1
|
Deng W, Yang X, Yu J, Omari-Siaw E, Xu X. Recent advances of physiochemical cues on surfaces for directing cell fates. Colloids Surf B Biointerfaces 2025; 250:114550. [PMID: 39929022 DOI: 10.1016/j.colsurfb.2025.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Surface modification plays an essential role in dictating cell behavior and fate, as it creates a microenvironment that profoundly influences cell attachment, migration, proliferation, and differentiation. This review aims to the intricate interplay of culture surface properties, including topography, stiffness, charge, and chemical modifications, demonstrating their profound impact on cell destiny. We explore the nuanced responses of cells to varying surface topographies, from nano- to microscale features, elucidating the influence of geometric patterns and roughness. We also investigate the impact of substrate stiffness, highlighting the way cells perceive and respond to mechanical cues mimicking their native environments. The role of surface charge is examined, revealing how electrostatic interactions influence cell adhesion, signaling, and cell fate decisions. Finally, we delve into the diverse effects of chemical modifications, including the presentation of bioactive molecules, growth factors, and extracellular matrix (ECM) components, demonstrating their ability to guide cell behavior and stimulate specific cellular responses. This review offers comprehensive insights into the important role of surface properties in shaping cell fate, offering promising avenues for developing sophisticated cell culture platforms for applications in drug discovery, regenerative medicine, and fundamental research.
Collapse
Affiliation(s)
- Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Xiufen Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Science, Kumasi Technical University, PO Box 854, Kumasi, Ashanti, Ghana
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| |
Collapse
|
2
|
Delipetar B, Žarković Krolo J, Bedalov A, Kovačić D. A Neuroelectronic Interface with Microstructured Substrates for Spiral Ganglion Neurons Cultured In Vitro: Proof of Concept. BIOSENSORS 2025; 15:224. [PMID: 40277538 PMCID: PMC12025272 DOI: 10.3390/bios15040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
In this study, we present a proof-of-concept neuroelectronic interface (NEI) for extracellular stimulation and recording of neurophysiological activity in spiral ganglion neurons (SGNs) cultured in vitro on three-dimensional, micro-patterned substrates with customized microtopographies, integrated within a 196-channel microelectrode array (MEA). This approach enables mechanotaxis-driven neuronal contact guidance, promoting SGN growth and development, which is highly sensitive to artificial in vitro environments. The microtopography geometry was optimized based on our previous studies to enhance SGN alignment and neuron-electrode interactions. The NEI was validated using SGNs dissociated from rat pups in the prehearing period and cultured for seven days in vitro (DIV). We observed viable and proliferative cellular cultures with robust neurophysiological responses in the form of local field potentials (LFPs) resembling action potentials (APs), elicited both spontaneously and through electrical stimulation. These findings provide deeper insights into SGN behavior and neuron-microenvironment interactions, laying the groundwork for further advancements in neuroelectronic systems.
Collapse
Affiliation(s)
- Boris Delipetar
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (B.D.)
- The Center of Research Excellence for Science and Technology Integrating Mediterranean Region (STIM), University of Split, Ruđera Boškovića 31, 21000 Split, Croatia
- The Doctoral Program in Mechanical Engineering, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 32, 21000 Split, Croatia
| | - Jelena Žarković Krolo
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (B.D.)
- The Center of Research Excellence for Science and Technology Integrating Mediterranean Region (STIM), University of Split, Ruđera Boškovića 31, 21000 Split, Croatia
- The Doctoral Program in Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Ana Bedalov
- The Doctoral Program in Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
- Bedalov d.o.o for Research, Development and Consulting, Ulica T. Antunovića 17, 21212 Kaštel Sućurac, Croatia
| | - Damir Kovačić
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (B.D.)
- The Center of Research Excellence for Science and Technology Integrating Mediterranean Region (STIM), University of Split, Ruđera Boškovića 31, 21000 Split, Croatia
| |
Collapse
|
3
|
Vecchi JT, Rhomberg M, Allan Guymon C, Hansen MR. Inositol trisphosphate and ryanodine receptor signaling distinctly regulate neurite pathfinding in response to engineered micropatterned surfaces. PLoS One 2024; 19:e0308389. [PMID: 39236043 PMCID: PMC11376539 DOI: 10.1371/journal.pone.0308389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 09/07/2024] Open
Abstract
Micro and nanoscale patterning of surface features and biochemical cues have emerged as tools to precisely direct neurite growth into close proximity with next generation neural prosthesis electrodes. Biophysical cues can exert greater influence on neurite pathfinding compared to the more well studied biochemical cues; yet the signaling events underlying the ability of growth cones to respond to these microfeatures remain obscure. Intracellular Ca2+ signaling plays a critical role in how a growth cone senses and grows in response to various cues (biophysical features, repulsive peptides, chemo-attractive gradients). Here, we investigate the role of inositol triphosphate (IP3) and ryanodine-sensitive receptor (RyR) signaling as sensory neurons (spiral ganglion neurons, SGNs, and dorsal root ganglion neurons, DRGNs) pathfind in response to micropatterned substrates of varied geometries. We find that IP3 and RyR signaling act in the growth cone as they navigate biophysical cues and enable proper guidance to biophysical, chemo-permissive, and chemo-repulsive micropatterns. In response to complex micropatterned geometries, RyR signaling appears to halt growth in response to both topographical features and chemo-repulsive cues. IP3 signaling appears to play a more complex role, as growth cones appear to sense the microfeatures in the presence of xestospongin C but are unable to coordinate turning in response to them. Overall, key Ca2+ signaling elements, IP3 and RyR, are found to be essential for SGNs to pathfind in response to engineered biophysical and biochemical cues. These findings inform efforts to precisely guide neurite regeneration for improved neural prosthesis function, including cochlear implants.
Collapse
Affiliation(s)
- Joseph T Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States of America
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States of America
| | - C Allan Guymon
- Department of Chemical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States of America
| |
Collapse
|
4
|
Vecchi JT, Claussen AD, Hansen MR. Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance. Front Neurosci 2024; 18:1425226. [PMID: 39114486 PMCID: PMC11303154 DOI: 10.3389/fnins.2024.1425226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cochlear implants (CI) represent incredible devices that restore hearing perception for those with moderate to profound sensorineural hearing loss. However, the ability of a CI to restore complex auditory function is limited by the number of perceptually independent spectral channels provided. A major contributor to this limitation is the physical gap between the CI electrodes and the target spiral ganglion neurons (SGNs). In order for CI electrodes to stimulate SGNs more precisely, and thus better approximate natural hearing, new methodologies need to be developed to decrease this gap, (i.e., transitioning CIs from a far-field to near-field device). In this review, strategies aimed at improving the neural-electrode interface are discussed in terms of the magnitude of impact they could have and the work needed to implement them. Ongoing research suggests current clinical efforts to limit the CI-related immune response holds great potential for improving device performance. This could eradicate the dense, fibrous capsule surrounding the electrode and enhance preservation of natural cochlear architecture, including SGNs. In the long term, however, optimized future devices will likely need to induce and guide the outgrowth of the peripheral process of SGNs to be in closer proximity to the CI electrode in order to better approximate natural hearing. This research is in its infancy; it remains to be seen which strategies (surface patterning, small molecule release, hydrogel coating, etc.) will be enable this approach. Additionally, these efforts aimed at optimizing CI function will likely translate to other neural prostheses, which face similar issues.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Alexander D. Claussen
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
5
|
Wille I, Harre J, Oehmichen S, Lindemann M, Menzel H, Ehlert N, Lenarz T, Warnecke A, Behrens P. Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Front Bioeng Biotechnol 2022; 10:776890. [PMID: 35141211 PMCID: PMC8819688 DOI: 10.3389/fbioe.2022.776890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs in vitro. Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.
Collapse
Affiliation(s)
- Inga Wille
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Jennifer Harre
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Oehmichen
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Lindemann
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Menzel
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Ehlert
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Behrens
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Cluster of Excellence PhoenixD, Hannover, Germany
| |
Collapse
|
6
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
7
|
Dai W, Shi J, Liu S, Xu Z, Shi Y, Zhao Y, Yang Y. [Preparation and properties of fiber-based conductive composite scaffolds for peripheral nerve regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:356-362. [PMID: 30874396 DOI: 10.7507/1002-1892.201808004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To explore the preparation method, physical and chemical properties, and biocompatibility of a conductive composite scaffold based on polypyrrole/silk fibroin (PPy/SF) fiber with "shell-core" structure, and to provide a preliminary research basis for the application in the field of tissue engineered neuroscience. Methods The conductive fibers with "shell-core" structure were prepared by three-dimensional printing combined with in-situ polymerization. PPy/SF fiber-based conductive composite scaffolds were formed by electrospinning. In addition, core-free PPy conductive fibers and SF electrospinning fibers were prepared. The stability, biomechanics, electrical conductivity, degradation performance, and biological activity of each material were tested to analyze the comprehensive properties of fiber-based conductive composite scaffolds. Results Compared with pure core-free PPy conductive fibers and SF electrospinning fibers, the PPy/SF fiber-based conductive composite scaffolds with "shell-core" structure could better maintain the stability performance, enhance the mechanical stretchability of the composite scaffolds, maintain long-term electrical activity, and improve the anti-degradation performance. At the same time, PPy/SF conductive composite scaffolds were suitable for NIH3T3 cells attachment, conducive to cell proliferation, and had good biological activity. Conclusion PPy/SF fiber-based conductive composite scaffolds meet the needs of conductivity, stability, and biological activity of artificial nerve grafts, and provide a new idea for the development of a new generation of high-performance and multi-functional composite materials.
Collapse
Affiliation(s)
- Wufei Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, P.R.China;Nantong University School of Medicine, Nantong Jiangsu, 226001, P.R.China
| | - Jiaqi Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, P.R.China
| | - Sha Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, P.R.China
| | - Ziqi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, P.R.China;Nantong University School of Medicine, Nantong Jiangsu, 226001, P.R.China
| | - Yijin Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, P.R.China;Nantong University School of Medicine, Nantong Jiangsu, 226001, P.R.China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001,
| |
Collapse
|
8
|
Cangellaris OV, Corbin EA, Froeter P, Michaels JA, Li X, Gillette MU. Aligning Synthetic Hippocampal Neural Circuits via Self-Rolled-Up Silicon Nitride Microtube Arrays. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35705-35714. [PMID: 30251826 DOI: 10.1021/acsami.8b10233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Directing neurons to form predetermined circuits with the intention of treating neurological disorders and neurodegenerative diseases is a fundamental goal and current challenge in neuroengineering. Until recently, only neuronal aggregates were studied and characterized in culture, which can limit information gathered to populations of cells. In this study, we use a substrate constructed of arrays of strain-induced self-rolled-up membrane 3D architectures. This results in changes in the neuronal architecture and altered growth dynamics of neurites. Hippocampal neurons from postnatal rats were cultured at low confluency (∼250 cells mm-2) on an array of transparent rolled-up microtubes (μ-tubes; 4-5 μm diameter) of varying topographical arrangements. Neurite growth on the μ-tubes was characterized and compared to controls in order to establish a baseline for alignment imposed by the topography. Compared to control substrates, neurites are significantly more aligned toward the 0° reference on the μ-tube array. Pitch (20-60 and 100 μm) and μ-tube length (30-80 μm) of array elements were also varied to investigate their impact on neurite alignment. We found that alignment was improved by the gradient pitch arrangement and with longer μ-tubes. Application of this technology will enhance the ability to construct intentional neural circuits through array design and manipulation of individual neurons and can be adapted to address challenges in neural repair, reinnervation, and neuroregeneration.
Collapse
Affiliation(s)
- Olivia V Cangellaris
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Medical Scholars Program , University of Illinois College of Medicine at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Elise A Corbin
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Cardiovascular Institute, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | | | | | | | - Martha U Gillette
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
9
|
Green BJ, Worthington KS, Thompson JR, Bunn SJ, Rethwisch M, Kaalberg EE, Jiao C, Wiley LA, Mullins RF, Stone EM, Sohn EH, Tucker BA, Guymon CA. Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications. Biomacromolecules 2018; 19:3682-3692. [PMID: 30044915 DOI: 10.1021/acs.biomac.8b00784] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Degradable polymers are integral components in many biomedical polymer applications. The ability of these materials to decompose in situ has become a critical component for tissue engineering, allowing scaffolds to guide cell and tissue growth while facilitating gradual regeneration of native tissue. The objective of this work is to understand the role of prepolymer molecular weight and functionality of photocurable poly(caprolactone) (PCL) in determining reaction kinetics, mechanical properties, polymer degradation, biocompatibility, and suitability for stereolithography. PCL, a degradable polymer used in a number of biomedical applications, was functionalized with acrylate groups to enable photopolymerization and three-dimensional printing via stereolithography. PCL prepolymers with different molecular weights and functionalities were studied to understand the role of molecular structure in reaction kinetics, mechanical properties, and degradation rates. The mechanical properties of photocured PCL were dependent on cross-link density and directly related to the molecular weight and functionality of the prepolymers. High-molecular weight, low-functionality PCLDA prepolymers exhibited a lower modulus and a higher strain at break, while low-molecular weight, high-functionality PCLTA prepolymers exhibited a lower strain at break and a higher modulus. Additionally, degradation profiles of cross-linked PCL followed a similar trend, with low cross-link density leading to degradation times up to 2.5 times shorter than those of more highly cross-linked polymers. Furthermore, photopolymerized PCL showed biocompatibility both in vitro and in vivo, causing no observed detrimental effects on seeded murine-induced pluripotent stem cells or when implanted into pig retinas. Finally, the ability to create three-dimensional PCL structures is shown by fabrication of simple structures using digital light projection stereolithography. Low-molecular weight, high-functionality PCLTA prepolymers printed objects with feature sizes near the hardware resolution limit of 50 μm. This work lays the foundation for future work in fabricating microscale PCL structures for a wide range of tissue regeneration applications.
Collapse
Affiliation(s)
- Brian J Green
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Kristan S Worthington
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States.,Department of Biomedical Engineering , The University of Iowa , 5602 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Jessica R Thompson
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States.,Department of Biomedical Engineering , The University of Iowa , 5602 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Spencer J Bunn
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Mary Rethwisch
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Emily E Kaalberg
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Chunhua Jiao
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Luke A Wiley
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Robert F Mullins
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Edwin M Stone
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Elliott H Sohn
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Budd A Tucker
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| |
Collapse
|
10
|
Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen Res 2018; 13:1455-1464. [PMID: 30106059 PMCID: PMC6108196 DOI: 10.4103/1673-5374.235303] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Three dimensional (3D) bioprinting, which involves depositing bioinks (mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37°C for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10-5-1 × 10-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe EdU-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.
Collapse
Affiliation(s)
- Ya-Hong Zhao
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang-Mei Niu
- Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jia-Qi Shi
- Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Ying-Yu Wang
- Wen Zheng College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yu-Min Yang
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hong-Bo Wang
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|