1
|
Lei D, Wang Y, Zhang Q, Wang S, Jiang L, Zhang Z. High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites. Nat Commun 2025; 16:754. [PMID: 39819979 PMCID: PMC11739393 DOI: 10.1038/s41467-025-56228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects. Density functional theory calculations reveal that the reversible formation and disruption of humidity-induced water bridges within the frameworks facilitates the switching of proton transport mode from the adsorption site hopping to the Grotthuss mechanism. This transition, coupled with the introduction of bacterial cellulose to enhance desorption/adsorption of water clusters, enables us to achieve a superior proton gating ratio of up to 5740, surpassing state-of-the-art solid-state gating devices. Moreover, the developed membrane operates entirely on solid-state principles, rendering it highly versatile for a myriad of applications from environmental detection to human health monitoring. This study offers perspectives for the design of efficient proton gating systems.
Collapse
Affiliation(s)
- Dandan Lei
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Yixiang Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Qixiang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuqi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Lei Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Ye X, Zhang R, Zhou J, Qiu S, Wang Y. Interfacial Constructing Poly(ionic liquids) on Nanoporous Block Copolymers for Antifouling Ultrafiltration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:945-954. [PMID: 39810353 DOI: 10.1021/acs.langmuir.4c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization. The block copolymer of poly(2-dimethylaminoethyl methacrylate)-block-polystyrene (PDMAEMA-b-PS, abbreviated as SDMA) films is immersed in a mixture of ethanol and bromopropane. In addition to the formation of nanoporous structures, an interfacial quaternization reaction between the PDMAEMA blocks and bromopropane occurs to generate poly(methacrylatoethyl propyl dimethylammonium bromide), resulting in the PIL-Br-functionalized membrane (SIL-Br) during the swelling process. It is noteworthy that bromopropane acting as a reactant also promotes the process of selective swelling. The water permeability of the resulting SIL-Br membrane is several times higher than that of the SDMA membrane, which is attributed to the increased pore size and significantly higher hydrophilicity of the SIL-Br membrane. In addition, the anion exchange of SIL-Br with l-proline (l-Pro) readily forms SIL-Pro-functionalized membranes (SIL-Pro), which exhibit exceptional electrical neutrality. Antifouling tests demonstrate that both SIL-Br and SIL-Pro have excellent resistance to proteins compared to the non-PIL-functionalization SDMA membrane, implying their great potential as antifouling membranes for water treatment.
Collapse
Affiliation(s)
- Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Ruotong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Shoutian Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
3
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
4
|
Chu CW, Tsai CH. Surface Modification of Nanopores in an Anodic Aluminum Oxide Membrane through Dopamine-Assisted Codeposition with a Zwitterionic Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5245-5254. [PMID: 38408434 PMCID: PMC10938887 DOI: 10.1021/acs.langmuir.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Surface modification through dopamine-assisted codeposition with functional zwitterionic polymers can provide a simple and one-step functionalization under ambient conditions with robust and stable dopamine-surface interactions to improve the hydrophilicity of nanoporous membranes, thereby expanding their applicability to nanofiltration, ion transport, and blood purification. However, a significant knowledge gap remains in our comprehension of the mechanisms underlying the formation and deposition of dopamine/polymer aggregated coatings within nanoscale confinement. This study explores a feasible method for membrane modification through the codeposition of dopamine hydrochloride (DA) and poly(sulfobetaine methacrylate) (PSBMA) on nanopores of anodic aluminum oxide (AAO) membranes. Our findings demonstrate that the aggregated coatings of DA and PSBMA nanocomposites can effectively deposit on the surfaces within cylindrical AAO nanopores, significantly enhancing the hydrophilicity of the nanoporous membranes. The morphology and homogeneity of the nanocomposite coatings within the nanopores are further investigated by varying PSBMA molecular weights and AAO pore sizes, revealing that higher molecular weights result in more uniform deposition. This work sheds light on understanding the codeposition of DA and zwitterionic polymers in nanoscale environments, highlighting a straightforward and stable surface modification process of nanoporous membranes involving functional polymers.
Collapse
Affiliation(s)
- Chien-Wei Chu
- Department of Chemical Engineering, Feng Chia University, Xitun District, Taichung 40724, Taiwan
| | - Chia-Hsuan Tsai
- Department of Chemical Engineering, Feng Chia University, Xitun District, Taichung 40724, Taiwan
| |
Collapse
|
5
|
Su Z, Yang C, Deng Q, Zhou Y, Mao C, Fu Z, Zhu C, Zhang Y. Synthesis of a Novel Spherical-Shell-Structure Polymerized Ionic Liquid Microsphere PILM/Au/Al(OH) 3 Catalyst for Benzyl Alcohol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16631-16639. [PMID: 36943938 DOI: 10.1021/acsami.2c20967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In order to selectively oxidize benzyl alcohol, a novel noble metal catalyst based on polymer ionic liquids with a core-shell structure was created. First, polymer ionic liquid microspheres (PILMs) were prepared by free radical polymerization. Second, the in situ adsorption of Au nanoparticles on the surface of PILMs was accomplished, thanks to the strong electrostatic interaction between N atoms and metal ions on the diazole ring of PILMs. Additionally, the introduction of Al(OH)3 prevented the aggregation of Au nanoparticles and promoted the catalytic reaction. Finally, the PILM/Au/Al(OH)3 catalyst with a core-shell structure was formed. The effectiveness of the PILM/Au/Al(OH)3 catalyst was assessed by varying the catalyst's type, quantity, amount of Au, amount of H2O2, temperature, and reaction time. After five cycles of experiments, the catalyst was effective and reusable. In addition, the potential catalytic mechanism of the catalyst in the oxidation of benzyl alcohol was proposed.
Collapse
Affiliation(s)
- Ziyi Su
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Chenghan Yang
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Chunfeng Mao
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Zhiwei Fu
- Xuzhou B&C Chemical Co. Ltd, Xuzhou 221300, P. R. China
| | - Chenzi Zhu
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
6
|
Dang L, Yuan H, Wang B, Zhang J, Wang Z, Gao G. Fabrication of Swellable Organic-Inorganic Hybrid Polymers for CO 2-Assisted Hydration of Propylene Epoxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16017-16025. [PMID: 36939247 DOI: 10.1021/acsami.2c23332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Swelling is a very common phenomenon in organic substances. However, the swelling behaviors of inorganic substances had rarely been reported. In this study, a new type of swellable organic-inorganic hybrid polymer (PIL@CHT) was designed and successfully synthesized through free-radical copolymerization of polymerizable phosphonium ionic liquid monomer and vinyl-functionalized hydrotalcite (CHT). The swelling behaviors of PIL@CHT in various solvents with a wide range of Hansen solubility parameters (δT) were investigated, and PIL@CHT exhibited excellent swellable capacity in the solvents with δT > 24.4 MPa1/2. The swollen state of the hybrid PIL@CHT in water presented a network structure with a diameter of approximately 8-12 μm, and CHT particles were well dispersed to the channel of PIL. PIL@CHT was applied to catalyze the CO2-assisted hydration of propylene oxide (PO), in which a cascade reaction including the cycloaddition of CO2 and PO and the subsequent hydrolysis of propylene carbonate (PC) occurred. PIL@CHT, combining the active sites of PIL and CHT, synergistically catalyzed this cascade reaction and achieved a high yield (93.0%) and selectivity (98.2%) of 1,2-propanediol (1,2-MPG) under a low H2O/PO ratio of 1.5/1. Moreover, the catalyst could be recycled seven times without any significant loss of catalytic activities and had good substrate generality.
Collapse
Affiliation(s)
- Lulu Dang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Huixia Yuan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Binshen Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jingshun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Ziyi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| |
Collapse
|
7
|
Wei R, Xiang H, Xie M, Chen G, Zhang X, Zhao C. Programming a Dual-Responsive Switch in Both the Surface and Interior of an Asymmetric Separation Membrane. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
High performance polyvinylidene fluoride membrane functionalized with poly(ionic liquid) brushes for dual resistance to organic and biological fouling. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Hu H, Wang B, Chen B, Deng X, Gao G. Swellable poly(ionic liquid)s: Synthesis, structure-property relationships and applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Zheng S, Li W, Ren Y, Liu Z, Zou X, Hu Y, Guo J, Sun Z, Yan F. Moisture-Wicking, Breathable, and Intrinsically Antibacterial Electronic Skin Based on Dual-Gradient Poly(ionic liquid) Nanofiber Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106570. [PMID: 34751468 DOI: 10.1002/adma.202106570] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Indexed: 05/15/2023]
Abstract
Electronic skin can detect minute electrical potential changes in the human skin and represent the body's state, which is critical for medical diagnostics and human-computer interface development. On the other hand, sweat has a significant effect on the signal stability, comfort, and safety of electronic skin in a real-world application. In this study, by modifying the cation and anion of a poly(ionic liquid) (PIL) and employing a spinning process, a PIL-based multilayer nanofiber membrane (PIL membrane) electronic skin with a dual gradient is created. The PIL electronic skin is moisture-wicking and breathable due to the hydrophilicity and pore size-gradients. The intrinsically antimicrobial activities of PILs allow the safe collection of bioelectrical signals from the human body, such as electrocardiography (ECG) and electromyography (EMG). In addition, a robotic hand may be operated in real-time, and a preliminary human-computer interface can be accomplished by simple processing of the collected EMG signal. This study establishes a novel practical approach for monitoring and using bioelectrical signals in real-world circumstances via the multifunctional electronic skin.
Collapse
Affiliation(s)
- Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongyuan Ren
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yin Hu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Sha X, Sheng X, Zhou Y, Wang B, Zhu Z, Liao Q, Liu Y. Synthesis of P123‐Templated and DVB‐Cross‐linked Meso‐macroporous Poly (ionic liquids) with High‐Performance Alkylation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiao Sha
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 P. R. China
| | - Xiaoli Sheng
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 P. R. China
| | - Yuming Zhou
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 P. R. China
| | - Beibei Wang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 P. R. China
| | - Zhiying Zhu
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 P. R. China
| | - Qiang Liao
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 P. R. China
| | - Yonghui Liu
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 P. R. China
| |
Collapse
|
13
|
Jin L, Shi Z, Zhang X, Liu X, Li H, Wang J, Liang F, Zhao W, Zhao C. Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release. J Mater Chem B 2019; 7:5520-5527. [PMID: 31432876 DOI: 10.1039/c9tb01199d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevention of bacteria-induced infections has been increasing in importance in both clinical surgery and biomedical engineering. Although great attention has been paid to designing intelligent antibacterial surfaces, the fabrication processes are still not facile and universal enough, and the antibacterial efficiencies of these surfaces are also not ideal. Herein, ionic liquid (IL) molecules of 3-(12-mercaptododecyl)-1-methyl-1H-imidazol-3-ium bromide (IL(Br)) were synthesized with the minimum inhibitory concentrations as low as 4 and 8 μg mL-1 against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. By simply immersing a polymeric substrate into the IL(Br) solution, an antibacterial surface with high killing efficiency of 99% against S. aureus (94% against E. coli) was achieved via a mussel-inspired approach. Subsequently, 97% S. aureus and 95% E. coli on the substrate could be released by simple ion-exchange of Br- with (CF3SO2)2N- due to the ion sensitivity of the IL molecular brushes. Thus, the proposed facile strategy towards a superior efficiency surface could be potentially used in intelligent antibacterial fields.
Collapse
Affiliation(s)
- Lunqiang Jin
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuroki H, Gruzd A, Tokarev I, Patsahan T, Ilnytskyi J, Hinrichs K, Minko S. Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18268-18275. [PMID: 31033277 DOI: 10.1021/acsami.9b06679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A facile route to biofouling-resistant porous thin-film membranes that can be fine-tuned for specific needs in diverse bioseparation, mass flow control, sensors, and drug delivery applications is reported. The proposed approach is based on combining two distinct macromolecular systems-a cross-linked poly(2-vinyl pyridine) network and a 3D-grafted polyethylene oxide (PEO) layer-in one robust porous material whose porosity can be adjusted within a wide range, covering the macroporous and mesoporous size regimes. Notably, this reconfigurable material maintains its antifouling properties throughout the entire range of pore size configurations because of a dense surface carpet of PEO chains with self-healing properties that are immobilized both onto the surface and inside the polymer network through what was termed 3D grafting. Experimental results are supplemented by computer simulations of a coarse-grained model of a porous membrane that shows qualitatively similar pore swelling behavior.
Collapse
Affiliation(s)
- Hidenori Kuroki
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
- Laboratory for Chemistry and Life Science , Tokyo Institute of Technology , R1-17, 4259 Nagatsuta , Midori-ku, Yokohama , Kanagawa 226-8503 , Japan
| | - Alexey Gruzd
- Nanostructured Materials Lab , University of Georgia , Athens , Georgia 30602 , United States
| | - Igor Tokarev
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Taras Patsahan
- Department of Computer Simulations of Many-Particle Systems , Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , Lviv 79011 , Ukraine
| | - Jaroslav Ilnytskyi
- Department of Computer Simulations of Many-Particle Systems , Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , Lviv 79011 , Ukraine
| | - Karsten Hinrichs
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 12489 Berlin , Germany
| | - Sergiy Minko
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
- Nanostructured Materials Lab , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
15
|
Tian X, Yi Y, Yang P, Liu P, Qu L, Li M, Hu YS, Yang B. High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4001-4010. [PMID: 30608130 DOI: 10.1021/acsami.8b19743] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solid-state electrolytes are actively sought for their potential application in energy storage devices, especially lithium metal rechargeable batteries. However, one of the key challenges in the development of solid-state electrolytes is their lower ionic conductivity compared with that of liquid electrolytes (10-2 S cm-1 at room temperature), where a large gap still exists. Therefore, the pursuit of high ionic conductivity equal to that of liquid electrolytes remains the main objective for the design of solid-state electrolytes. Here, we show a series of high-charge density polymerized ionic networks as solid-state electrolytes that take inspiration from poly(ionic liquid)s. The obtained quasi-solid electrolyte slice displays an astonishingly high ionic conductivity of 5.89 × 10-3 S cm-1 at 25 °C (the highest conductivity among those of the state-of-art polymer gel electrolytes and polymer solid electrolytes) and ultrahigh decomposition potential, >5.2 V versus Li/Li+, which are attributed to the continuous ion transport channel formed by an ultrahigh ion density and an enhanced chemical stability endowed by highly cross-linked networks. The Li/LiFePO4 and Li/LiCoO2 batteries (3.0-4.4 V) assembled with the solid electrolytes show high stable capacities of around 155 and 130 mAh g-1, respectively. In principle, our work breaks new ground for the design and fabrication of the solid-state electrolytes in various energy conversion devices.
Collapse
Affiliation(s)
- Xiaolu Tian
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Yikun Yi
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Pu Yang
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Pei Liu
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Long Qu
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Mingtao Li
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Yong-Sheng Hu
- Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy, Materials and Devices, Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Bolun Yang
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| |
Collapse
|
16
|
Wei R, Yang F, Gu R, Liu Q, Zhou J, Zhang X, Zhao W, Zhao C. Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36443-36455. [PMID: 30277384 DOI: 10.1021/acsami.8b12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, poly(ionic liquids/ N-isopropylacrylamide) (PIL/NIPAM) modified poly(ether sulfone) microporous membranes were prepared using a pore-filling method. Due to the anion-sensitive wettability of the PIL and the thermal-sensitive phase transformation of PNIPAM, the permeability of the modified membranes showed robust anion and thermal dual-responsive behaviors. In addition, the response temperature of the membranes could be adjusted precisely from 30 to 55 °C by anion exchange, which was attributed to the cooperative interaction of the PIL and PNIPAM. The switchable response temperature and the dual-responsive performances of the membranes were demonstrated by measuring the water fluxes under various conditions. The results indicated that the membrane permeabilities increased when exchanging the counteranions (CAs) from hydrophilic to hydrophobic ones; the thermal response behaviors were also obvious, and the sensitivity increased when increasing the hydrophobicity of the CA (the fluxes could be adjusted from 0 to 3800 mL/m2 mmHgh by controlling the temperature and CAs). At last, filtration tests were designed with the membranes, and the results indicated that by controlling the temperature and/or CA species, three different poly(ethylene glycol) molecules could be easily separated according to their molecule sizes in a single step.
Collapse
Affiliation(s)
- Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Ruixue Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Qian Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| |
Collapse
|