1
|
Zhuang R, Tan X, Wang Y, Wang J, Zhan J, Yan J, Zhang J, Wang L. Tin Disulfide Nanosheet as Cathode Materials for Rechargeable Aluminum Ion Batteries: Synthesis, Electrochemical Performance, and Mechanism. Molecules 2025; 30:1649. [PMID: 40333517 PMCID: PMC12029917 DOI: 10.3390/molecules30081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Aluminum ion batteries (AIBs) exhibit a promising development prospect due to their advantages such as high theoretical specific capacity, high safety, low cost, and sufficient raw material sources. In this work, nanosheet tin disulfide (SnS2) was successfully prepared using the hydrothermal method and then used as a cathode material for AIBs. The synthesized nano-flake SnS2 has a large size and thin thickness, with a size of about 900 nm and a thickness of about 150 nm. This electrode material effectively enhances the contact interface with the electrolyte and shortens the depth and travel distance of ion deintercalation. As an electrode, the battery obtained a residual discharge specific capacity of about 55 mAh g-1 and a coulombic efficiency of about 83% after 600 cycles. Furthermore, the first-principles calculation results show that the energy storage mechanism is the deintercalation behavior of Al3+. Based on model analysis and calculation results, it can be seen that compared with the position between two sulfur atoms, Al3+ is more inclined to be deintercalated directly above the sulfur atom. This study provides fundamental data for the large-scale preparation of AIBs using SnS2 as an electrode material and the application research of AIBs.
Collapse
Affiliation(s)
- Ruiyuan Zhuang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinming Tan
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Yuxin Wang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Junhong Wang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Jianfeng Zhan
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Jiangnan Yan
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Jun Zhang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China
| | - Lixiang Wang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| |
Collapse
|
2
|
Liang F, Dong H, Dai J, He H, Zhang W, Chen S, Lv D, Liu H, Kim IS, Lai Y, Tang Y, Ge M. Fast Energy Storage of SnS 2 Anode Nanoconfined in Hollow Porous Carbon Nanofibers for Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306711. [PMID: 38041500 PMCID: PMC10811495 DOI: 10.1002/advs.202306711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The development of conversion-typed anodes with ultrafast charging and large energy storage is quite challenging due to the sluggish ions/electrons transfer kinetics in bulk materials and fracture of the active materials. Herein, the design of porous carbon nanofibers/SnS2 composite (SnS2 @N-HPCNFs) for high-rate energy storage, where the ultrathin SnS2 nanosheets are nanoconfined in N-doped carbon nanofibers with tunable void spaces, is reported. The highly interconnected carbon nanofibers in three-dimensional (3D) architecture provide a fast electron transfer pathway and alleviate the volume expansion of SnS2 , while their hierarchical porous structure facilitates rapid ion diffusion. Specifically, the anode delivers a remarkable specific capacity of 1935.50 mAh g-1 at 0.1 C and excellent rate capability up to 30 C with a specific capacity of 289.60 mAh g-1 . Meanwhile, at a high rate of 20 C, the electrode displays a high capacity retention of 84% after 3000 cycles and a long cycle life of 10 000 cycles. This work provides a deep insight into the construction of electrodes with high ionic/electronic conductivity for fast-charging energy storage devices.
Collapse
Affiliation(s)
- Fanghua Liang
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
- Faculty of Textile Science and TechnologyShinshu UniversityTokida 3‐15‐1UedaNagano386‐8567Japan
| | - Huilong Dong
- School of Materials EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
| | - Jiamu Dai
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Honggang He
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Wei Zhang
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacau999078P. R. China
| | - Dong Lv
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077P. R. China
| | - Hui Liu
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Ick Soo Kim
- Faculty of Textile Science and TechnologyShinshu UniversityTokida 3‐15‐1UedaNagano386‐8567Japan
| | - Yuekun Lai
- College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Yuxin Tang
- College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Mingzheng Ge
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacau999078P. R. China
| |
Collapse
|
3
|
Influence of carbon layer thickness on the Li-ion storage property of [002]-oriented β-Li2TiO3@C nanowires. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Diko CS, Abitonze M, Liu Y, Zhu Y, Yang Y. Synthesis and Applications of Dimensional SnS 2 and SnS 2/Carbon Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4497. [PMID: 36558350 PMCID: PMC9786647 DOI: 10.3390/nano12244497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Dimensional nanomaterials can offer enhanced application properties benefiting from their sizes and morphological orientations. Tin disulfide (SnS2) and carbon are typical sources of dimensional nanomaterials. SnS2 is a semiconductor with visible light adsorption properties and has shown high energy density and long cycle life in energy storage processes. The integration of SnS2 and carbon materials has shown enhanced visible light absorption and electron transmission efficiency. This helps to alleviate the volume expansion of SnS2 which is a limitation during energy storage processes and provides a favorable bandgap in photocatalytic degradation. Several innovative approaches have been geared toward controlling the size, shape, and hybridization of SnS2/Carbon composite nanostructures. However, dimensional nanomaterials of SnS2 and SnS2/Carbon have rarely been discussed. This review summarizes the synthesis methods of zero-, one-, two-, and three-dimensional SnS2 and SnS2/Carbon composite nanomaterials through wet and solid-state synthesis strategies. Moreover, the unique properties that promote their advances in photocatalysis and energy conversion and storage are discussed. Finally, some remarks and perspectives on the challenges and opportunities for exploring advanced SnS2/Carbon nanomaterials are presented.
Collapse
Affiliation(s)
| | - Maurice Abitonze
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yining Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yimin Zhu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yan Yang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, China
| |
Collapse
|
5
|
Yang J, Liu Z, Sheng X, Li J, Wang T, Wang C. Tin nanoparticle in-situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. J Colloid Interface Sci 2022; 624:40-50. [PMID: 35660908 DOI: 10.1016/j.jcis.2022.05.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
Tin (Sn)-based electrodes, featuring high electrochemical activity and suitable voltage plateau, gain tremendous attention as promising anode materials for sodium-ion batteries. However, the application of Sn-based electrodes has been largely restricted by the serious pulverization upon repeated cycling due to their large volume expansion, especially at high current densities. Herein, a unique three-dimensional decorated structure was designed, containing ultrafine Sn nanoparticles and nitrogen-deficient carbon nitride (Sn/D-C3N4), to efficiently alleviate the expansion stress and prevent the aggregation of Sn nanoparticles. Furthermore, the density functional theory calculations have proved the high sodium adsorption ability and improved diffusion kinetics through the hybridization of D-C3N4 with Sn nanoparticles. Further combining the high electronic/ionic conductivity provided by the porous C3N4 matrix, high charge contribution from capacitive behavior, and high sodium storage activity of ultrafine Sn nanoparticles, the resultant Sn/D-C3N4 can achieve an ultrahigh reversible capacity of 518.3 mA g-1 after 300 cycles at 1.0 A g-1, and even maintaining a reversible capacity of 436.1 mAh g-1 up to 500 cycles (5.0 A g-1). What's more, the optimized Sn/D-C3N4∥Na3V2(PO4)3/C full cell can keep a high capacity retention of 87.1% at 1.0 A g-1 even after 5000 cycles, manifesting excellent sodium storage performance.
Collapse
Affiliation(s)
- Jian Yang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Zhigang Liu
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Xiaoxue Sheng
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Jiabao Li
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| | - Tianyi Wang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| | - Chengyin Wang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
6
|
Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review. NANOMATERIALS 2022; 12:nano12081246. [PMID: 35457954 PMCID: PMC9029743 DOI: 10.3390/nano12081246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
The ever-increasing worldwide energy demand and the limited resources of fossil have forced the urgent adoption of renewable energy sources. Additionally, concerns over CO2 emissions and potential increases in fuel prices have boosted technical efforts to make hybrid and electric vehicles more accessible to the public. Rechargeable batteries are undoubtedly a key player in this regard, especially lithium ion batteries (LIBs), which have high power capacity, a fast charge/discharge rate, and good cycle stability, while their further energy density improvement has been severely limited, because of the relatively low theoretical capacity of the graphite anode material which is mostly used. Among various high-capacity anode candidates, tin (II) sulfide (SnS2) has been attracted remarkable attention for high-energy LIBs due to its enormous resource and simplicity of synthesis, in addition to its high theoretical capacity. However, SnS2 has poor intrinsic conductivity, a big volume transition, and a low initial Coulombic efficiency, resulting in a short lifespan. SnS2/carbon composites have been considered to be a most promising approach to addressing the abovementioned issues. Therefore, this review summarizes the current progress in the synthesis of SnS2/carbon anode materials and their Li-ion storage properties, with special attention to the developments in Li-based technology, attributed to its immense current importance and promising prospects. Finally, the existing challenges within this field are presented, and potential opportunities are discussed.
Collapse
|
7
|
Wang J, Zhang Z, Zhao H. SnS 2-SnS pn hetero-junction bonded on graphene with boosted charge transfer for lithium storage. NANOSCALE 2021; 13:20481-20487. [PMID: 34853845 DOI: 10.1039/d1nr05438d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the advantage of high capacity, practical implementation of the tin disulfide (SnS2) anode for lithium-ion batteries is still plagued by the inferior rate performance due to its low intrinsic electronic conductivity and mediocre ion transport in the bulk. Herein, to address these issues, a peculiar heterojunction of SnS2-SnS quantum dots (QDs) closely coupled with reduced graphene oxide (rGO) sheets was developed. Because of the typical n-type and p-type semiconductor characteristics of SnS2 and SnS, respectively, the formed pn junction at the SnS2/SnS interface will induce a built-in electric field, which can significantly accelerate lithium-ion transport through the SnS2/SnS interface. The ultrafine SnS2 and SnS nano-domains with superlong pn junction interfacial length construct an accelerated lithium-ion diffusion network, while the conductive rGO nanosheets provide a high-speed electron conduction pathway. Meanwhile, the flexible rGO chemically coupled with SnS2/SnS buffers the volumetric variation during repeated lithiation/delithiation processes and guarantees robust structural durability. These merits afford the designed SnS2-SnS/rGO electrode with fast electrode reaction kinetics and good structural durability upon cycling. Consequently, the delicate SnS2-SnS/rGO electrode harvests a superlative rate capability of 926 and 865 mA h g-1 at 5 and 10 A g-1, respectively, and excellent long-term cycling stability with a high reversible capacity of 1075 mA h g-1 at 1 A g-1 up to 1000 cycles with negligible degradation.
Collapse
Affiliation(s)
- Jie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, China
| | - Zijia Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hailei Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, China
| |
Collapse
|
8
|
Duan Z, Huang C, Yang X, Hu A, Lu X, Jiang Q. Preparation of SnS 2/MWCNTs chemically modified electrode and its electrochemical detection of H 2O 2. Anal Bioanal Chem 2020; 412:4403-4412. [PMID: 32394038 DOI: 10.1007/s00216-020-02682-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 11/30/2022]
Abstract
Considering the importance of hydrogen peroxide (H2O2) rapid detection, a SnS2/MWCNTs composite was prepared by loading tin disulfide (SnS2) nanoparticles on a three-dimensional conductive network composed of multi-walled carbon nanotubes (MWCNTs). The obtained SnS2/MWCNTs composite was used as the modified material to prepare a chemically modified electrode (CME), which was used for the rapid detection of H2O2. The morphology and structure of the obtained samples were characterized and analyzed by scanning electron microscopy, X-ray diffraction, and energy-dispersive spectroscopy. The electrochemical performance of the modified electrode was researched by cyclic voltammetry, amperometric i-t curves, and AC impedance techniques. The results show that SnS2 nanoparticles with a size of about 33 nm are evenly dispersed on the surface of MWCNTs. The obtained SnS2/MWCNTs-CME has a strong current response to H2O2: it has a good linear relationship during the range of 0.248 ~ 16.423 mmol L-1, and its linear regression equation is Ipa (mA) = (-0.94 ± 0.05) × 10-2 + (- 0.43 ± 0.06) × 10-2c (mmol L-1) (R2 = 0.997) with a sensitivity of 87.84 μA mmol-1 L cm-2. The corresponding detection limit is 1.04 μmol L-1 (S/N = 3). At the same time, the SnS2/MWCNTs-CME has good selectivity, reproducibility, and stability. Graphical abstract Uniformly distributed SnS2/CNTs composite is used to prepare a chemically modified electrode for H2O2 detection. The prepared electrode has a strong electrochemical response to H2O2 due to the excellent conductivity and support of CNTs. And the SnS2/CNTs electrode shows high sensitivity and selectivity for the electrochemical detection of H2O2.
Collapse
Affiliation(s)
- Zhihong Duan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Centre, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Chaolian Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Centre, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaoxiao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Centre, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Ailin Hu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Centre, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaoying Lu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Centre, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Qi Jiang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Centre, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
9
|
Zuo Y, Xu X, Zhang C, Li J, Du R, Wang X, Han X, Arbiol J, Llorca J, Liu J, Cabot A. SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Wang L, Zhao Q, Wang Z, Wu Y, Ma X, Zhu Y, Cao C. Cobalt-doping SnS 2 nanosheets towards high-performance anodes for sodium ion batteries. NANOSCALE 2020; 12:248-255. [PMID: 31815998 DOI: 10.1039/c9nr07849e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layered SnS2 is considered as a promising anode candidate for sodium-ion batteries yet suffers from low initial coulombic efficiency, limited specific capacity and rate capability. Herein, we report a cobalt metal cation doping strategy to enhance the electrochemical performance of a SnS2 nanosheet array anode through a facile hydrothermal method. Benefitting from this special structure and heteroatom-doping effect, this anode material displays a high initial coulombic efficiency of 57.4%, a superior discharge specific capacity as high as 1288 mA h g-1 at 0.2 A g-1 after 100 cycles and outstanding long-term cycling stability with a reversible capacity of 800.4 mA h g-1 even at 2 A g-1. These excellent performances could be ascribed to the Co-doping effect that can increase the interlayer spacing, produce rich defects, regulate the electronic environment and improve conductivity. Besides, a carbon cloth substrate can maintain the integrity of the electrode material framework and buffer its volume variation, thus boosting intrinsic dynamic properties and enhancing sodium storage performance.
Collapse
Affiliation(s)
- Liqin Wang
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Quanqing Zhao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhitao Wang
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Yujun Wu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Xilan Ma
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
11
|
Wu Y, Lin G, Zhou X, Chen J, Zhuang J, Chen Q, Luo Y, Lu D, Ganesh V, Zeng R. Exploring structural stability mechanism of TiO2 encapsulated in 3D flower-like SnS2 anode for lithium ion batteries. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Kim H, Kim MC, Kim SB, Kim YS, Choi JH, Park KW. Porous SnO2 nanostructure with a high specific surface area for improved electrochemical performance. RSC Adv 2020; 10:10519-10525. [PMID: 35492898 PMCID: PMC9050381 DOI: 10.1039/d0ra00531b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/27/2020] [Indexed: 11/26/2022] Open
Abstract
Tin oxide (SnO2) has been attractive as an alternative to carbon-based anode materials because of its fairly high theoretical capacity during cycling. However, SnO2 has critical drawbacks, such as poor cycle stability caused by a large volumetric variation during the alloying/de-alloying reaction and low capacity at a high current density due to its low electrical conductivity. In this study, we synthesized a porous SnO2 nanostructure (n-SnO2) that has a high specific surface area as an anode active material using the Adams fusion method. From the Brunauer–Emmett–Teller analysis and transmission electron microscopy, the as-prepared SnO2 sample was found to have a mesoporous structure with a fairly high surface area of 122 m2 g−1 consisting of highly-crystalline nanoparticles with an average particle size of 5.5 nm. Compared to a commercial SnO2, n-SnO2 showed significantly improved electrochemical performance because of its increased specific surface area and short Li+ ion pathway. Furthermore, during 50 cycles at a high current density of 800 mA g−1, n-SnO2 exhibited a high initial capacity of 1024 mA h g−1 and enhanced retention of 53.6% compared to c-SnO2 (496 mA h g−1 and 23.5%). A porous SnO2 nanostructure as an anode active material showed significantly improved electrochemical performance.![]()
Collapse
Affiliation(s)
- Hyeona Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06987
- Republic of Korea
| | - Min-Cheol Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06987
- Republic of Korea
| | - Sung-beom Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06987
- Republic of Korea
| | - Yo-Seob Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06987
- Republic of Korea
| | - Jin-Hyeok Choi
- Department of Chemical Engineering
- Soongsil University
- Seoul 06987
- Republic of Korea
| | - Kyung-Won Park
- Department of Chemical Engineering
- Soongsil University
- Seoul 06987
- Republic of Korea
| |
Collapse
|
13
|
Li YF, Wang SG, Shi YH, Fan CY, Lin J, Wu XL, Sun HZ, Zhang JP, Xie HM. In situ chemically encapsulated and controlled SnS 2 nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Trans 2020; 49:15874-15882. [PMID: 33156304 DOI: 10.1039/d0dt02877k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SnS2 as the promising anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) still encounters the undesirable rate performance and cycle stability. Herein, a unique stable structure is developed, where the SnS2 nanocrystals (NCs) are sturdily encapsulated by carbon shells anchored on a reduced graphene oxide (rGO) via the one-pot solvothermal process. The well-controlled carbon shells provide the enduring protection for SnS2 NCs through C-S covalent bonds from the corrosion of electrolyte and pulverization of structure. Moreover, both experimental results and density functional theory (DFT) calculations demonstrate that the carbon protective shell effectively enhances the structure stability and conductivity of the resulting materials. Interestingly, the size of SnS2 NCs and the thickness of carbon shells are accurately controlled by regulating the content of glucose. Aided by the advanced electron/ion transfer kinetics and structure stability, the SnS2-based electrode exhibits desired lithium/sodium storage performance and unprecedented long-term cycling stability (capacity retention of 74.7% after 1000 cycles at 2 A g-1 for LIBs and 102% after 200 cycles at 500 mA g-1 for SIBs). This work develops a method for promoting the practical applications and large-scale production of SnS2 composites for energy storage devices.
Collapse
Affiliation(s)
- Yan-Fei Li
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.
| | - Shu-Guang Wang
- School of Energy and Mechanics, Dezhou University, No. 566 West University Road, Dezhou 253023, China
| | - Yan-Hong Shi
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.
| | - Chao-Ying Fan
- Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China
| | - Jian Lin
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.
| | - Xing-Long Wu
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.
| | - Hai-Zhu Sun
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.
| | - Jing-Ping Zhang
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.
| | - Hai-Ming Xie
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China.
| |
Collapse
|
14
|
Teng Y, Liu H, Liu D, He H, Chen Y. Pitaya-like carbon-coated ZnS/carbon nanospheres with inner three-dimensional nanostructure as high-performance anode for lithium-ion battery. J Colloid Interface Sci 2019; 554:220-228. [DOI: 10.1016/j.jcis.2019.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/04/2023]
|
15
|
Li J, Han S, Zhang C, Wei W, Gu M, Meng L. High-Performance and Reactivation Characteristics of High-Quality, Graphene-Supported SnS 2 Heterojunctions for a Lithium-Ion Battery Anode. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22314-22322. [PMID: 31190523 DOI: 10.1021/acsami.9b04243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
SnS2 has received tremendous attention as an anode material for lithium-ion batteries owing to its high theoretical capacity and low cost. However, its applications are limited by its inferior cycling stability and poor rate performance. In this study, graphene@SnS2 heterojunction nanocomposites are synthesized using a microwave-assisted solvothermal approach on liquid-phase exfoliated graphene (LEGr). Compared with graphene oxides, LEGr layers with an intrinsic atomic structure show extraordinary conductivity and serve as robust substrates for in situ growth of SnS2 with improved interfacial contact. A LEGr-derived SnS2 hybrid shows remarkable storage capacity, superior rate capability, and excellent cycling stability. The storage capacity remains at 664 mAh g-1 after 200 cycles at 300 mA g-1 current density. Furthermore, lithiation-induced reactivation of LEGr-based SnS2 is investigated using in situ transmission electron microscopy, giving an in-depth explanation of the electrochemical reaction mechanisms.
Collapse
Affiliation(s)
| | - Shaobo Han
- Department of Materials Science and Engineering, and Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Chenyu Zhang
- Department of Materials Science and Engineering , University of Wisconsin-Madison , 1509 University Avenue , Madison , Wisconsin 53706 , United States
| | | | - Meng Gu
- Department of Materials Science and Engineering, and Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices , Southern University of Science and Technology , Shenzhen 518055 , China
| | | |
Collapse
|
16
|
Matmin J, Jalani MA, Osman H, Omar Q, Ab'lah N, Elong K, Kasim MF. Photochemical Synthesis of Nanosheet Tin Di/Sulfide with Sunlight Response on Water Pollutant Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E264. [PMID: 30769911 PMCID: PMC6410158 DOI: 10.3390/nano9020264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022]
Abstract
The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS₂-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS₂-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS₂-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS₂-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response.
Collapse
Affiliation(s)
- Juan Matmin
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia.
| | - Mohamad Azani Jalani
- Kolej PERMATA Insan, Universiti Sains Islam Malaysia (USIM), Kompleks PERMATA Insan, Bandar, Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Hazwanee Osman
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia.
| | - Qistina Omar
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia.
| | - NorulNazilah Ab'lah
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia.
| | - Kelimah Elong
- Centre for Nanomaterials Research, Institute of Science, Universiti Teknologi MARA (UiTM), Level 3, Block C, 40450 Shah Alam, Selangor, Malaysia.
| | - Muhd Firdaus Kasim
- Centre for Nanomaterials Research, Institute of Science, Universiti Teknologi MARA (UiTM), Level 3, Block C, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
17
|
Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Cobalt doping of tin disulfide/reduced graphene oxide nanocomposites for enhanced pseudocapacitive sodium-ion storage. Commun Chem 2018. [DOI: 10.1038/s42004-018-0086-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Liang J, Li H, Sun Z, Jia D. N-doped CMK-3 anchored with SnS2 nanosheets as anode of lithium ion batteries with superior cyclic performance and enhanced reversible capacity. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Zhang Z, Zhao H, Fang J, Chang X, Li Z, Zhao L. Tin Disulfide Nanosheets with Active-Site-Enriched Surface Interfacially Bonded on Reduced Graphene Oxide Sheets as Ultra-Robust Anode for Lithium and Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28533-28540. [PMID: 30074762 DOI: 10.1021/acsami.8b07741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) tin disulfide (SnS2) has attracted intensive research owing to its high specific capacity for Li and Na storage, natural abundance, as well as environmental friendliness. However, the poor reaction kinetics, low intrinsic electrical conductivity, and severe volumetric variation upon cycling processes of SnS2 impede its widespread application. In this work, SnS2 nanosheets with active-site-enriched surface intimately grown on reduced graphene oxide (rGO) via C-O-Sn chemical bonds are prepared. The aligning affords more active sites for electrode reaction and short transport pathways for Li+/Na+ and electrons. The strong chemical bonding enhances the interfacial affinity of SnS2 with rGO and inhibits the detachment of active SnS2 from rGO during repeated charge and discharge processes, which can ensure an integrated electrode structure. The 3D conductive and flexible rGO network improves the conductivity of the entire composite and buffers the volume change of SnS2 upon charge/discharge. These advantages enable the designed SnS2/rGO nanocomposite to have high specific capacity, superior rate capability, and outstanding long-cycling stability for both Li and Na storage.
Collapse
Affiliation(s)
| | - Hailei Zhao
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies , Beijing 100083 , China
| | | | | | | | | |
Collapse
|
21
|
Park SK, Park JS, Kang YC. Metal-Organic-Framework-Derived N-Doped Hierarchically Porous Carbon Polyhedrons Anchored on Crumpled Graphene Balls as Efficient Selenium Hosts for High-Performance Lithium-Selenium Batteries. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16531-16540. [PMID: 29694013 DOI: 10.1021/acsami.8b03104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing carbon scaffolds showing rational pore structures as cathode hosts is essential for achieving superior electrochemical performances of lithium-selenium (Li-Se) batteries. Hierarchically porous N-doped carbon polyhedrons anchored on crumpled graphene balls (NPC/CGBs) are synthesized by carbonizing a zeolitic imidazolate framework-8 (ZIF-8)/CGB composite precursor, producing an unprecedented effective host matrix for high-performance Li-Se batteries. Mesoporous CGBs obtained by one-pot spray pyrolysis are used as a highly conductive matrix for uniform polyhedral ZIF-8 growth. During carbonization, ZIF-8 polyhedrons on mesoporous CGBs are converted into N-doped carbon polyhedrons showing abundant micropores, forming a high-surface-area, high-pore-volume hierarchically porous NPC/CGB composite whose small unique pores effectively confine Se during melt diffusion, thereby providing conductive electron pathways. Thus, the integrated NPC/CGB-Se composite ensures high Se utilization originating from complete electrochemical reactions between Se and Li ions. The NPC/CGB-Se composite cathode exhibits high discharge capacities (998 and 462 mA h g-1 at the 1st and 1000th cycles, respectively, at a 0.5 C current density), good capacity retention (68%, calculated from the 3rd cycle), and excellent rate capability. A discharge capacity of 409 mA h g-1 is achieved even at an extremely high (15.0 C) current density.
Collapse
Affiliation(s)
- Seung-Keun Park
- Department of Materials Science and Engineering , Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713 , Republic of Korea
| | - Jin-Sung Park
- Department of Materials Science and Engineering , Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713 , Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering , Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713 , Republic of Korea
| |
Collapse
|
22
|
Feng X, He J, Wang X, Wang G, Wang X, Peng H. Effect of VO43– Substitution on the Electrochemical Properties of a LiSn2(PO4)3 Anode Material. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Fu Y, Peng C, Zha D, Zhu J, Zhang L, Wang X. Surface pore-containing NiCo2O4 nanobelts with preferred (311) plane supported on reduced graphene oxide: A high-performance anode material for lithium-ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|