1
|
Zhang X, Gao X, Zhang X, Yao X, Kang X. Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds. Int J Nanomedicine 2024; 19:10661-10684. [PMID: 39464675 PMCID: PMC11505483 DOI: 10.2147/ijn.s469302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/10/2024] [Indexed: 10/29/2024] Open
Abstract
Hydrogels are multifunctional platforms. Through reasonable structure and function design, they use material engineering to adjust their physical and chemical properties, such as pore size, microstructure, degradability, stimulus-response characteristics, etc. and have a variety of biomedical applications. Hydrogel three-dimensional (3D) printing has emerged as a promising technique for the precise deposition of cell-laden biomaterials, enabling the fabrication of intricate 3D structures such as artificial vertebrae and intervertebral discs (IVDs). Despite being in the early stages, 3D printing techniques have shown great potential in the field of regenerative medicine for the fabrication of various transplantable tissues within the human body. Currently, the utilization of engineered hydrogels as carriers or scaffolds for treating intervertebral disc degeneration (IVDD) presents numerous challenges. However, it remains an indispensable multifunctional manufacturing technology that is imperative in addressing the escalating issue of IVDD. Moreover, it holds the potential to serve as a micron-scale platform for a diverse range of applications. This review primarily concentrates on emerging treatment strategies for IVDD, providing an in-depth analysis of their merits and drawbacks, as well as the challenges that need to be addressed. Furthermore, it extensively explores the biological properties of hydrogels and various nanoscale biomaterial inks, compares different prevalent manufacturing processes utilized in 3D printing, and thoroughly examines the potential clinical applications and prospects of integrating 3D printing technology with hydrogels.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Yao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi’an Jiao Tong University, Xi’An, Shaanxi, P.R. China
| |
Collapse
|
2
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
3
|
Fischer NG, Kobe AC, Dai J, He J, Wang H, Pizarek JA, De Jong DA, Ye Z, Huang S, Aparicio C. Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomater 2022; 141:70-88. [PMID: 34971784 PMCID: PMC8898307 DOI: 10.1016/j.actbio.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
Teeth, long-lasting percutaneous organs, feature soft tissue attachment through adhesive structures, hemidesmosomes, in the junctional epithelium basement membrane adjacent to teeth. This soft tissue attachment prevents bacterial infection of the tooth despite the rich - and harsh - microbial composition of the oral cavity. Conversely, millions of percutaneous devices (catheters, dental, and orthopedic implants) fail from infection yearly. Standard of care antibiotic usage fuels antimicrobial resistance and is frequently ineffective. Infection prevention strategies, like for dental implants, have failed in generating durable soft tissue adhesion - like that seen with the tooth - to prevent bacterial colonization at the tissue-device interface. Here, inspired by the impervious natural attachment of the junctional epithelium to teeth, we synthesized four cell adhesion peptide (CAPs) nanocoatings, derived from basement membranes, to promote percutaneous device soft tissue attachment. The two leading nanocoatings upregulated integrin-mediated hemidesmosomes, selectively increased keratinocyte proliferation compared to fibroblasts, which cannot form hemidesmosomes, and expression of junctional epithelium adhesive markers. CAP nanocoatings displayed marked durability under simulated clinical conditions and the top performer CAP nanocoating was validated in a percutaneous implant murine model. Basement membrane CAP nanocoatings, inspired by the tooth and junctional epithelium, may provide an alternative anti-infective strategy for percutaneous devices to mitigate the worldwide threat of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: Prevention and management of medical device infection is a significant healthcare challenge. Overzealous antibiotic use has motivated alternative material innovations to prevent infection. Here, we report implant cell adhesion peptide nanocoatings that mimic a long-lasting, natural "medical device," the tooth, through formation of cell adhesive structures called hemidesmosomes. Such nanocoatings sidestep the use of antimicrobial or antibiotic elements to form a soft-tissue seal around implants. The top performing nanocoatings prompted expression of hemidesmosomes and defensive factors to mimic the tooth and was validated in an animal model. Application of cell adhesion peptide nanocoatings may provide an alternative to preventing, rather that necessarily treating, medical device infection across a range of device indications, like dental implants.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Alexandra C Kobe
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Jinhong Dai
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Hongning Wang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, United States
| | - David A De Jong
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States.
| |
Collapse
|
4
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Leite ML, Soares DG, Anovazzi G, Filipe Koon Wu M, Bordini EAF, Hebling J, DE Souza Costa CA. Bioactivity effects of extracellular matrix proteins on apical papilla cells. J Appl Oral Sci 2021; 29:e20210038. [PMID: 34495108 PMCID: PMC8425894 DOI: 10.1590/1678-7757-2021-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Potent signaling agents stimulate and guide pulp tissue regeneration, especially in endodontic treatment of teeth with incomplete root formation.
Collapse
Affiliation(s)
- Maria Luísa Leite
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Diana Gabriela Soares
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Giovana Anovazzi
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Mon Filipe Koon Wu
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| | - Ester Alves Ferreira Bordini
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Josimeri Hebling
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Carlos Alberto DE Souza Costa
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| |
Collapse
|
6
|
Leite ML, Soares DG, Anovazzi G, Mendes Soares IP, Hebling J, de Souza Costa CA. Development of fibronectin-loaded nanofiber scaffolds for guided pulp tissue regeneration. J Biomed Mater Res B Appl Biomater 2020; 109:1244-1258. [PMID: 33381909 DOI: 10.1002/jbm.b.34785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 01/26/2023]
Abstract
Fibronectin (FN)-loaded nanofiber scaffolds were developed and assessed concerning their bioactive potential on human apical papilla cells (hAPCs). First, random (NR) and aligned (NA) nanofiber scaffolds of polycaprolactone (PCL) were obtained by electrospinning technique and their biological properties were evaluated. The best formulations of NR and NA were loaded with 0, 5, or 10 μg/ml of FN and their bioactivity was assessed. Finally, FN-loaded NR and NA tubular scaffolds were prepared and their chemotactic potential was analyzed using an in vitro model to mimic the pulp regeneration of teeth with incomplete root formation. All scaffolds tested were cytocompatible. However, NR and NA based on 10% PCL promoted the highest hAPCs proliferation, adhesion and spreading. Polygonal and elongated cells were observed on NR and NA, respectively. The higher the concentration of FN added to the scaffolds, greater cell migration, viability, proliferation, adhesion and spreading, as well as collagen synthesis and gene expression (ITGA5, ITGAV, COL1A1, COL3A1). In addition, tubular scaffolds with NA loaded with FN (10 μg/ml) showed the highest chemotactic potential on hAPCs. It was concluded that FN-loaded NA scaffolds may be an interesting biomaterial to promote hAPCs-mediated pulp regeneration of endodontically compromised teeth with incomplete root formation.
Collapse
Affiliation(s)
- Maria Luísa Leite
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, Universidade Estadual Paulista, Araraquara, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, Sao Paulo University, Bauru, Brazil
| | - Giovana Anovazzi
- Departament of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University, Araraquara, Brazil
| | - Igor Paulino Mendes Soares
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, Universidade Estadual Paulista, Araraquara, Brazil
| | - Josimeri Hebling
- Departament of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University, Araraquara, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
7
|
Wang JK, Cheam NMJ, Irvine SA, Tan NS, Venkatraman S, Tay CY. Interpenetrating Network of Alginate–Human Adipose Extracellular Matrix Hydrogel for Islet Cells Encapsulation. Macromol Rapid Commun 2020; 41:e2000275. [DOI: 10.1002/marc.202000275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Kit Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Nicole Mein Ji Cheam
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Scott Alexander Irvine
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Nguan Soon Tan
- School of Biological Sciences Nanyang Technological University Singapore 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 11 Mandalay Road Singapore 308232 Singapore
| | - Subbu Venkatraman
- Department of Materials Science and Engineering National University of Singapore Blk EA, 9 Engineering Drive 1 Singapore 117575 Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
- School of Biological Sciences Nanyang Technological University Singapore 60 Nanyang Drive Singapore 637551 Singapore
- Environmental Chemistry and Materials Centre Nanyang Environment and Water Research Institute 1 CleanTech Loop, CleanTech One Singapore 637141 Singapore
| |
Collapse
|
8
|
Rickel AP, Sanyour HJ, Leyda NA, Hong Z. Extracellular Matrix Proteins and Substrate Stiffness Synergistically Regulate Vascular Smooth Muscle Cell Migration and Cortical Cytoskeleton Organization. ACS APPLIED BIO MATERIALS 2020; 3:2360-2369. [PMID: 34327310 PMCID: PMC8318011 DOI: 10.1021/acsabm.0c00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cell (VSMC) migration is a critical step in the progression of cardiovascular disease and aging. Migrating VSMCs encounter a highly heterogeneous environment with the varying extracellular matrix (ECM) composition due to the differential synthesis of collagen and fibronectin (FN) in different regions and greatly changing stiffness, ranging from the soft necrotic core of plaques to hard calcifications within blood vessel walls. In this study, we demonstrate an application of a two-dimensional (2D) model consisting of an elastically tunable polyacrylamide gel of varying stiffness and ECM protein coating to study VSMC migration. This model mimics the in vivo microenvironment that VSMCs experience within a blood vessel wall, which may help identify potential therapeutic targets for the treatment of atherosclerosis. We found that substrate stiffness had differential effects on VSMC migration on type 1 collagen (COL1) and FN-coated substrates. VSMCs on COL1-coated substrates showed significantly diminished migration distance on stiffer substrates, while on FN-coated substrates VSMCs had significantly increased migration distance. In addition, cortical stress fiber orientation increased in VSMCs cultured on more rigid COL1-coated substrates, while decreasing on stiffer FN-coated substrates. On both proteins, a more disorganized cytoskeletal architecture was associated with faster migration. Overall, these results demonstrate that different ECM proteins can cause substrate stiffness to have differential effects on VSMC migration in the progression of cardiovascular diseases and aging.
Collapse
Affiliation(s)
- Alex P Rickel
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States; BIOSNTR, Sioux Falls, South Dakota 57107, United States
| | - Hanna J Sanyour
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States; BIOSNTR, Sioux Falls, South Dakota 57107, United States
| | - Neil A Leyda
- Department of Chemical Engineering, South Dakota School of Mines & Technology, Rapid City, South Dakota 57701, United States
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States; BIOSNTR, Sioux Falls, South Dakota 57107, United States
| |
Collapse
|
9
|
Zhang K, Xing J, Chen J, Wang Z, Zhai J, Yao T, Tan G, Qi S, Chen D, Yu P, Ning C. A spatially varying charge model for regulating site-selective protein adsorption and cell behaviors. Biomater Sci 2019; 7:876-888. [PMID: 30556087 DOI: 10.1039/c8bm01158c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implanted materials that enter the body first interact with proteins in body fluids, and cells then perceive and respond to the foreign implant through this layer of adsorbed proteins. Thus, spatially specific regulation of protein adsorption on an implant surface is pivotal for mediating subsequent cellular behaviors. Unlike the surface modulation strategy for traditional biomaterials, in this research, materials with a nonuniform spatial distribution of surface charges were designed to achieve site-selective protein adsorption and further influence cell behavior by charge regulation. Spatially varying microdomains with different levels of piezoelectricity were generated via a focus laser beam-induced phase transition. In addition, after polarization, the zones with different levels of piezoelectricity showed significant differences in surface charge density. The results of scanning Kelvin probe force microscopy (SKPM) showed that the surface charge on the material exhibits a nonuniform spatial distribution after laser irradiation and polarization. Site-specific charge-mediated selective protein adsorption was demonstrated through a protein adsorption experiment. Cell behavior analysis showed that the increase in charge density was conducive to promoting cell adhesion and the formation of filopodia while the nonuniform spatial distribution of charge promoted an oriented arrangement of cells; both features accelerated cell migration. This study provides a new method for spatially regulating protein adsorption through surface charges to further influence cell behaviors.
Collapse
Affiliation(s)
- Kejia Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cao H, Lee MKH, Yang H, Sze SK, Tan NS, Tay CY. Mechanoregulation of Cancer-Associated Fibroblast Phenotype in Three-Dimensional Interpenetrating Hydrogel Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7487-7495. [PMID: 30480453 DOI: 10.1021/acs.langmuir.8b02649] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tumor stromal residing cancer-associated fibroblasts (CAFs) are significant accomplices in the growth and development of malignant neoplasms. As cancer progresses, the stroma undergoes a dramatic remodeling and stiffening of its extracellular matrix (ECM). However, exactly how these biomechanical changes influence the CAF behavior and the functional paracrine crosstalk with the neighboring tumor cells in a 3-dimensional (3D) microenvironment remains elusive. Herein, a collagen and alginate interpenetrating network (CoAl-IPN) hydrogel system was employed as a 3D in vitro surrogate of the cancerous breast tissue stromal niche. In this study, the mechanical properties of CoAl-IPN were precisely fine-tuned with Young's modulus ( E) values of ∼108 and 898 Pa. The results revealed that the 3D polymeric network mechanics and microstructure are critical biophysical determinants of the human breast CAF (b-CAF) morphology, phenotype, and paracrine dialogue with MDA-MB-231 tumoroids. A compliant hydrogel network favors b-CAF spreading, nuclear translocation of the YAP/TAZ mechanosignaling protein, and upregulation of CAF hallmark transcripts. Conversely, a rigid and highly cross-linked hydrogel network imposed a physical entrapment effect on the b-CAFs that limited their spreading and phenotype in a manner that effectively muted their pro-tumorigenic paracrine activity. Collectively, the CoAl-IPN 3D culture system has proven to be a versatile platform in defining the 3D biophysical parameters that could either promote or restrain the protumorigenic activity of b-CAFs and sheds critical mechano-mediated light onto the phenotypic plasticity and corresponding specific bioactivity of b-CAFs in the 3D microenvironment.
Collapse
Affiliation(s)
- Huan Cao
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Melissa Kao Hui Lee
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Haibo Yang
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Siu Kwan Sze
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Nguan Soon Tan
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
- Lee Kong Chian School of Medicine , Nanyang Technological University , 59 Nanyang Drive , Singapore 636921 , Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| |
Collapse
|
11
|
Natsumi A, Sugawara K, Yasumizu M, Mizukami Y, Sano S, Morita A, Paus R, Tsuruta D. Re-investigating the Basement Membrane Zone of Psoriatic Epidermal Lesions: Is Laminin-511 a New Player in Psoriasis Pathogenesis? J Histochem Cytochem 2018; 66:847-862. [PMID: 29906214 PMCID: PMC6262504 DOI: 10.1369/0022155418782693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a complex chronic inflammatory skin disease characterized by epidermal thickening on the basis of increased keratinocyte proliferation and insufficient apoptosis. Laminins are important components of the basement membrane (BM) and impact on epidermal keratinocyte growth/apoptosis. Although several laminins are involved in the pathogenesis of psoriasis, it is still controversial about the expression patterns of laminin isoforms and which laminins are important in the development of psoriasis. Because laminin-511 and -332 are key BM components in human skin, and laminin-511 stimulates human hair follicle growth, we asked whether the BM zone in psoriasis shows any laminin-related abnormalities. This showed that the BM expression of laminin-511 and -332 was significantly increased within the skin lesion of psoriasis. Immunofluorescence microscopy revealed that laminin-511, -332, and collagen type IV proteins were also significantly increased in psoriasis-like skin lesions of Imiquimod-treated mice. Transmission electron microscopy showed a few gaps of lamina densa, and its thickness was significantly increased. Finally, laminin-511 treatment significantly stimulated the proliferation and inhibited apoptosis of HaCaT cells, while laminin-α5 chain gene knockdown decreased proliferation and induced apoptosis. These phenomenological observations raise the question of whether laminin-511-controlled keratinocyte growth/death may be a previously overlooked player in the pathogenesis of psoriatic epidermal lesions.
Collapse
Affiliation(s)
- Aki Natsumi
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Koji Sugawara
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Makiko Yasumizu
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yukari Mizukami
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ralf Paus
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL and Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
12
|
He J, Zhang N, Zhang J, Jiang B, Wu F. Migration critically meditates osteoblastic differentiation of bone mesenchymal stem cells through activating canonical Wnt signal pathway. Colloids Surf B Biointerfaces 2018; 171:205-213. [PMID: 30032013 DOI: 10.1016/j.colsurfb.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
Basic cellular events, such as focal adhesion and cytoskeleton organization, have been reported to be actively involved in fate decision process of stem cells, besides chemical and physical cues. Stem cell migration is critical in regulating various stem cell functions, but its influence on MSC differentiation into specific lineages has been rarely exploited. In this study, we used RGD-modified substrates to regulate cell motility though different RGD concentrations and systematically analyzed the correlation between osteoblastic differentiation and cell migration, as well as the role of Wnt signaling pathway. High motility correlated well with the significantly enhanced potential of the MSCs to differentiate into the osteoblastic lineage, as suggested by the significant up-regulations of Runx2, ALP, OCN expressions. The results also suggested that enhanced MSC migration efficiently activated the canonical Wnt-β-catenin pathway and stimulated transcription activities leading to osteoblastic differentiation, likely through internal forces generated dynamically during migration. Blockage of the Wnt-β-catenin pathway through artificial down-regulation of LRP5/6 expression significantly suppressed the osteoblastic differentiation for samples with high MSC motilities, further corroborating the critical involvement of Wnt/β-catenin pathway in the cell migration induced mechanotransduction and MSC differentiation into osteoblastic lineage. Our findings provide important insight for understanding the complicate mechanisms involved in MSC fate selection process and bone regeneration, and would have significant implications in the optimal design of bone tissue engineering materials through regulating cell motility.
Collapse
Affiliation(s)
- Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|