963602 DOI: 10.3390/pathogens8040182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial agents containing symmetrical triiodides complexes with halogen bonding may release free iodine molecules in a controlled manner. This happens due to interactions with the plasma membrane of microorganisms which lead to changes in the structure of the triiodide anion. To verify this hypothesis, the triiodide complex [Na(12-crown-4)2]I3 was prepared by an optimized one-pot synthesis and tested against 18 clinical isolates, 10 reference strains of pathogens and five antibiotics. The antimicrobial activities of this symmetrical triiodide complex were determined by zone of inhibition plate studies through disc- and agar-well-diffusion methods. The triiodide complex proved to be a broad spectrum microbicidal agent. The biological activities were related to the calculated partition coefficient (octanol/water). The microstructural analysis of SEM and EDS undermined the purity of the triiodide complex. The anionic structure consists of isolated, symmetrical triiodide anions [I-I-I]- with halogen bonding. Computational methods were used to calculate the energy required to release iodine from [I-I-I]- and [I-I···I]-. The halogen bonding in the triiodide ion reduces the antibacterial activities in comparison to the inhibitory actions of pure iodine but increases the long term stability of [Na(12-crown-4)2]I3.
Collapse
Affiliation(s)
- Zehra Edis
- College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE.
| | - Samir Haj Bloukh
- College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE.
| | - Hamed Abu Sara
- College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE.
| | - Hanusha Bhakhoa
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
38
|
Engineering antimicrobial and biocompatible electrospun PLGA fibrous membranes by irradiation grafting polyvinylpyrrolidone and periodate. Colloids Surf B Biointerfaces 2019; 181:918-926. [DOI: 10.1016/j.colsurfb.2019.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
|
39
|
Yang C, Lou W, Zhong G, Lee A, Leong J, Chin W, Ding B, Bao C, Tan JP, Pu Q, Gao S, Xu L, Hsu LY, Wu M, Hedrick JL, Fan W, Yang YY. Degradable antimicrobial polycarbonates with unexpected activity and selectivity for treating multidrug-resistant Klebsiella pneumoniae lung infection in mice. Acta Biomater 2019; 94:268-280. [PMID: 31129359 DOI: 10.1016/j.actbio.2019.05.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
Multidrug resistant (MDR) Klebsiella pneumoniae is a major cause of healthcare-associated infections around the world, with attendant high rates of morbidity and mortality. Progressive reduction in potency of antibiotics capable of treating MDR K. pneumoniae infections - including lung infection - as a consequence of escalating drug resistance provides the motivation to develop drug candidates targeting MDR K. pneumoniae. We recently reported degradable broad-spectrum antimicrobial guanidinium-functionalized polycarbonates with unique antimicrobial mechanism - membrane translocation followed by precipitation of cytosolic materials. These polymers exhibited high potency against bacteria with negligible toxicity. The polymer with ethyl spacer between the quanidinium group and the polymer backbone (pEt_20) showed excellent in vivo efficacy for treating MDR K. pneumoniae-caused peritonitis in mice. In this study, the structures of the polymers were optimized for the treatment of MDR Klebsiella pneumoniae lung infection. Specifically, in vitro antimicrobial activity and selectivity of guanidinium-functionalized polycarbonates containing the same number of guanidinium groups but of a shorter chain length and a structural analogue containing a thiouronium moiety as the pendent cationic group were evaluated. The polymers with optimal compositions and varying hydrophobicity were assessed against 25 clinically isolated K. pneumonia strains for antimicrobial activity and killing kinetics. The results showed that the polymers killed the bacteria more efficiently than clinically used antibiotics, and repeated use of the polymers did not cause drug resistance in K. pneumonia. Particularly, the polymer with butyl spacer (pBut_20) self-assembled into micelles at high concentrations, where the hydrophobic component was shielded in the micellar core, preventing interacting with mammalian cells. A subtle change in the hydrophobicity increased the antimicrobial activity while reducing in vivo toxicity. The in vivo efficacy studies showed that pBut_20 alleviated K. pneumonia lung infection without inducing damage to major organs. Taken together, pBut_20 is promising for treating MDR Klebsiella pneumoniae lung infection in vivo. STATEMENT OF SIGNIFICANCE: Multidrug resistant (MDR) Klebsiella pneumoniae is a major cause of healthcare-associated infections, with attendant high rates of morbidity and mortality. The progressive reduction in antibiotics capable of treating MDR K. pneumoniae infections - including lung infection - as a consequence of escalating drug resistance rates provides the motivation to develop drug candidates. In this study, we report a degradable guanidinium-functionalized polycarbonate with unexpected antimicrobial activity and selectivity towards MDR Klebsiella pneumoniae. A subtle change in polymer hydrophobicity increases antimicrobial activity while reducing in vivo toxicity due to self-assembly at high concentrations. The polymer with optimal composition alleviates Klebsiella pneumonia lung infection without inducing damage to major organs. The polymer is promising for treating MDR Klebsiella pneumoniae lung infection in vivo.
Collapse
|
40
|
Sikder P, Bhaduri SB, Ong JL, Guda T. Silver (Ag) doped magnesium phosphate microplatelets as next‐generation antibacterial orthopedic biomaterials. J Biomed Mater Res B Appl Biomater 2019; 108:976-989. [DOI: 10.1002/jbm.b.34450] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Industrial and Manufacturing Engineering The University of Toledo Toledo Ohio
| | - Sarit B. Bhaduri
- Department of Mechanical Industrial and Manufacturing Engineering The University of Toledo Toledo Ohio
| | - Joo L. Ong
- Department of Biomedical Engineering The University of Texas at San Antonio San Antonio Texas
| | - Teja Guda
- Department of Biomedical Engineering The University of Texas at San Antonio San Antonio Texas
| |
Collapse
|
41
|
Lan S, Lu Y, Zhang J, Guo Y, Li C, Zhao S, Sheng X, Dong A. Electrospun Sesbania Gum-Based Polymeric N-Halamines for Antibacterial Applications. Polymers (Basel) 2019; 11:E1117. [PMID: 31266230 PMCID: PMC6680915 DOI: 10.3390/polym11071117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microorganism pollution induced by pathogens has become a serious concern in recent years. In response, research on antibacterial N-halamines has made impressive progress in developing ways to combat this pollution. While synthetic polymer-based N-halamines have been widely developed and in some cases even commercialized, N-halamines based on naturally occurring polymers remain underexplored. In this contribution, we report for the first time on a strategy for developing sesbania gum (SG)-based polymeric N-halamines by a four-step approach Using SG as the initial polymer, we obtained SG-based polymeric N-halamines (abbreviated as cSG-PAN nanofibers) via a step-by-step controllable synthesis process. With the assistance of advanced techniques, the as-synthesized cSG-PAN nanofibers were systematically characterized in terms of their chemical composition and morphology. In a series of antibacterial and cytotoxicity evaluations, the as-obtained cSG-PAN nanofibers displayed good antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as low cytotoxicity towards A549 cells. We believe this study offers a guide for developing naturally occurring polymer-based antibacterial N-halamines that have great potential for antibacterial applications.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yaning Lu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinghua Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Guo
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chun Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuang Zhao
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
42
|
Lan S, Lu Y, Li C, Zhao S, Liu N, Sheng X. Sesbania Gum-Supported Hydrophilic Electrospun Fibers Containing Nanosilver with Superior Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E592. [PMID: 30974842 PMCID: PMC6523858 DOI: 10.3390/nano9040592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022]
Abstract
In this contribution, we report for the first time on a new strategy for developing sesbania gum-supported hydrophilic fibers containing nanosilver using electrospinning (SG-Ag/PAN electrospun fibers), which gives the fibers superior antibacterial activity. Employing a series of advanced technologies-scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, X-ray photoelectron spectroscopy, and contact angle testing-we characterized the as-synthesized SG-Ag/PAN electrospun fibers in terms of morphology, size, surface state, chemical composition, and hydrophilicity. By adjusting the synthesis conditions, in particular the feed ratio of sesbania gum (SG) and polyacrylonitrile (PAN) to Ag nanoparticles (NPs), we regulated the morphology and size of the as-electrospun fibers. The fibers' antibacterial properties were examined using the colony-counting method with two model bacteria: Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium). Interestingly, compared to Ag/PAN and SG-PAN electrospun fibers, the final SG-Ag/PAN showed enhanced antibacterial activity towards both of the model bacteria due to the combination of antibacterial Ag NPs and hydrophilic SG, which enabled the fibers to have sufficient contact with the bacteria. We believe this strategy has great potential for applications in antibacterial-related fields.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Yaning Lu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Chun Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Shuang Zhao
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Naren Liu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
43
|
Gao T, Borjihan Q, Yang J, Qu H, Liu W, Li Q, Wang YJ, Dong A. Antibacterial Povidone-Iodine-Conjugated Cross-Linked Polystyrene Resin for Water Bacterial Decontamination. ACS APPLIED BIO MATERIALS 2019; 2:1310-1321. [DOI: 10.1021/acsabm.9b00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People’s Republic of China
| | | | | | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People’s Republic of China
| | - Yan-Jie Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, No. 1, Daxue Road, Songshan Lake, Dongguan, Guangdong 523808, People’s Republic of China
| | | |
Collapse
|
44
|
Li X, Chen G, Ma J, Jia Q. Pyrrolidinone-based hypercrosslinked polymers for reversible capture of radioactive iodine. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Gao Y, Song N, Liu W, Dong A, Wang YJ, Yang YW. Construction of Antibacterial N-Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti-Infective Wound Therapy. Macromol Biosci 2019; 19:e1800453. [PMID: 30645044 DOI: 10.1002/mabi.201800453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Indexed: 01/31/2023]
Abstract
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N-halamine polymer nanomaterials based on a strategic copolymerization of 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N-halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four-stage mechanism suggests that, with unique antibacterial NCl bonds, the N-halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N-halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.
Collapse
Affiliation(s)
- Yangyang Gao
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenxin Liu
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yan-Jie Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
46
|
Borjihan Q, Yang J, Song Q, Gao L, Xu M, Gao T, Liu W, Li P, Li Q, Dong A. Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. Biomater Sci 2019; 7:3334-3347. [DOI: 10.1039/c9bm00583h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Povidone-iodine-functionalized fluorinated polymer coatings with dual-functional antibacterial and antifouling activities should be very promising in practical biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Qing Song
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
| | - Lingling Gao
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Miao Xu
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Tianyi Gao
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Peng Li
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| |
Collapse
|
47
|
Li N, Zeng C, Qin Q, Zhang B, Chen L, Luo Z. Powerful antibacterial activity of graphene/nanoflower-like nickelous hydroxide nanocomposites. Nanomedicine (Lond) 2018; 13:2901-2916. [DOI: 10.2217/nnm-2018-0200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The development of new and efficient antibacterial agents is urgent to overcome emerging antimicrobial resistance. Materials & methods: Herein, we have presented a new type of 3D antibacterial system to prompt bacteria to contact with the any plane of nanocomposites. Results: Comparing the antibacterial activity of graphene oxide, reduced graphene oxide and graphene-loaded nanoflower-like nickelous hydroxide (GN/Ni(OH)2) nanocomposites; the GN/Ni(OH)2 showed stronger bactericidal capability toward Gram-negative/-positive bacteria. Moreover, the GN/Ni(OH)2 with low cytotoxicity can promote it as ‘green’ antimicrobial agents. And, the GN/Ni(OH)2 presented long-term stable antibacterial effectiveness after 2-month storage. The antibacterial mechanisms of GN/Ni(OH)2 were evidenced as the 3D contact and violent damage to the bacterial structure. Conclusion: The GN/Ni(OH)2 provides new insights into the antibacterial properties of 3D nanocomposites for effectively fighting pathogen threats in biomedicine and public health.
Collapse
Affiliation(s)
- Na Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Chujie Zeng
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Qipin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Biaoming Zhang
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Lina Chen
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| |
Collapse
|
48
|
Roka N, Pitsikalis M. Statistical copolymers of N-vinylpyrrolidone and benzyl methacrylate via RAFT: Monomer reactivity ratios, thermal properties and kinetics of thermal decomposition. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1403858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nikoletta Roka
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| |
Collapse
|