1
|
Shahin Shamsabadi A, Zhang Z, Rumi SS, Chabi S, Lucia LA, Abidi N. High-pressure CO 2 treatment of cellulose, chitin and chitosan: A mini review and perspective. Int J Biol Macromol 2025; 308:142097. [PMID: 40089232 DOI: 10.1016/j.ijbiomac.2025.142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
High-pressure CO2 (HPCD) technology has emerged as an environmentally sustainable approach for processing natural polymers such as cellulose, chitin, and chitosan. These polymers, valued for their abundance, biodegradability, and renewability compared to petroleum-based materials, provide a promising foundation for green technologies when combined with HPCD. In this mini review, we begin with an overview of the sources and structures of cellulose, chitin, and chitosan, followed by a discussion of the principles of HPCD and its functionality and role in treating these natural polymers. We then review representative examples of HPCD-treated cellulose, chitin, and chitosan, highlighting various applications, including those in biomedical engineering, environmental remediation, and other fields. Finally, we address current challenges, unresolved issues, and offer perspectives on the future opportunities for HPCD-treated cellulose, chitin, chitosan, and their relevant natural resources.
Collapse
Affiliation(s)
| | - Zhen Zhang
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, USA.
| | - Shaida S Rumi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Sakineh Chabi
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Lucian A Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, NC, USA
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Zhang J, Zhang X, Zhu Y, Chen H, Chen Z, Hu Z. Recent advances in moisture-induced electricity generation based on wood lignocellulose: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135258. [PMID: 39233166 DOI: 10.1016/j.ijbiomac.2024.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.
Collapse
Affiliation(s)
- Jinchao Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Xuejin Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hua Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhuo Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhijun Hu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
3
|
Mandić V, Bafti A, Panžić I, Radovanović-Perić F. Bio-Based Aerogels in Energy Storage Systems. Gels 2024; 10:438. [PMID: 39057461 PMCID: PMC11275867 DOI: 10.3390/gels10070438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Bio-aerogels have emerged as promising materials for energy storage, providing a sustainable alternative to conventional aerogels. This review addresses their syntheses, properties, and characterization challenges for use in energy storage devices such as rechargeable batteries, supercapacitors, and fuel cells. Derived from renewable sources (such as cellulose, lignin, and chitosan), bio-based aerogels exhibit mesoporosity, high specific surface area, biocompatibility, and biodegradability, making them advantageous for environmental sustainability. Bio-based aerogels serve as electrodes and separators in energy storage systems, offering desirable properties such as high specific surface area, porosity, and good electrical conductivity, enhancing the energy density, power density, and cycle life of devices. Recent advancements highlight their potential as anode materials for lithium-ion batteries, replacing non-renewable carbon materials. Studies have shown excellent cycling stability and rate performance for bio-aerogels in supercapacitors and fuel cells. The yield properties of these materials, primarily porosity and transport phenomena, demand advanced characterization methods, and their synthesis and processing methods significantly influence their production, e.g., sol-gel and advanced drying. Bio-aerogels represent a sustainable solution for advancing energy storage technologies, despite challenges such as scalability, standardization, and cost-effectiveness. Future research aims to improve synthesis methods and explore novel applications. Bio-aerogels, in general, provide a healthier path to technological progress.
Collapse
Affiliation(s)
- Vilko Mandić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.P.); (F.R.-P.)
| | - Arijeta Bafti
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.P.); (F.R.-P.)
| | | | | |
Collapse
|
4
|
Yang T, Xu J, Sheng H, Wang J, Hu G, Liang S, Hu L, Zhang L, Xie H. Cellulose aerogel beads and monoliths from CO 2-based reversible ionic liquid solution. Int J Biol Macromol 2024; 271:132718. [PMID: 38821786 DOI: 10.1016/j.ijbiomac.2024.132718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The CO2-based reversible ionic liquid solution of 1,1,3,3-tetramethylguanidine (TMG) and ethylene glycol (EG) in dimethyl sulfoxide (DMSO) after capturing CO2, (2[TMGH]+[O2COCH2CH2OCO2]2-/DMSO (χRILs = 0.1), provides a sustainable and effective platform for cellulose dissolution and homogeneous utilization. Highly porous cellulose aerogel beads and monoliths were successfully prepared via a sol-gel process by extruding cellulose solution into different coagulation baths (NaOH aqueous solution or alcohols) and exposing the cellulose solution in open environment, respectively, and followed by different drying techniques, including supercritical CO2-drying, freeze-drying and air-drying. The effect of the coagulation baths and drying protocols on the multi-scale structure of the as-prepared cellulose aerogel beads and monoliths were studied in detail, and the sol-gel transition mechanism was also studied by the solvatochromic parameters determination. High specific surface area of 252 and 207 m2/g for aerogel beads and monoliths were achieved, respectively. The potential of cellulose aerogels in dye adsorption was demonstrated.
Collapse
Affiliation(s)
- Tongjun Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Junpeng Xu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Hailiang Sheng
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Junqin Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Gang Hu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Songmiao Liang
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, China
| | - Lijie Hu
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, China
| | - Lihua Zhang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China.
| |
Collapse
|
5
|
Hou X, Chen J, Chen Z, Yu D, Zhu S, Liu T, Chen L. Flexible Aerogel Materials: A Review on Revolutionary Flexibility Strategies and the Multifunctional Applications. ACS NANO 2024; 18:11525-11559. [PMID: 38655632 DOI: 10.1021/acsnano.4c00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The design and preparation of flexible aerogel materials with high deformability and versatility have become an emerging research topic in the aerogel fields, as the brittle nature of traditional aerogels severely affects their safety and reliability in use. Herein, we review the preparation methods and properties of flexible aerogels and summarize the various controlling and design methods of aerogels to overcome the fragility caused by high porosity and nanoporous network structure. The mechanical flexibility of aerogels can be revolutionarily improved by monomer regulation, nanofiber assembly, structural design and controlling, and constructing of aerogel composites, which can greatly broaden the multifunctionality and practical application prospects. The design and construction criterion of aerogel flexibility is summarized: constructing a flexible and deformable microstructure in an aerogel matrix. Besides, the derived multifunctional applications in the fields of flexible thermal insulation (flexible thermal protection at extreme temperatures), flexible wearable electronics (flexible sensors, flexible electrodes, electromagnetic shielding, and wave absorption), and environmental protection (oil/water separation and air filtration) are summarized. Furthermore, the future development prospects and challenges of flexible aerogel materials are also summarized. This review will provide a comprehensive research basis and guidance for the structural design, fabrication methods, and potential applications of flexible aerogels.
Collapse
Affiliation(s)
- Xianbo Hou
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Jia Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhilin Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Dongqin Yu
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shaowei Zhu
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Tao Liu
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Liming Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
6
|
Shahriar SMS, McCarthy AD, Andrabi SM, Su Y, Polavoram NS, John JV, Matis MP, Zhu W, Xie J. Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration. Nat Commun 2024; 15:1080. [PMID: 38316777 PMCID: PMC10844217 DOI: 10.1038/s41467-024-45458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The structure and design flexibility of aerogels make them promising for soft tissue engineering, though they tend to come with brittleness and low elasticity. While increasing crosslinking density may improve mechanics, it also imparts brittleness. In soft tissue engineering, resilience against mechanical loads from mobile tissues is paramount. We report a hybrid aerogel that consists of self-reinforcing networks of micro- and nanofibers. Nanofiber segments physically entangle microfiber pillars, allowing efficient stress distribution through the intertwined fiber networks. We show that optimized hybrid aerogels have high specific tensile moduli (~1961.3 MPa cm3 g-1) and fracture energies (~7448.8 J m-2), while exhibiting super-elastic properties with rapid shape recovery (~1.8 s). We demonstrate that these aerogels induce rapid tissue ingrowth, extracellular matrix deposition, and neovascularization after subcutaneous implants in rats. Furthermore, we can apply them for engineering soft tissues via minimally invasive procedures, and hybrid aerogels can extend their versatility to become magnetically responsive or electrically conductive, enabling pressure sensing and actuation.
Collapse
Affiliation(s)
- S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alec D McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Navatha Shree Polavoram
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell P Matis
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
7
|
Taokaew S. Recent Advances in Cellulose-Based Hydrogels Prepared by Ionic Liquid-Based Processes. Gels 2023; 9:546. [PMID: 37504425 PMCID: PMC10379057 DOI: 10.3390/gels9070546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
This review summarizes the recent advances in preparing cellulose hydrogels via ionic liquid-based processes and the applications of regenerated cellulose hydrogels/iongels in electrochemical materials, separation membranes, and 3D printing bioinks. Cellulose is the most abundant natural polymer, which has attracted great attention due to the demand for eco-friendly and sustainable materials. The sustainability of cellulose products also depends on the selection of the dissolution solvent. The current state of knowledge in cellulose preparation, performed by directly dissolving in ionic liquids and then regenerating in antisolvents, as described in this review, provides innovative ideas from the new findings presented in recent research papers and with the perspective of the current challenges.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| |
Collapse
|
8
|
Zi X, Wu H, Song J, He W, Xia L, Guo J, Luo S, Yan W. Electrospun Sandwich-like Structure of PVDF-HFP/Cellulose/PVDF-HFP Membrane for Lithium-Ion Batteries. Molecules 2023; 28:4998. [PMID: 37446661 DOI: 10.3390/molecules28134998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cellulose membranes have eco-friendly, renewable, and cost-effective features, but they lack satisfactory cycle stability as a sustainable separator for batteries. In this study, a two-step method was employed to prepare a sandwich-like composite membrane of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/cellulose/ PVDF-HFP (PCP). The method involved first dissolving and regenerating a cellulose membrane and then electrospinning PVDF-HFP on its surface. The resulting PCP composite membrane exhibits excellent properties such as high porosity (60.71%), good tensile strength (4.8 MPa), and thermal stability up to 160 °C. It also has exceptional electrolyte uptake properties (710.81 wt.%), low interfacial resistance (241.39 Ω), and high ionic conductivity (0.73 mS/cm) compared to commercial polypropylene (PP) separators (1121.4 Ω and 0.26 mS/cm). Additionally, the rate capability (163.2 mAh/g) and cycling performance (98.11% after 100 cycles at 0.5 C) of the PCP composite membrane are superior to those of PP separators. These results demonstrate that the PCP composite membrane has potential as a promising separator for high-powered, secure lithium-ion batteries.
Collapse
Affiliation(s)
- Xingfu Zi
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Hongming Wu
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| | - Jiling Song
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| | - Weidi He
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| | - Lu Xia
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Jianbing Guo
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Wei Yan
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| |
Collapse
|
9
|
Lin W, Wu S, Han S, Xie J, He H, Zou Q, Xu D, Ning D, Mondal AK, Huang F. Preparation and characterization of highly conductive lignin aerogel based on tunicate nanocellulose framework. Int J Biol Macromol 2023:125010. [PMID: 37217060 DOI: 10.1016/j.ijbiomac.2023.125010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The highly conductive and elastic three-dimensional mesh porous material is an ideal platform for the fabrication of high electrical conductivity conductive aerogels. Herein, a multifunctional aerogel that is lightweight, highly conductive and stable sensing properties is reported. Tunicate nanocellulose (TCNCs) with a high aspect ratio, high Young's modulus, high crystallinity, good biocompatibility and biodegradability was used as the basic skeleton to prepare aerogel by freeze-drying technique. Alkali lignin (AL) was used as the raw material, polyethylene glycol diglycidyl ether (PEGDGE) was used as the cross-linking agent, and polyaniline (PANI) was used as the conductive polymer. Preparation of aerogels by freeze-drying technique, in situ synthesis of PANI, and construction of highly conductive aerogel from lignin/TCNCs. The structure, morphology and crystallinity of the aerogel were characterized by FT-IR, SEM, and XRD. The results show that the aerogel has good conductivity (as high as 5.41 S/m) and excellent sensing performance. When the aerogel was assembled as a supercapacitor, the maximum specific capacitance can reach 772 mF/cm2 at 1 mA/cm2 current density, and maximum power and energy density can reach 59.4 μWh/cm2 and 3600 μW/cm2, respectively. It is expected the aerogel can be applied in the field of wearable devices and electronic skin.
Collapse
Affiliation(s)
- Weijie Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Shuai Wu
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shibo Han
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Jie Xie
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Hongshen He
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Qiuxia Zou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Dezhong Xu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Dengwen Ning
- Yibin Forest and Bamboo Industry Research Institute, Yibin 644000, Sichuan, China
| | - Ajoy Kanti Mondal
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China; Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Savar, Dhaka 1350, Bangladesh
| | - Fang Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
10
|
Silori GK, Thoka S, Ho KC. Morphological Features of SiO 2 Nanofillers Address Poor Stability Issue in Gel Polymer Electrolyte-Based Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37205840 DOI: 10.1021/acsami.3c04685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanofillers' applicability in gel polymer electrolyte (GPE)-based devices skyrocketed in the last decade as soon as their remarkable benefits were realized. However, their applicability in GPE-based electrochromic devices (ECDs) has hardly seen any development due to challenges such as optical inhomogeneity brought by incompetent nanofiller sizes, transmittance drop due to higher filler loading (usually required), and poor methodologies of electrolyte fabrication. To address such issues, herein, we demonstrate a reinforced polymer electrolyte tailored through poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP),1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), and four types of mesoporous SiO2 nanofillers, porous (distinct morphologies) and nonporous, two each. The synthesized electrochromic species 1,1'-bis(4-fluorobenzyl)-4,4'-bipyridine-1,1'-diium tetrafluoroborate (BzV, 0.05 M), counter redox species ferrocene (Fc, 0.05 M), and supporting electrolyte (TBABF4, 0.5 M) were first dissolved in propylene carbonate (PC) and then immobilized in an electrospun PVDF-HFP/BMIMBF4/SiO2 host. We distinctly observed that spherical (SPHS) and hexagonal pore (MCMS) morphologies of fillers endowed higher transmittance change (ΔT) and coloration efficiency (CE) in utilized ECDs; particularly for the MCMS-incorporated ECD (GPE-MCMS/BzV-Fc ECD), ΔT reached ∼62.5% and CE soared to 276.3 cm2/C at 603 nm. The remarkable benefit of filler's hexagonal morphology was also seen in the GPE-MCMS/BzV-Fc ECD, which not only marked an astounding ionic conductivity (σ) of ∼13.5 × 10-3 S cm-1 at 25 °C, thus imitating the solution-type ECD's behavior, but also retained ∼77% of initial ΔT after 5000 switching cycles. The enhancement in ECD's performance resulted from merits brought by filler geometries such as the proliferation of Lewis acid-base interaction sites due to the high surface-to-volume ratio, the creation of percolating tunnels, and the emergence of capillary forces triggering facile ion transportation in the electrolyte matrix.
Collapse
Affiliation(s)
- Gaurav Kumar Silori
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Zhang H, Hu Q, Si T, Tang X, Shan S, Gao X, Peng L, Chen K. All-cellulose air filter composed with regenerated nanocellulose prepared through a facile method with shear-induced. Int J Biol Macromol 2023; 228:548-558. [PMID: 36423811 DOI: 10.1016/j.ijbiomac.2022.11.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
High-speed shear system is usually used for the dispersion improvement of slurry, nanomaterials preparation, and even two-dimensional materials production. However, there is barely study that focused on the regenerated cellulose (RC) which was coagulated with shear induced. In this work, a new type of all-cellulose air filter was fabricated through high-speed shear in aqueous regeneration system using parenchyma cellulose from corn stalk. The obtained RC were aggregated by ribbon-like fine cellulose and nanocellulose sheets. The study exhibited the micro-structure of RC displayed excellent unidirectional alignment and a relatively high crystallinity. All-cellulose air filter which was produced via RC presented excellent filtration efficiency (PM2.5 97.3 %, PM10.0 97.7 %) with slightly pressure drop (19 Pa). Therefore, this work provides a facile method to obtain a novel RC with nanocellulose particles used for air filtration, which gives an effective strategy application in the conversion of all-cellulose materials from agricultural waste.
Collapse
Affiliation(s)
- Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Qiuyue Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Tian Si
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, Zhejiang, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Keli Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
12
|
Zou Z, Hu Z, Pu H. Lithium-ion battery separators based-on nanolayer co-extrusion prepared polypropylene nanobelts reinforced cellulose. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zhang H, Wang S, Wang Y, Dong S, Chen W, Li D, Yu F, Chen Y. Thiol-Ene crosslinked cellulose-based gel polymer electrolyte with good structural integrity for high cycling performance lithium-metal battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Wang YR, Yin CC, Zhang JM, Wu J, Yu J, Zhang J. Functional Cellulose Materials Fabricated by Using Ionic Liquids as the Solvent. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Qiao H, Li M, Wang C, Zhang Y, Zhou H. Progress, Challenge and Perspective of Fabricating Cellulose. Macromol Rapid Commun 2022; 43:e2200208. [PMID: 35809256 DOI: 10.1002/marc.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/21/2022] [Indexed: 11/07/2022]
Abstract
Cellulose as the most abundant biopolymers on Earth, presents appealing performance in mechanical properties, thermal management, and versatile functionalization. The development of fabrication methods closely relates to enrich its functionality and reduce manufacture cost. However, cellulose is hard to be dissolved by most common solvents or melt due to its recalcitrant property. Herein, the recent progress of fabricating cellulose is summarized. First, the unique hierarchical structure of cellulose is fully investigated and the resulted processability is highlighted in directions of down to nanocellulose, dissolution, and thermoplastic processing. Then, the reported fabrication methods are summarized in three aspects: (1) self-assembly from nano/micro cellulose suspensions, especially the self-assembly of cellulose nanocrystals; (2) dissolution-regeneration-drying, covering spinning and solvent infusion processing; and (3) thermoplastic processing, focusing on analysis of the setup and the morphology changes of the prepared products. In each aspect, the flowchart of the fabrication process, the behind mechanism, fabricated products, and effects of processing parameters are explored. Finally, this review provides a perspective on the further direction of fabricating cellulose, especially the challenges toward mass production of cellulose. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Haiyu Qiao
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.,State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Maoyuan Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Chuanyang Wang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Yun Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Huamin Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
16
|
Wei J, Gao H, Li Y, Nie Y. Research on the degradation behaviors of wood pulp cellulose in ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Liu MC, Chen HJ, Wu G, Wang XL, Wang YZ. Multifunctional robust aerogel separator towards high-temperature, large-rate, long-cycle lithium-ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Zhang S, Luo J, Du M, Hui H, Sun Z. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Cheng Q, Sheng Z, Wang Y, Lyu J, Zhang X. General Suspended Printing Strategy toward Programmatically Spatial Kevlar Aerogels. ACS NANO 2022; 16:4905-4916. [PMID: 35230080 PMCID: PMC9097582 DOI: 10.1021/acsnano.2c00720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Aerogels represent a kind of nanoporous solid with immense importance for a plethora of diverse applications. However, on-demand conformal shaping capacity remains extremely challenging due to the strength unfavorable during aerogel processing. Herein, a universal microgel-directed suspended printing (MSP) strategy is developed for fabricating various mesoporous aerogels with spatially stereoscopic structures on-demand. As a proof-of-concept demonstration, through the rational design of the used microgel matrix and favorable printing of the Kevlar nanofiber inks, the Kevlar aerogels with arbitrary spatial structure have been fabricated, demonstrating excellent printability and programmability under a high-speed printing mode (up to 167 mm s-1). Furthermore, the custom-tailored Kevlar aerogel insulator possessing superior thermal insulation attribute has ensured normal discharge capacity of the drone even under a harsh environment (-30 °C). Finally, various types of spatial 3D aerogel architectures, including organic (cellulose, alginate, chitosan), inorganic (graphene, MXene, silica), and inorganic-organic (graphene/cellulose, MXene/alginate, silica/chitosan) hybrid aerogels, have been successfully fabricated, suggesting the universality of the MSP strategy. The strategy reported here proposes an alternative for the development of various customized aerogels and stimulates the inspiration to truly arbitrary architectures for wider applications.
Collapse
Affiliation(s)
- Qingqing Cheng
- School
of Nano-Tech and Nano-Bionics, University
of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhizhi Sheng
- Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yongfeng Wang
- Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Jing Lyu
- Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Xuetong Zhang
- Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- Division
of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
- or
| |
Collapse
|
20
|
Fu X, Hurlock MJ, Ding C, Li X, Zhang Q, Zhong WH. MOF-Enabled Ion-Regulating Gel Electrolyte for Long-Cycling Lithium Metal Batteries Under High Voltage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106225. [PMID: 34910853 DOI: 10.1002/smll.202106225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
High-voltage lithium metal batteries (LMBs) are a promising high-energy-density energy storage system. However, their practical implementations are impeded by short lifespan due to uncontrolled lithium dendrite growth, narrow electrochemical stability window, and safety concerns of liquid electrolytes. Here, a porous composite aerogel is reported as the gel electrolyte (GE) matrix, made of metal-organic framework (MOF)@bacterial cellulose (BC), to enable long-life LMBs under high voltage. The effectiveness of suppressing dendrite growth is achieved by regulating ion deposition and facilitating ion conduction. Specifically, two hierarchical mesoporous Zr-based MOFs with different organic linkers, that is, UiO-66 and NH2 -UiO-66, are embedded into BC aerogel skeletons. The results indicate that NH2 -UiO-66 with anionphilic linkers is more effective in increasing the Li+ transference number; the intermolecular interactions between BC and NH2 -UiO-66 markedly increase the electrochemical stability. The resulting GE shows high ionic conductivity (≈1 mS cm-1 ), high Li+ transference number (0.82), wide electrochemical stability window (4.9 V), and excellent thermal stability. Incorporating this GE in a symmetrical Li cell successfully prolongs the cycle life to 1200 h. Paired with the Ni-rich LiNiCoAlO2 (Ni: Co: Al = 8.15:1.5:0.35, NCA) cathode, the NH2 -UiO-66@BC GE significantly improves the capacity, rate performance, and cycle stability, manifesting its feasibility to operate under high voltage.
Collapse
Affiliation(s)
- Xuewei Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Matthew J Hurlock
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chenfeng Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiaoyu Li
- Materials Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
- Materials Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
- Materials Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
21
|
Li C, Luo C, Huang Y, Liu J, Chen J, Zheng H, Xu X, Zhao Z, Li X, Wang M, Lin Y. Gel polymer electrolyte based on hydroxypropyl methyl cellulose matrix composited with polyhedral oligomeric silsesquioxane. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Acharya S, Liyanage S, Parajuli P, Rumi SS, Shamshina JL, Abidi N. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers (Basel) 2021; 13:4344. [PMID: 34960895 PMCID: PMC8704128 DOI: 10.3390/polym13244344] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
As the most abundant natural polymer, cellulose is a prime candidate for the preparation of both sustainable and economically viable polymeric products hitherto predominantly produced from oil-based synthetic polymers. However, the utilization of cellulose to its full potential is constrained by its recalcitrance to chemical processing. Both fundamental and applied aspects of cellulose dissolution remain active areas of research and include mechanistic studies on solvent-cellulose interactions, the development of novel solvents and/or solvent systems, the optimization of dissolution conditions, and the preparation of various cellulose-based materials. In this review, we build on existing knowledge on cellulose dissolution, including the structural characteristics of the polymer that are important for dissolution (molecular weight, crystallinity, and effect of hydrophobic interactions), and evaluate widely used non-derivatizing solvents (sodium hydroxide (NaOH)-based systems, N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl), N-methylmorpholine-N-oxide (NMMO), and ionic liquids). We also cover the subsequent regeneration of cellulose solutions from these solvents into various architectures (fibers, films, membranes, beads, aerogels, and hydrogels) and review uses of these materials in specific applications, such as biomedical, sorption, and energy uses.
Collapse
Affiliation(s)
| | | | | | | | | | - Noureddine Abidi
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.A.); (S.L.); (P.P.); (S.S.R.); (J.L.S.)
| |
Collapse
|
23
|
Sun Y, Chen W, Zhou X. Thermal insulation fibers with a Kevlar aerogel core and a porous Nomex shell. RSC Adv 2021; 11:34828-34835. [PMID: 35494778 PMCID: PMC9042689 DOI: 10.1039/d1ra06846f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Kevlar aerogel fibers which inherit the aerogel's brilliant properties of low density, high porosity and large surface area are promising candidates for thermal insulation applications in textiles. To enhance the mechanical strength of Kevlar aerogel fibers, an extra Nomex shell was introduced by a simple coaxial-wet-spinning approach. The resultant coaxial fibers were observed to have a Kevlar aerogel core and a porous Nomex shell. Besides, there also formed an air gap between the core and the shell. This multi-layered coaxial structure with numerous pores inside contributes to the excellent thermal insulation performance of the fibers and their fabrics. The temperature differences between the hot plate and the outer surface of the fabrics were measured to be as high as 80 °C when exposed to a temperature of 300 °C. In addition, these fibers also performed well in thermal stability, and almost did not decompose before 380 °C. Not only that, the breaking strength of the Nomex shell can be up to twice that of the Kevlar core, resulting in a significant improvement in the fiber's mechanical strength. It can be envisaged that the developed coaxial fibers with excellent thermal insulation and endurance properties as well as improved mechanical strength may have broad prospects for thermal insulation at high temperatures.
Collapse
Affiliation(s)
- Yueyan Sun
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China Tianjin 300300 P. R. China
| | - Weiwang Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China Tianjin 300300 P. R. China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China Tianjin 300300 P. R. China
| |
Collapse
|
24
|
Liu Y, Hou L, Jiao Y, Wu P. Decoupling of Mechanical Strength and Ionic Conductivity in Zwitterionic Elastomer Gel Electrolyte toward Safe Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13319-13327. [PMID: 33705099 DOI: 10.1021/acsami.1c01064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quasi-solid state electrolyte is one of the promising options for next generation batteries due to its superiority on safety and electrochemistry performance. However, the trade-off between the electrolyte swelling ratio and mechanical property of the quasi-solid state electrolyte significantly influences the battery performance. Herein, we design a nonswelling, solvent-adaptive polymer gel composed of oleophobic zwitterion poly(3-(1-vinyl-3-imidazolio)-propanesulfonate) and oleophilic elastomer poly(2-methoxyethyl acrylate) segments to retain high battery performance without sacrificing the mechanical property in lithium batteries. The as-designed gel can not only uptake enough electrolyte for a high ionic conductivity of 1.78 mS cm-1 but also achieve excellent mechanical strength with compression stress at 90% strain (σ0.9) reaching 5.8 MPa after long time soaking for battery safety due to its nonswelling property in ester electrolyte. Moreover, the as-prepared zwitterionic gel is beneficial to electrolyte salt dissociation, which further enhances the ionic conductivity and transference number of batteries. Consequently, the gel electrolyte can cycle for more than 500 h under a high current density of 3 mA cm-2 on dendrite inhibition performance, and when assembled with LiFePO4 as a cathode, the battery demonstrates a reversible specific capacity as high as 70 mAh g-1 under a high current density of 5 C after 300 cycles. The rational designed solvophilic/solvophobic zwitterionic elastomers provide a guidance for engineering quasi-solid state electrolytes of different solvents with broad applications on flexible devices.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
Fan Z, Chen J, Sun S, Zhou Q. A novel strategy to reduce the viscosity of cellulose-ionic liquid solution assisted by transition metal ions. Carbohydr Polym 2021; 256:117535. [PMID: 33483051 DOI: 10.1016/j.carbpol.2020.117535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022]
Abstract
The high viscosity of ionic liquids, even at relatively high temperatures, can greatly affect the production of cellulose fibers through the wet-spinning process. The high viscosity mainly by due to the hydrogen bond interaction between the cations and anions of ionic liquids. It is possible to reduce the viscosity by modulating the hydrogen bond interaction. In the present work, copper chloride (CuCl2) was dissolved in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl)-cellulose solution, followed by the formation of a complex with the chloride anions by converting it to [CuCl4]2- anion. Through this strategy, the extrusion velocity of the solution improved, and the produced fibers obtained smoother surfaces and shrunken diameters.
Collapse
Affiliation(s)
- Zhaosheng Fan
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China; Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Tongzhou Dis., Beijing 101121, China
| | - Jianbo Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Suqin Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qun Zhou
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Yu F, Zhao L, Zhang H, Sun Z, Li Y, Hu Q, Chen Y. Cathode/gel polymer electrolyte integration design based on continuous composition and preparation technique for high performance lithium ion batteries. RSC Adv 2021; 11:3854-3862. [PMID: 35424375 PMCID: PMC8694142 DOI: 10.1039/d0ra10743c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Gel polymer electrolytes (GPEs) combine the high ionic conductivity of liquid electrolytes and good safety assurance of solid electrolytes. However, the poor interfacial contact between electrode materials and electrolyte is still a big obstacle to the high performance of solid-state batteries. Herein, an integrated cathode/GPE based on continuous composition and preparation technic is obtained by simple UV curing. The improved interfacial contact between cathode and GPE helps to facilitate the fast ions transfer at the interface. Compared with cells assembled with separated cathode and GPE, the cells with integrated cathode-GPE showed much lower interfacial impedance, lower potential polarization and more stable cycling property. This work provided a low-cost natural material gelatin and a simple UV irradiation method to prepare an integrated cathode and gel polymer electrolyte for solid-state lithium batteries. The capacity retention of the cells assembled from integrated structure was 91.4% which was much higher than that of the non-integrated cells (80.9%) after 200 cycles.
Collapse
Affiliation(s)
- Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Lingzhu Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Hongbing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Zhipeng Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Yuli Li
- Institution of Plastic Surgery, Weifang Medical University Weifang 261042 P. R. China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen 333001 P. R. China
| | - Yong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| |
Collapse
|
27
|
Glycerol plasticisation of chitosan/carboxymethyl cellulose composites: Role of interactions in determining structure and properties. Int J Biol Macromol 2020; 163:683-693. [DOI: 10.1016/j.ijbiomac.2020.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
|
28
|
Tang R, Liu L, Li M, Yao X, Yang Y, Zhang S, Li F. Transparent Microcrystalline Cellulose/Polyvinyl Alcohol Paper as a New Platform for Three-Dimensional Cell Culture. Anal Chem 2020; 92:14219-14227. [PMID: 32962346 DOI: 10.1021/acs.analchem.0c03458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multilayered and stacked cellulose paper has emerged as a promising platform for construction of three-dimensional (3D) cell culture because of its low cost, good biocompatibility, and high porosity. However, its poor light transmission makes it challenging to directly and clearly monitor cell behaviors (e.g., growth and proliferation) on the paper-based platform using an optical microscope. In this work, we developed a transparent microcrystalline cellulose/polyvinyl alcohol (MCC/PVA) paper with irregular pores through dissolution and regeneration of microcrystalline nanocellulose, addition of a porogen reagent (NaCl), and subsequently dipping in PVA solutions. The transparent MCC paper displays high porosity (up to 90%), adjustable pore size (between 23 and 46 μm), large thickness (from 315 to 436 μm), and high light transmission under water (>95%). Through further modification of the transparent MCC paper with PVA, the obtained transparent MCC/PVA paper shows enhanced mechanical properties (dry and wet strengths), good hydrophilicity (with a contact angle of 70.8°), and improved biocompatibility (cell viability up to 90%). By stacking and destacking multiple layers of the transparent MCC/PVA paper, it has been used for both two-dimensional and three-dimensional cell culture platforms. The transparent MCC/PVA paper under water enables both direct observation of cell morphology by an optical microscope via naked eyes and fluorescence microscope after staining. We envision that the developed transparent MCC/PVA paper holds great potential for future applications in various bioanalytical and biomedical fields, such as drug screening, tissue engineering, and organ-on-chips.
Collapse
Affiliation(s)
- Ruihua Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Lina Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Min Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xue Yao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yaowei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
29
|
Zhu S, Gong L, Pan Y, Deng Y, Zhou Y, Cheng X, Zhang H. Coral-like interconnected carbon aerogel modified separator for advanced lithium-sulfur batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Liu M, Wang Y, Li M, Li G, Li B, Zhang S, Ming H, Qiu J, Chen J, Zhao P. A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Lin B, Wang Z, Zhu QJ, Binti Hamzah WN, Yao Z, Cao K. Aerogels for the separation of asphalt-containing oil-water mixtures and the effect of asphalt stabilizer. RSC Adv 2020; 10:24840-24846. [PMID: 35517450 PMCID: PMC9055147 DOI: 10.1039/d0ra00544d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022] Open
Abstract
In order to separate the asphalt-containing oil-water mixture, an aerogel film was produced through supercritical drying of a polymer gel synthesized using the ring opening metathesis polymerization of dicyclopentadiene (DCPD). The polydicyclopentadiene (PDCPD)-based aerogels have a porous structure, super-lipophilicity and super-hydrophobicity which resulted in successful separation of the simple oil-water mixture, oil-water emulsion and asphalt-containing toluene-water mixture. However, the presence of asphalt decreases the separation efficiency by blocking the pores and acting as an emulsifier. An asphalt stabilizer was then employed to reduce the asphalt particle size and weaken the flow passage blockage, consequently improving the filtration speed and the asphalt content in the filtrate. The combination of PDCPD aerogel film with an asphalt stabilizer has great application prospects for separating asphalt-containing oil-water mixtures.
Collapse
Affiliation(s)
- Bin Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Institute of Polymerization and Polymer Engineering, Zhejiang University Hangzhou 310027 China
| | - Zufei Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Institute of Polymerization and Polymer Engineering, Zhejiang University Hangzhou 310027 China
| | - Qing-Jun Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Institute of Polymerization and Polymer Engineering, Zhejiang University Hangzhou 310027 China
| | | | - Zhen Yao
- Institute of Polymerization and Polymer Engineering, Zhejiang University Hangzhou 310027 China
| | - Kun Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Institute of Polymerization and Polymer Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
32
|
Luo C, Huang Y, Huang Y, Li X, Wang M, Lin Y. A Composited Interlayer with Dual‐Effect Trap and Repulsion for Inhibition of Polysulfides in Lithium‐Sulfur Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202000241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chen Luo
- School of Materials Science and EngineeringSouthwest Petroleum University Chengdu 610500 China
| | - Yixuan Huang
- School of Materials Science and EngineeringSouthwest Petroleum University Chengdu 610500 China
| | - Yun Huang
- School of Materials Science and EngineeringSouthwest Petroleum University Chengdu 610500 China
- The Center of Functional Materials for Working Fluids of Oil and Gas FieldSouthwest Petroleum University Chengdu 610500 China
| | - Xing Li
- School of Materials Science and EngineeringSouthwest Petroleum University Chengdu 610500 China
| | - Mingshan Wang
- School of Materials Science and EngineeringSouthwest Petroleum University Chengdu 610500 China
| | - Yuanhua Lin
- School of Materials Science and EngineeringSouthwest Petroleum University Chengdu 610500 China
| |
Collapse
|
33
|
Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
|
35
|
Wang Z, Yang H, Li Y, Zheng X. Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15726-15736. [PMID: 32167746 DOI: 10.1021/acsami.0c01330] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aerogel fibers with ultrahigh porosity and ultralow density are promising candidates for personal thermal management to reduce the energy waste of heating an entire room, and play important roles in reducing energy waste in general. However, aerogel fibers generally suffer from poor mechanical properties and complicated preparation processes. Herein, we demonstrate hierarchically porous and continuous silk fibroin/graphene oxide aerogel fibers (SF/GO) with high strength, excellent radiative heating performance, and thermal insulation performance through coaxial wet spinning and freeze-drying. The hollow CA/PAA fibers prepared via a coaxial wet spinning process have multiscale porous structures, which are not only beneficial for the formation of an SF/GO aerogel core, but also help to improve the mechanical strength of the aerogel fibers. Moreover, the prepared aerogel fibers show comparable porosity and mechanical properties with those of hollow CA/PAA fibers. More importantly, GO can dramatically improve the infrared radiative heating properties, and the surface temperature is increased by 2.6 °C after exposure to infrared radiation for 30 s, greatly higher than that of hollow fiber and SF aerogel fibers. Furthermore, the integration of hierarchically porous hollow fibers and SF/GO aerogels prevents thermal convection, decreases thermal conduction, and suppresses thermal radiation, rendering the SF/GO aerogel fiber with excellent thermal insulation performance. This work may shed light on the heat transfer mechanism of the microenvironment between the human body and textiles and pave the way for the fabrication of high-performance aerogel fibers used for personal thermal management.
Collapse
Affiliation(s)
- Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Haiwei Yang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Yu Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Xianhong Zheng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| |
Collapse
|
36
|
Sheng J, Chen T, Wang R, Zhang Z, Hua F, Yang R. Ultra-light cellulose nanofibril membrane for lithium-ion batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117550] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Hu P, Lyu J, Fu C, Gong WB, Liao J, Lu W, Chen Y, Zhang X. Multifunctional Aramid Nanofiber/Carbon Nanotube Hybrid Aerogel Films. ACS NANO 2020; 14:688-697. [PMID: 31851483 DOI: 10.1021/acsnano.9b07459] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lightweight, robust, and thin aerogel films with multifunctionality are highly desirable to meet the technological demands of current society. However, fabrication and application of these multifunctional aerogel films are still significantly underdeveloped. Herein, we demonstrate a multifunctional aerogel film composed of strong aramid nanofibers (ANFs), conductive carbon nanotubes (CNTs), and hydrophobic fluorocarbon (FC) resin. The obtained hybrid aerogel film exhibits large specific surface area (232.8 m2·g-1), high electrical conductivity (230 S·m-1), and excellent hydrophobicity (contact angle of up to 137.0°) with exceptional Joule heating performance and supreme electromagnetic interference (EMI) shielding efficiency. The FC coating renders the hydrophilic ANF/CNT aerogel films hydrophobic, resulting in an excellent self-cleaning performance. The high electrical conductivity enables a low-voltage-driven Joule heating property and an EMI shielding effectiveness (SE) of 54.4 dB in the X-band at a thickness of 568 μm. The specific EMI SE is up to 33528.3 dB·cm2·g-1, which is among the highest values of typical metal-, conducting-polymer-, or carbon-based composites. This multifunctional aerogel film holds great promise for smart garments, electromagnetic wave shielding, and personal thermal management systems.
Collapse
Affiliation(s)
- Peiying Hu
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering , Hainan University , 58 Renmin Avenue , Haikou 570228 , P.R. China
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Chen Fu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Wen-Bin Gong
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Jianhe Liao
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering , Hainan University , 58 Renmin Avenue , Haikou 570228 , P.R. China
| | - Weibang Lu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Yongping Chen
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering , Hainan University , 58 Renmin Avenue , Haikou 570228 , P.R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science , University College London , London NW3 2PF , United Kingdom
| |
Collapse
|
38
|
Zhao L, Fu J, Du Z, Jia X, Qu Y, Yu F, Du J, Chen Y. High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117428] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Zhao SW, Zheng M, Sun HL, Li SJ, Pan QJ, Guo YR. Construction of heterostructured g-C3N4/ZnO/cellulose and its antibacterial activity: experimental and theoretical investigations. Dalton Trans 2020; 49:3723-3734. [DOI: 10.1039/c9dt03757h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A ternary composite is fabricated via a facile method. The chemically interfacial coupling is revealed, which improves the spatial separation efficiency of photogenerated carriers and leads to superior good antibacterial activity.
Collapse
Affiliation(s)
- Si-Wei Zhao
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| | - Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Hui-Liang Sun
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| | - Shu-Jun Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| |
Collapse
|
40
|
Asim N, Badiei M, Alghoul MA, Mohammad M, Fudholi A, Akhtaruzzaman M, Amin N, Sopian K. Biomass and Industrial Wastes as Resource Materials for Aerogel Preparation: Opportunities, Challenges, and Research Directions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02661] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nilofar Asim
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Marzieh Badiei
- Independent Researcher, Razavi 16, 91777-35843 Mashhad, Iran
| | - Mohammad A. Alghoul
- Center of Research Excellence in Renewable Energy Research Institute, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Masita Mohammad
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Fudholi
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Md Akhtaruzzaman
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nowshad Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
| | - Kamaruzzaman Sopian
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
41
|
Cai H, Yang G, Meng Z, Yin X, Zhang H, Tang H. Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al 2O 3-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries. Polymers (Basel) 2019; 11:E1362. [PMID: 31426595 PMCID: PMC6723745 DOI: 10.3390/polym11081362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022] Open
Abstract
Polyethylene (PE) membranes coated with nano-Al2O3 have been improved with water-dispersed poly(p-phenylene terephthamide) (PPTA). From the scanning electron microscope (SEM) images, it can be seen that a layer with a honeycombed porous structure is formed on the membrane. The thus-formed composite separator imbibed with the electrolyte solution has an ionic conductivity of 0.474 mS/cm with an electrolyte uptake of 335%. At 175 °C, the assembled battery from the synthesized composite separator explodes at 3200 s, which is five times longer than the battery assembled from an Al2O3-coated polyethylene (PE) membrane. The open circuit voltage of the assembled battery using a composite separator drops to zero at 600 s at an operating temperature of 185 °C, while the explosion of the battery with Al2O3-coated PE occurs at 250 s. More importantly, the interface resistance of the cell assembled from the composite separator decreases to 65 Ω. Hence, as the discharge rate increases from 0.2 to 1.0 C, the discharge capacity of the battery using composite separator retains 93.5%. Under 0.5 C, the discharge capacity retention remains 99.4% of its initial discharge capacity after 50 charge-discharge cycles. The results described here demonstrate that Al2O3/PPTA-coated polyethylene membranes have superior thermal stability and ion diffusion.
Collapse
Affiliation(s)
- Haopeng Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Guoping Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zihan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xue Yin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
42
|
Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Elverfeldt CP, Lee YJ, Fröba M. Selective Control of Ion Transport by Nanoconfinement: Ionic Liquid in Mesoporous Resorcinol-Formaldehyde Monolith. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24423-24434. [PMID: 31188560 DOI: 10.1021/acsami.9b06445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermal and dynamic properties of ionic liquid (IL)-based electrolytic solution (Li+TFSI- in Pyr13+TFSI-; 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide = Pyr13+TFSI-) confined in nanoporous polymer hosts were investigated with respect to the pore size/porosity and the surface chemistry of the polymer host. As host material, mesoporous resorcinol-formaldehyde (RF) polymer monoliths with three-dimensionally connected pore structure were prepared, with precise control of the pore size ranging from ca. 7 to 60 nm. Thermal analysis of RF polymer-ionic liquid composites showed stability up to almost 400 °C and a melting point depression proportional to the inverse of the pore diameter. Good ionic conductivity comparable to that of a commercial separator is obtained, which is dependent on the porosity (i.e., pore volume) of the confining host material (i.e., the number of charge carriers available in the system). Further pulsed field gradient (PFG) NMR experiments revealed that the diffusion coefficient of Pyr13+ cation becomes smaller than that of TFSI- anion inside RF pores, which is contradictory to the bulk IL system. This change in the ionic motion is due to electrostatic attraction between the pore walls and Pyr13+ cations, resulting in a layer structure composed of a Pyr13+ cation-rich layer adsorbed at the pore wall surface and a TFSI- anion-enriched bulklike layer at the pore center. Our study suggests that transport characteristics of the ions of interest can be controlled by optimizing the surface chemistry of the host framework and their motion can be separately monitored by PFG NMR spectroscopy.
Collapse
Affiliation(s)
- Carl-Philipp Elverfeldt
- Institute of Inorganic and Applied Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Young Joo Lee
- Institute of Inorganic and Applied Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| |
Collapse
|
44
|
Liu Z, Lyu J, Fang D, Zhang X. Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments. ACS NANO 2019; 13:5703-5711. [PMID: 31042355 DOI: 10.1021/acsnano.9b01094] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aerogel with low density, high porosity, and large surface area is a promising structure for the next generation of high-performance thermal insulation fibers and textiles. However, aerogel fibers suffer from weak mechanical properties or complex fabricating processes. Herein, a facile wet-spinning approach for fabricating nanofibrous Kevlar (KNF) aerogel threads ( i.e., aerogel fibers) with high thermal insulation under extreme environments is demonstrated. The aerogel fibers made from nanofibrous Kevlar render a high specific surface area (240 m2/g) and wide-temperature thermal stability. The flexible and strong KNF aerogel fibers are woven into textiles to illustrate the excellent thermal insulation property under extreme temperature (-196 or +300 °C) and at room temperature. COMSOL simulation is applied to calculate the thermal conductivity of a single aerogel fiber and find an effective way to improve the thermal insulation property of the aerogel fiber. Furthermore, a series of functionalized fibers or textiles based on KNF aerogel fibers, such as phase-change fibers, conductive fibers, and hydrophobic textiles, have been prepared. Such KNF aerogel fibers represent a promising direction for the next generation of high-performance fibrous thermal-insulation materials.
Collapse
Affiliation(s)
- Zengwei Liu
- School of Nano Technology and Nano Bionics , University of Science and Technology of China , Hefei 230026 , P.R. China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Dan Fang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , P.R. China
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science , University College London , London NW3 2PF , U.K
| |
Collapse
|
45
|
Yu Y, Sun N, Wu A, Lu F, Zheng L. Zwitterion-containing electrolytes with semi–crystalline PVDF-Co-HFP as a matrix for safer lithium-ion batteries. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Barrios E, Fox D, Li Sip YY, Catarata R, Calderon JE, Azim N, Afrin S, Zhang Z, Zhai L. Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers (Basel) 2019; 11:E726. [PMID: 31010008 PMCID: PMC6523290 DOI: 10.3390/polym11040726] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
Aerogels are one of the most interesting materials of the 21st century owing to their high porosity, low density, and large available surface area. Historically, aerogels have been used for highly efficient insulation and niche applications, such as interstellar particle capture. Recently, aerogels have made their way into the composite universe. By coupling nanomaterial with a variety of matrix materials, lightweight, high-performance composite aerogels have been developed for applications ranging from lithium-ion batteries to tissue engineering materials. In this paper, the current status of aerogel composites based on nanomaterials is reviewed and their application in environmental remediation, energy storage, controlled drug delivery, tissue engineering, and biosensing are discussed.
Collapse
Affiliation(s)
- Elizabeth Barrios
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - David Fox
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Yuen Yee Li Sip
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Ruginn Catarata
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Jean E Calderon
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Sajia Afrin
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Zeyang Zhang
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
47
|
Lyu J, Liu Z, Wu X, Li G, Fang D, Zhang X. Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS NANO 2019; 13:2236-2245. [PMID: 30697999 DOI: 10.1021/acsnano.8b08913] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Infrared (IR) stealth is essential not only in high technology and modern military but also in fundamental material science. However, effectively hiding targets and rendering them invisible to thermal infrared detectors have been great challenges in past decades. Herein, flexible, foldable, and robust Kevlar nanofiber aerogel (KNA) films with high porosity and specific surface area were fabricated first. The KNA films display excellent thermal insulation performance and can be employed to incorporate with phase-change materials (PCMs), such as polyethylene glycol, to fabricate KNA/PCM composite films. The KNA/PCM films with high thermal management capability and infrared emissivity comparable to that of various backgrounds demonstrate high performance in IR stealth in outdoor environments with solar illumination variations. To further realize hiding hot targets from IR detection, combined structures constituted of thermal insulation layers (KNA films) and ultralow IR transmittance layers (KNA/PCM) are proposed. A hot target covered with this combined structure becomes completely invisible in infrared images. Such KNA/PCM films and KNA-KNA/PCM combined structures hold great promise for broad applications in infrared thermal stealth.
Collapse
Affiliation(s)
- Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Zengwei Liu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Xiaohan Wu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Guangyong Li
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Dan Fang
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science , University College London , London NW3 2PF , United Kingdom
| |
Collapse
|
48
|
Lyu J, Li G, Liu M, Zhang X. Aerogel-Directed Energy-Storage Films with Thermally Stimulant Multiresponsiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:943-949. [PMID: 30609377 DOI: 10.1021/acs.langmuir.8b04028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phase change materials offer enormous potential for thermal energy storage due to their high latent heat and chemical stability. Researchers have developed numerous innovative strategies to overcome the leakage of organic phase change materials and enhance thermal performance. However, the manufacture of form-stable, free-standing energy storage films based on phase change materials with high latent heat remains difficult. Therefore, the present study focused on the production of free-standing, form-stable energy storage films with high phase-change enthalpy and thermally stimulant multiresponsiveness from the simple composite of paraffin with a polytetrafluoroethylene/silica (PTFE/SiO2) aerogel framework, where paraffin was effectively confined in PTFE/SiO2. The resulting paraffin/PTFE/SiO2 films exhibited a large phase change enthalpy (128 J/g) at a paraffin content of 62.8 wt %. The temperature-dependent wettability, transmittance, and mechanical properties of this composite film have also been investigated.
Collapse
Affiliation(s)
- Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Guangyong Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Meinan Liu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- Division of Surgery & Interventional Science , University College London , London , NW3 2PF , U.K
| |
Collapse
|
49
|
Li J, Luo K, Yu J, Wang Y, Zhu J, Hu Z. Promising Free-Standing Polyimide Membrane via Solution Blow Spinning for High Performance Lithium-Ion Batteries. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kaiju Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
50
|
Maleki H, Montes S, Hayati-Roodbari N, Putz F, Huesing N. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22718-22730. [PMID: 29864277 PMCID: PMC6513757 DOI: 10.1021/acsami.8b05856] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Thanks to the exceptional materials properties of silica aerogels, this fascinating highly porous material has found high-performance and real-life applications in various modern industries. However, a requirement for a broadening of these applications is based on the further improvement of the aerogel properties, especially with regard to mechanical strength and postsynthesis processability with minimum compromise to the other physical properties. Here, we report an entirely novel, simple, and aqueous-based synthesis approach to prepare mechanically robust aerogel hybrids by cogelation of silk fibroin (SF) biopolymer extracted from silkworm cocoons. The synthesis is based on sequential processes of acid catalyzed (physical) cross-linking of the SF biopolymer and simultaneous polycondensation of tetramethylorthosilicate (TMOS) in the presence of 5-(trimethoxysilyl)pentanoic acid (TMSPA) as a coupling agent and subsequent solvent exchange and supercritical drying. Extensive characterization by solid-state 1H NMR, 29Si NMR, and 2D 1H-29Si heteronuclear correlation (HETCOR) MAS NMR spectroscopy as well as various microscopic techniques (SEM, TEM) and mechanical assessment confirmed the molecular-level homogeneity of the hybrid nanostructure. The developed silica-SF aerogel hybrids contained an improved set of material properties, such as low density (ρb,average = 0.11-0.2 g cm-3), high porosity (∼90%), high specific surface area (∼400-800 m2 g-1), and excellent flexibility in compression (up to 80% of strain) with three orders of magnitude improvement in the Young's modulus over that of pristine silica aerogels. In addition, the silica-SF hybrid aerogels are fire retardant and demonstrated excellent thermal insulation performance with thermal conductivities (λ) of 0.033-0.039 W m-1 K-1. As a further advantage, the formulated hybrid silica-SF aerogel showed an excellent printability in the wet state using a microextrusion-based 3D printing approach. The printed structures had comparable properties to their monolith counterparts, improving postsynthesis processing or shaping of the silica aerogels significantly. Finally, the hybrid silica-SF aerogels reported here represent significant progress for a mechanically customized and robust aerogel for multipurpose applications, namely, as a customized thermal insulation material or as a dual porous open-cell biomaterial used in regenerative medicine.
Collapse
|