1
|
Patel RS, Bhadoriya RJ, Modi KM, Vora MA, Patel MN, Parekh HM. Selective detection of Fe 3+ via fluorescent in real sample using aminoanthraquinone resorcin[4]arene-based receptors with logic gate application. Talanta 2025; 285:127322. [PMID: 39642608 DOI: 10.1016/j.talanta.2024.127322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Resorcin[4]arene based fluorescent sensors RES-AAQ containing eight anthraquinone groups as binding sites, were developed for very accurate and sensitive detection of Fe3+ metal ion. The motivation for this study lies in the need for advanced sensing techniques for precisely identifying Fe3+ ions. Due to its unique redox properties, Fe3+ plays a crucial role in biological processes, environmental remediation, medical diagnostics, and advanced detection methods. The sensors were extensively characterized using FT-IR, 1H NMR, 13C NMR, and ESI-MS techniques. The absorption spectra revealed significant interactions between RES-AAQ and Fe3+ ions. Fluorescence quenching was observed due to Photoinduced electron transfer (PET). The quenching process was systematically analyzed using Stern-Volmer analysis. Each sensor (L1, L2, L3, L4) demonstrated remarkable detection limits for Fe3+ ions (10.51 nM, 10.48 nM, 10.49 nM, 10.47 nM, respectively) along with substantial binding affinities (binding constants: 9.07x109 M-1, 1.19x109 M-1, 1.49x109 M-1 and 1.03x109 M-1 for L1, L2, L3, and L4, respectively). Traditional, Fe3+ detection methods often suffer from limitations such as complexity, lack of sensitivity, or interference from other metal ions. This research offers highly sensitive fluorescent sensors for Fe3+ detection with potential applications in human blood serum and tap water. Molecular docking, DFT studies, and ESI-MS investigation have been employed to gain insights into the binding interactions between the molecules. The low detection limits, high binding affinity, and real-world applicability highlight the significant advantages of developed sensors compared to existing methods. Additionally, a combinatorial logic gate was constructed to facilitate a proper understanding of the working principle of RES-AAQ.
Collapse
Affiliation(s)
- Ronak S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Rubi J Bhadoriya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Krunal M Modi
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India
| | - Manoj A Vora
- Department of Chemical Engineering, Nirma Univesity, Gota, Ahmedabad, 382481, Gujarat, India; Department of Chemistry, Faculty of Science, Gokul Global University, Siddhpur, 384151, Gujarat. India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Hitesh M Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India.
| |
Collapse
|
2
|
Dhara SR, Saha R, Baildya N, Acharya K, Bhattacharya A, Ghosh K. New Cyanostyrylcopillar[5]arene Derivative: Synthesis, Photophysical Study, Chromogenic Detection of Aliphatic Amines, and Biofilm-Antibiofilm Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7275-7287. [PMID: 38304929 DOI: 10.1021/acsami.3c16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The synthesis, characterization, and application of a new cyanostyrylcopillar[5]arene 1 is reported. Single-crystal X-ray diffraction and other spectroscopic techniques confirm the identity of the new copillar 1. The X-ray diffraction study reveals that the copillar 1 exhibits a 1D supramolecular chain in the solid state involving π···π interactions along the crystallographic c-axis and 1D chains are further connected by interchain C-H···π interactions to establish 2D supramolecular layers within the crystallographic bc-plane. 2D supramolecular chains on further packing introduce a 3D structure with void spaces filled with hexane molecules. Through minimal deviation in the dihedral angle, the cyano-substituted ethylenic group in 1 shows a conjugation with the phenolic -OH, favoring intramolecular bond conjugation (ITBC) and colorimetrically detects the aliphatic amines over aromatic amines in CH3CN. Among the aliphatic amines, tertiary amines are differentiated from primary and secondary amines by the naked eye through color change. Both in solution and solid states, 1 displays vapor phase detection of volatile aliphatic amines. Antibacterial activity analysis shows that while 1 exhibits the antibiofilm action against Gram-positive pathogenic bacteria, Staphylococcus aureus, it promotes biofilm formation by Gram-negative pathogenic bacteria, Pseudomonas aeruginosa.
Collapse
Affiliation(s)
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol 713340, India
| | - Nabajyoti Baildya
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata 700126, India
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata 700126, India
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
3
|
Xiao H, Ren GL, Hu JH, Chen JH, Yang X, Xiao X, Li Q, Yang HP. Cucurbit[8]uril-Based Supramolecular Probe for the Detection of 3-Nitrotyrosine in Human Serum and Plasma. ACS Sens 2024; 9:424-432. [PMID: 38214465 DOI: 10.1021/acssensors.3c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The biomarker 3-nitrotyrosine (3-NT) is widely recognized as an indicator of renal oxidative stress injury, making its detection crucial for the early identification of renal insufficiency. This study presents the design and synthesis of a tetraphenylstyrene imidazole derivative (TIPE-MI), which is utilized to create a supramolecular probe in conjunction with cucurbit[8]uril (Q[8]) through host-guest interactions. The resulting supramolecular self-assembly exhibits excellent optical properties and has been employed for the specific detection of 3-NT through fluorescence quenching. The introduction of 3-NT resulted in a decreased fluorescence intensity of the yellow fluorescent probe, which gradually transitioned from bright yellow to light yellow and then became colorless as the 3-NT concentration was increased. A portable detection platform was devised to augment the efficiency of detection. In order to facilitate biological applications, we have substantiated the probe's exceptional precision in detecting 3-NT in biological samples, encompassing human serum and plasma. The probe also exhibited negligible cytotoxicity. The accumulation of the probe in renal cells elicited a fluorescence signal, thereby indicating the prospective viability of this system for visual detection with renal cytocompatibility.
Collapse
Affiliation(s)
- Han Xiao
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Guo-Lian Ren
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Jian-Hang Hu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jia-Huan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xia Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Hai-Ping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| |
Collapse
|
4
|
Chang R, Chen CY, Gao L, Li Y, Lee ZH, Zhao H, Sue ACH, Chang KC. Highly selective Cu 2+ detection with a naphthalimide-functionalised pillar[5]arene fluorescent chemosensor. Org Biomol Chem 2024; 22:745-752. [PMID: 37982316 DOI: 10.1039/d3ob01558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Liya Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Yana Li
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Zui-Harng Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Hongxia Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| |
Collapse
|
5
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
6
|
Lu B, Xia J, Huang Y, Yao Y. The design strategy for pillararene based active targeted drug delivery systems. Chem Commun (Camb) 2023; 59:12091-12099. [PMID: 37740359 DOI: 10.1039/d3cc04021f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Pillararenes have columnar architectures with electron-rich cavities to endow themselves with unique host-guest complexation capability. Easy structural modifiability facilitates them to be used in many applications. Currently, pillararene based drug delivery systems (DDSs) have been developed as a powerful tool for precise diagnosis and treatment of cancer. Various functional guest molecules could be integrated with pillararenes to construct nanomaterials for cancer chemotherapy, phototherapy and chemodynamic therapy. In order to improve cancer therapy efficacy, active targeted DDSs have become particularly important. Benefiting from the good host-guest properties and structural variability of pillararenes, tumor targeting groups could be easily introduced into pillararene based DDSs to realize precise drug delivery at tumor sites. In this feature article, we provide a comprehensive summary of the present design strategy for pillararene based active targeted DDSs, which can be classified into three types namely host-guest complexation, charge reversal and targeted group modified pillararenes. Some important examples are selected to for a detailed discussion on their respective strengths and weaknesses.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
7
|
Gromov SP, Fomina MV, Zdorovenko IP, Fakhrutdinov AN, Ushakov EN. A novel fluorescent sensor for diammonium and metal ions based on a supramolecular charge-transfer complex of bis(aza-18-crown-6)-containing dienone. Front Chem 2023; 11:1263440. [PMID: 37854975 PMCID: PMC10579611 DOI: 10.3389/fchem.2023.1263440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
A bis(aza-18-crown-6)-containing 2,5-di(benzylidene)cyclopentanone and a bis(ammoniopropyl) derivative of 1,2-di(4-pyridyl)ethylene in MeCN were found to form a supramolecular charge-transfer complex, which can act as an "off-on" fluorescent sensor for the Ca2+ and 1,12-dodecanediammonium ions. The molecular structure of this complex in solution was studied by density functional theory calculations.
Collapse
Affiliation(s)
- Sergey P. Gromov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Marina V. Fomina
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
| | - Ilia P. Zdorovenko
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Artem N. Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny N. Ushakov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
8
|
Zhang Y, Chen L, Du X, Yu X, Zhang H, Meng Z, Zheng Z, Chen J, Meng Q. Selective Fluorescent Sensing for Iron in Aqueous Solution by A Novel Functionalized Pillar[5]arene. ChemistryOpen 2023; 12:e202300109. [PMID: 37803382 PMCID: PMC10558425 DOI: 10.1002/open.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Indexed: 10/08/2023] Open
Abstract
Iron ion is one of the most physiologically important elements in metabolic processes, indispensable for all living systems. Since its excess can lead to severe diseases, new approaches for its monitoring in water samples are urgently needed to meet requirements. Here, we firstly report a novel and universal route for the synthesis of a series of pillar[n]arene derivates containing one benzoquinone unit by photocatalysis. With this in hand, an anthracene - appended water - soluble pillar[5]arene (H) with excellent fluorescence sensing potency was prepared. H enabled the ultrasensitive detection of iron ions in aqueous solution with limits of detection of 10-8 M. Over a wide range of metal ions, H exhibited specific selectivity toward Fe3+ . More importantly, H could still properly operate in a simulated sewage sample, coexisting with multiple interference ions.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xiang Yu
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure andPerformance for Functional MoleculesCollege of ChemistryTianjin Normal UniversityTianjin300387P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
9
|
Hider RC, Pourzand C, Ma Y, Cilibrizzi A. Optical Imaging Opportunities to Inspect the Nature of Cytosolic Iron Pools. Molecules 2023; 28:6467. [PMID: 37764245 PMCID: PMC10537325 DOI: 10.3390/molecules28186467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The chemical nature of intracellular labile iron pools (LIPs) is described. By virtue of the kinetic lability of these pools, it is suggested that the isolation of such species by chromatography methods will not be possible, but rather mass spectrometric techniques should be adopted. Iron-sensitive fluorescent probes, which have been developed for the detection and quantification of LIP, are described, including those specifically designed to monitor cytosolic, mitochondrial, and lysosomal LIPs. The potential of near-infrared (NIR) probes for in vivo monitoring of LIP is discussed.
Collapse
Affiliation(s)
- Robert Charles Hider
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
- Centre for Bioengineering and Biomedical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Yongmin Ma
- Institute of Advanced Studies, School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China;
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
10
|
Teng KX, Niu LY, Yang QZ. Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy. J Am Chem Soc 2023; 145:4081-4087. [PMID: 36779824 DOI: 10.1021/jacs.2c11868] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Kun-Xu Teng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
11
|
Zhang W, Luo Y, Zhu PH, Ni XL, Redshaw C, Tao Z, Xiao X. Supramolecular Polymeric Material Based on Twisted Cucurbit[14]uril: Sensitive Detection and Removal of Potential Cyanide from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37068-37075. [PMID: 35926157 DOI: 10.1021/acsami.2c10866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Potassium ferricyanide in an aqueous solution is easily decomposed into highly toxic substances (potassium cyanide and hydrogen cyanide) by light or alkaline action, which poses a major hazard to environmental and human health. Here, a reticulated aggregation-induced emission (AIE) supramolecular polymer material (TPAP-Mb@tQ[14]) was prepared by the supramolecular self-assembly of twisted cucurbit[14]uril (tQ[14]) and a triphenylamine derivative (TPAP-Mb). TPAP-Mb@tQ[14] not only recognizes Fe(CN)63- with sensitive specificity with a limit of detection (LOD) of 1.64 × 10-7 M but can also effectively remove and adsorb Fe(CN)63- from an aqueous solution with a removal rate as high as 97.38%. Meanwhile, an important component of the supramolecular polymer material (tQ[14]) can be reused. Thus, the tQ[14]-based supramolecular assembly has the potential to be used for applications addressing toxic anionic contaminants present in aqueous environments.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Pan-Hua Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Jiang X, Wang L, Ran X, Tang H, Cao D. Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly. BIOSENSORS 2022; 12:bios12080571. [PMID: 36004967 PMCID: PMC9405992 DOI: 10.3390/bios12080571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Developing a water-soluble supramolecular system for the detection and removal of Hg2+ is extremely needed but remains challenging. Herein, we reported the facile construction of a fluorescent supramolecular system (H⊃G) in 100% water through the self-assembly of carboxylatopillar[5]arene sodium salts (H) and diketopyrrolopyrrole-bridged bis(quaternary ammonium) guest (G) by host–guest interaction. With the addition of Hg2+, the fluorescence of H⊃G could be efficiently quenched. Since Hg2+ showed synergistic interactions (coordination and Hg2+- cavity interactions with G and H, respectively), crosslinked networks of H⊃G@Hg2+ were formed. A sensitive response to Hg2+ with excellent selectivity and a low limit of detection (LOD) of 7.17 × 10−7 M was obtained. Significantly, the quenching fluorescence of H⊃G@Hg2+ can be recovered after a simple treatment with Na2S. The reusability of H⊃G for the detection of Hg2+ ions was retained for four cycles, indicating the H⊃G could be efficiently used in a reversible manner. In addition, the H⊃G could efficiently detect Hg2+ concentration in real samples (tap water and lake water). The developed supramolecular system in 100% water provides great potential in the treatment of Hg2+ detection and removal for environmental sustainability.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
- Correspondence:
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China;
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
| |
Collapse
|
13
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Liu Z, Jia R, Chen F, Yan G, Tian W, Zhang J, Zhang J. Electrochemical process of early-stage corrosion detection based on N-doped carbon dots with superior Fe 3+ responsiveness. J Colloid Interface Sci 2022; 606:567-576. [PMID: 34411829 DOI: 10.1016/j.jcis.2021.08.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 01/19/2023]
Abstract
Iron corrosion is a subject of great technological importance and extensive public concern. However, the highly efficient detection of iron corrosion at early stage is still a challenging task. Herein, bright fluorescent carbon dots (CDs) with superior response to Fe3+ were prepared by simple solvothermal process based on citric acid and ammonia. The obtained CDs are able to rapidly, sensitively and selectively respond to Fe3+. The quantitative analysis showed that the CDs exhibited a linear response to Fe3+ in the range of 10 to 300 µM, with a detection limit of 0.9 μM. And the fluorescence quenching of CDs was obvious enough to be detected by the naked eyes. Such promising responsiveness of CDs offers a great opportunity for real-time and visual detection of Fe3+ during electrochemical corrosion process. In addition, due to the excellent stability and solubility of CDs, patterned papers and hydrogels have been fabricated utilizing cellulose and PVA as matrices. The as-prepared biocompatible, environmental-friendly and disposable CDs based fluorescent materials were successfully used for detecting the degree of iron corrosion. This could provide a simple and visual strategy for monitoring the safety of structural metal materials.
Collapse
Affiliation(s)
- Zheng Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Ruonan Jia
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Feng Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Guilong Yan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Weiguo Tian
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinming Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
15
|
Xu Q, Cui Z, Yao J, Li B, Lv P, Shen X, Yu Z, Ge Y, Qi Z. Constitutionally adaptive crown ether-based macrocyclic bolaamphiphile with redox-responsive switching of lower critical solution temperature behaviors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Li Y, Wen J, Li J, Wu Z, Li W, Yang K. Recent Applications of Pillar[ n]arene-Based Host-Guest Recognition in Chemosensing and Imaging. ACS Sens 2021; 6:3882-3897. [PMID: 34665606 DOI: 10.1021/acssensors.1c01510] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pillar[n]arene is a novel kind of synthetic supramolecular macrocyclic host characterized by its particular pillar-shaped structure consisting of an electron-rich cavity and two finely adjustable rims. Benefiting from its rigid structure, facile synthesis, ease of functionalization, and outstanding host-guest chemistry, pillar[n]arene shows great potential for diverse applications. Significantly, the host-guest recognition of pillar[n]arene provides a novel approach for chemosensing and imaging. Herein, this Review critically and comprehensively reviews the applications of pillar[n]arene-based host-guest recognition in chemosensing and imaging. The sensing and imaging mechanisms as well as the unique roles and advantages of pillar[n]arene-based host-guest recognition are summarized. In addition, preparations of hybrid materials based on pillar[n]arene and inorganic materials are also introduced comprehensively in the light of chemosensing and imaging. Finally, current challenges and perspectives on pillar[n]arene-based host-guest recognition in chemosensing and imaging are outlined.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jiangshan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zejia Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kui Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
17
|
Chen Y, Wu Y, Zhu Y, Tian S. A fluorescent polyurethane foam based on rhodamine derivative as Fe(
III
) sensor in pure water. POLYM INT 2021. [DOI: 10.1002/pi.6296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yinyan Chen
- College of Education Wenzhou University Wenzhou China
| | - Yiban Wu
- College of Pharmacy Jiamusi University Jiamusi China
| | - Yifan Zhu
- College of Education Wenzhou University Wenzhou China
| | - Saiqi Tian
- College of Education Wenzhou University Wenzhou China
| |
Collapse
|
18
|
Lim S, Kuang Y, Ardoña HAM. Evolution of Supramolecular Systems Towards Next-Generation Biosensors. Front Chem 2021; 9:723111. [PMID: 34490210 PMCID: PMC8416679 DOI: 10.3389/fchem.2021.723111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Supramolecular materials, which rely on dynamic non-covalent interactions, present a promising approach to advance the capabilities of currently available biosensors. The weak interactions between supramolecular monomers allow for adaptivity and responsiveness of supramolecular or self-assembling systems to external stimuli. In many cases, these characteristics improve the performance of recognition units, reporters, or signal transducers of biosensors. The facile methods for preparing supramolecular materials also allow for straightforward ways to combine them with other functional materials and create multicomponent sensors. To date, biosensors with supramolecular components are capable of not only detecting target analytes based on known ligand affinity or specific host-guest interactions, but can also be used for more complex structural detection such as chiral sensing. In this Review, we discuss the advancements in the area of biosensors, with a particular highlight on the designs of supramolecular materials employed in analytical applications over the years. We will first describe how different types of supramolecular components are currently used as recognition or reporter units for biosensors. The working mechanisms of detection and signal transduction by supramolecular systems will be presented, as well as the important hierarchical characteristics from the monomers to assemblies that contribute to selectivity and sensitivity. We will then examine how supramolecular materials are currently integrated in different types of biosensing platforms. Emerging trends and perspectives will be outlined, specifically for exploring new design and platforms that may bring supramolecular sensors a step closer towards practical use for multiplexed or differential sensing, higher throughput operations, real-time monitoring, reporting of biological function, as well as for environmental studies.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Herdeline Ann M Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, United States.,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
19
|
Tian X, Zuo M, Niu P, Velmurugan K, Wang K, Zhao Y, Wang L, Hu XY. Orthogonal Design of a Water-Soluble meso-Tetraphenylethene-Functionalized Pillar[5]arene with Aggregation-Induced Emission Property and Its Therapeutic Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37466-37474. [PMID: 34314153 DOI: 10.1021/acsami.1c07106] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An orthogonal strategy was utilized for synthesizing a novel water-soluble pillar[5]arene (m-TPEWP5) with tetraphenylethene-functionalized on the bridged methylene group (meso-position) of the pillararene skeleton. The obtained macrocycle exhibit both the aggregation-induced emission (AIE) effect and interesting host-guest property. Moreover, it can be made to bind with a tailor-made camptothecin-based prodrug guest (DNS-G) to form AIE-nanoparticles based on host-guest interaction and the fluorescence resonance energy transfer process for fabricating a drug delivery system. This novel type of water-soluble AIE-active macrocycle can serve as a potential fluorescent material for cancer diagnosis and therapy. In addition, the present orthogonal strategy for designing meso-functionalized aromatic macrocycles may pave a new avenue for creating novel supramolecular structures and functional materials.
Collapse
Affiliation(s)
- Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Pengbo Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yue Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
20
|
Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
22
|
Kim Cuc TT, Nhien PQ, Khang TM, Chen HY, Wu CH, Hue BTB, Li YK, Wu JI, Lin HC. Controllable FRET Behaviors of Supramolecular Host-Guest Systems as Ratiometric Aluminum Ion Sensors Manipulated by Tetraphenylethylene-Functionalized Macrocyclic Host Donor and Multistimuli-Responsive Fluorescein-Based Guest Acceptor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20662-20680. [PMID: 33896168 DOI: 10.1021/acsami.1c02994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The novel multistimuli-responsive monofluorophoric supramolecular polymer Poly(TPE-DBC)/FL-DBA and pseudo[3]rotaxane TPE-DBC/FL-DBA consisted of the closed form of nonemissive fluorescein guest FL-DBA along with TPE-based main-chain macrocyclic polymer Poly(TPE-DBC) and TPE-functionalized macrocycle TPE-DBC hosts, respectively. By the combination of various external stimuli, these fluorescent supramolecular host-guest systems could reveal interesting photoluminescence (PL) properties in DMF/H2O (1:1, v/v) solutions, including bifluorophoric host-guest systems after the complexation of Al3+ ion, i.e., TPE-DBC/FL-DBA-Al3+ and Poly(TPE-DBC)/FL-DBA-Al3+ with their corresponding open form of fluorescein guest FL-DBA-Al3+. Importantly, the Förster resonance energy transfer (FRET) processes occurred in both bifluorophoric host-guest systems between blue-emissive TPE donors (λem = 470 nm) and green-emissive fluorescein acceptors (λem = 527 nm) after aluminum detection, which were further verified by time-resolved photoluminescence (TRPL) measurements to acquire their FRET efficiencies of 40.4 and 31.1%, respectively. Both supramolecular host-guest systems exhibited stronger green fluorescein emissions as well as appealing ratiometric PL behaviors within the desirable donor-acceptor distances of FRET processes in comparison with their detached analogous mixtures. Regarding the pH effects, the optimum green fluorescein emissions with effective FRET processes of all compounds and host-guest systems were sustained in the range pH = 7-10. Interestingly, both host-guest systems TPE-DBC/FL-DBA and Poly(TPE-DBC)/FL-DBA possessed high sensitivities and selectivities toward aluminum ion to display their strong green emissions via FRET-ON behaviors due to the chelation-induced ring opening of spirolactam moieties to become green-emissive guest acceptor FL-DBA-Al3+, which offered excellent limit of detection (LOD) values of 50.61 and 38.59 nM, respectively, to be further applied for the fabrication of facile test strips toward aluminum detection. Accordingly, the inventive ratiometric PL and FRET sensor approaches of supramolecular host-guest systems toward aluminum ion with prominent sensitivities and selectivities were well-established in this study.
Collapse
Affiliation(s)
- Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 94000, Vietnam
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hao-Yu Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bui-Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 94000, Vietnam
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
23
|
|
24
|
Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021; 181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
The ingenious design and synthesis of novel macrocycles bring out renewed vigor of supramolecular chemistry in the past decade. As an intriguing class of macrocycles, pillararene and pillararene-based functional materials that are constructed through the noncovalent bond self-assembly approach have been undergoing a rapid growth, benefiting from their unique structures and physiochemical properties. This review elaborates recent significant advances of electrochemical studies based on pillararene systems. Fundamental electrochemical behavior of pillar[n]arene[m]quinone and pillararene-based self-assemblies as well as their applications in electrochemical biosensors are highlighted. In addition, the advantages and functions of pillararene self-assembly systems resulted from the unique molecular architectures are analyzed. Finally, current challenges and future development tendency in this burgeoning field are discussed from the viewpoint of both fundamental research and applications. Overall, this review not only manifests the main development vein of pillararene-based electrochemical systems, but also conquers a solid foundation for their further bioelectrochemical applications.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
25
|
Shang J, Li S, Pan T, Li B, Zhang Q, Lv P, Cui Z, Ge Y, Qi Z. Selenium-containing heterodimeric crown ether acting as an unconventional multi-responsive amphiphile in water. Chem Commun (Camb) 2020; 56:15052-15055. [PMID: 33196719 DOI: 10.1039/d0cc05750a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new heterodimeric crown amphiphile was fabricated, wherein the oxacrown and selencrown ethers provided the desired molecular framework for hydrophilicity and hydrophobicity, respectively. From an integrated perspective, the developed amphiphile possesses features of crown ethers, amines, and selenium-containing species, and its assembly in water can be responsive to diverse chemical effectors-H2O2 and CO2 in a switchable ON/OFF mode to achieve controlled release. It is the first case wherein the applications of cyclic polyethers with different solubilities drives the self-assembly in an aqueous medium.
Collapse
Affiliation(s)
- Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen J, Chen K, Han B, Xue Y, Chen W, Gao Z, Hou X. A novel single-fluorophore-based ratiometric fluorescent probe for detection of formaldehyde in air. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Ho FC, Huang YJ, Weng CC, Wu CH, Li YK, Wu JI, Lin HC. Efficient FRET Approaches toward Copper(II) and Cyanide Detections via Host-Guest Interactions of Photo-Switchable [2]Pseudo-Rotaxane Polymers Containing Naphthalimide and Merocyanine Moieties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53257-53273. [PMID: 33196183 DOI: 10.1021/acsami.0c15049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A supramolecular [2]pseudo-rotaxane containing a naphthalimide-based pillararene host and a spiropyran-based imidazole guest was synthesized and investigated in a semiaqueous solution with 90% water fraction. Upon UV exposure, the close-form structure of nonemissive spiropyran guest could be transformed into the open-form structure of red-emissive merocyanine guest reversibly, which was utilized as a monofluorophoric sensor to detect copper(II) and cyanide ions. Moreover, the naphthalimide host as an energy donor with green photoluminescence (PL) emission at 505 nm was complexed with the merocyanine guest as an energy acceptor with red PL emission at 650 nm in 1:1 molar ratio to generate a [2]pseudo-rotaxane polymer, which was further verified by the diffusion coefficients of DOSY nuclear magnetic resonance (NMR) measurements. Due to the Förster resonance energy transfer (FRET) processes, the bifluorophoric [2]pseudo-rotaxane produced more efficient ratiometric PL behavior to induce a stronger red PL emission than that of the monofluorophoric guest; therefore, the PL sensor responses of the supramolecular [2]pseudo-rotaxane toward copper(II) and cyanide ions could be further amplified via the FRET-OFF processes to turn off red PL emission of the reacted merocyanine acceptor and to recover green PL emission of the naphthalimide donor. Accordingly, the best and prominent values of the limit of detection (LOD) for the host-guest detections toward Cu2+ and CN- were 0.53 and 1.34 μM, respectively. The highest red MC emission with the optimum FRET processes of [2]pseudo-rotaxane was maintained around room temperature (20-40 °C) in wide pH conditions (pH = 3-13), which can be utilized in the cell viability tests to prove the nontoxic and remarkable biomarker of [2]pseudo-rotaxane to detect Cu2+ and CN- in living cells. The developed FRET-OFF processes with ratiometric PL behavior of the bifluorophoric supramolecular [2]pseudo-rotaxane polymer will open a new avenue to the future applications of chemo- and biosensors.
Collapse
Affiliation(s)
- Feng-Cheng Ho
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Jing Huang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chang-Ching Weng
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hua Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
28
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
|
30
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Gunes CE, Karaselek MA, Kursunlu AN, Ozmen M, Kurar E. Synthesis and evaluation of anticancer effect of a novel molecule based-on pillar[5]arene including multi quinoline units. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02547-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Liang R, Hu Y, Li G. Monodisperse pillar[5]arene-based polymeric sub-microsphere for on-line extraction coupling with high-performance liquid chromatography to determine antioxidants in the migration of food contact materials. J Chromatogr A 2020; 1625:461276. [PMID: 32709328 DOI: 10.1016/j.chroma.2020.461276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/26/2023]
Abstract
The monodisperse pillar[5]arene-based polymeric sub-microsphere was prepared by polycondensation of hydroxylated pillar[5]arene and cyanuric chloride through a one-pot reaction in mild condition. The preparation was realized by a simple two-step temperature-programmed process without heating operation. The obtained polymeric sub-microsphere exhibited monodisperse and regular spherical structure with uniform particle size distribution of 220-320 nm accounting for 94%. The prominent adsorption capacity of the polymeric sub-microsphere for antioxidants was demonstrated and attributed to the synergistic effect of the cladding interaction with the π-electron rich cavity and hydrophilic interaction with terminal hydroxyl on pillar[5]arene. Then the pillar[5]arene sub-microsphere was packed into a micro-column to realize effective on-line enrichment of antioxidants coupling with high-performance liquid chromatography (HPLC). The flow rate of extraction and desorption solvent, clean-up and desorption volume were assessed to optimize the method. The method showed wide linear ranges with R2 greater than 0.9926, low limits of detection (0.030-0.20 μg/L) and limits of quantification (0.10-0.67 μg/L). The developed method was successfully applied to determine trace antioxidants in the migration of food contact materials with simulated solution, which demonstrated the promising potential of this method for practical analysis. Furthermore, the migration behavior of antioxidants from food packaging materials into different food matrix was also investigated.
Collapse
Affiliation(s)
- Ruiyu Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
33
|
Manabe Y, Wada K, Baba Y, Yoneda T, Ogoshi T, Inokuma Y. Supramolecular Conformational Control of Aliphatic Oligoketones by Rotaxane Formation. Org Lett 2020; 22:3224-3228. [DOI: 10.1021/acs.orglett.0c01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yumehiro Manabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Keisuke Wada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
34
|
Joseph R. Selective Detection of Fe 3+, F -, and Cysteine by a Novel Triazole-Linked Decaamine Derivative of Pillar[5]arene and Its Metal Ion Complex in Water. ACS OMEGA 2020; 5:6215-6220. [PMID: 32226907 PMCID: PMC7098014 DOI: 10.1021/acsomega.0c00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Appropriately functionalized pillar[n]arenes are elegant supramolecular hosts for ion and molecule sensing. A water-soluble decaamine derivative of pillar[5]arene (APA) bearing triazole and amide moieties is synthesized. The ion and molecular recognition properties of APA are studied by fluorescence, UV-visible, and 1H nuclear magnetic resonance (NMR) spectroscopy. The APA selectively detects Fe3+ among 11 studied ions, which are important in several biological processes. Moreover, the in situ prepared Fe3+ complex of APA (FeAPA) exhibits the highest responsiveness toward F- (∼12-fold) among 11 anions and cysteine (∼120-fold) among the 20 naturally occurring amino acids by a fluorescence turn-on mechanism.
Collapse
|
35
|
Liu Q, Liu T, Fang Y. Perylene Bisimide Derivative-Based Fluorescent Film Sensors: From Sensory Materials to Device Fabrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2155-2169. [PMID: 32078323 DOI: 10.1021/acs.langmuir.9b03919] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Film-based fluorescent sensors have become an important field of sensor research due to abundant acquirable signals, real-time monitoring, and ease of miniaturization and integration, where chemically sensitive films are the most vital component of the sensor devices. In this feature article, we introduce hardware structures of film-based fluorescent sensors following the examination/investigation of the recent progress of such sensors with perylene bisimide (PBI) derivatives as sensing fluorophores in the films. PBI derivatives were specially chosen because of their outstanding chemical, photochemical, and thermal stabilities as well as their unusual high-fluorescence quantum yields. And finally, we provide a prediction for the future developments and challenges of this emerging field.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Catalytic Foundation and Applications of Shaanxi Province, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
36
|
Kim U, Cho Y, Jeon D, Kim Y, Park S, Seo J, Lee J, Oh NK, Lee G, Ryu J, Yang C, Park H. Zwitterionic Conjugated Surfactant Functionalization of Graphene with pH-Independent Dispersibility: An Efficient Electron Mediator for the Oxygen Evolution Reaction in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906635. [PMID: 32072771 DOI: 10.1002/smll.201906635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The functionalization of graphene has been extensively used as an effective route for modulating the surface property of graphene, and enhancing the dispersion stability of graphene in aqueous solutions via functionalization has been widely investigated to expand its use for various applications across a range of fields. Herein, an effective approach is described for enhancing the dispersibility of graphene in aqueous solutions at different pH levels via non-covalent zwitterion functionalization. The results show that a surfactant with electron-deficient carbon atoms in its backbone structure and large π-π interactive area enables strong interactions with graphene, and the zwitterionic side terminal groups of the molecule support the dispersibility of graphene in various pH conditions. Experimental and computational studies confirm that perylene diimide amino N-oxide (PDI-NO) allows efficient functionalization and pH-independent dispersion of graphene enabled by hydration repulsion effects induced by PDI-NO. The PDI-NO functionalized graphene is successfully used in the oxygen evolution reaction as an electron mediator for boosting the electrocatalytic activity of a Ru-based polyoxometalate catalyst in an acidic medium. The proposed strategy is expected to bring significant advances in producing highly dispersible graphene in aqueous medium with pH-independent stability, thus broadening the application range of graphene.
Collapse
Affiliation(s)
- Ungsoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yongjoon Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dasom Jeon
- Department of Energy Engineering, Emergent Hydrogen Technology R&D Center, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sanghyeon Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihyung Seo
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Junghyun Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nam Khen Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, Emergent Hydrogen Technology R&D Center, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyesung Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
37
|
Yan Q, Liu W, Wen H, Zhibin X, Meng Z. A New Fluorescent Sensor for Fe
3+
Based on Glycoluril Molecular Clip. ChemistrySelect 2020. [DOI: 10.1002/slct.201904902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiaoli Yan
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Wenjin Liu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Hongliang Wen
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Xu Zhibin
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| |
Collapse
|
38
|
A fluorescence quenching sensor for Fe3+ detection using (C6H5NH3)2Pb3I8·2H2O hybrid perovskite. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Kumar S, Arora A, Kaushal J, Oswal P, Kumar A, Kumar P. Developing a simple and water soluble thiophene-functionalized Ru(II)-polypyridyl complex for ferric ion detection. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Bai Y, Liu CP, Chen D, Zhuo LH, Bu HT, Tian W. Morphology-tunable and pH-responsive supramolecular self-assemblies based on AB 2-type host-guest-conjugated amphiphilic molecules for controlled drug delivery. Beilstein J Org Chem 2019; 15:1925-1932. [PMID: 31501659 PMCID: PMC6720476 DOI: 10.3762/bjoc.15.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022] Open
Abstract
Although stimuli-responsive supramolecular self-assemblies have been constructed, the controlled drug delivery induced by morphology transitions of these supramolecular self-assemblies on the basis of host-guest-conjugated monomers (HGCMs) are few reported. In this paper, the self-assembly behaviors of AB2-type HGCMs, e.g., β-cyclodextrin-benzimidazole2 (β-CD-BM2), were investigated at neutral and acidic pH conditions, respectively. Specifically, β-CD-BM2 first self-assembled into fan-shaped supramolecular self-assemblies with a hydrodynamic diameter of 163 nm at neutral pH, whereas they were further dissociated into spherical supramolecular self-assemblies with a size of 52 nm under acidic conditions. This morphology transition process was utilized to conduct a two-stage DOX delivery under neutral and acidic pH. Basic cell experiments demonstrated that the drug-loaded β-CD-BM2-based supramolecular self-assemblies with varied morphology could inhibit cancer cell proliferation, indicating their potential application in the field of drug delivery.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, China
| | - Cai-ping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Di Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China
| | - Long-hai Zhuo
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Huai-tian Bu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, China
| |
Collapse
|
41
|
Recognition Selectivities of Lasso-Type Pseudo[1]rotaxane Based on a Mono-Ester-Functionalized Pillar[5]arene. Molecules 2019; 24:molecules24152693. [PMID: 31344932 PMCID: PMC6695583 DOI: 10.3390/molecules24152693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 12/25/2022] Open
Abstract
Two types of mono-ester-functionalized pillar[5]arenes, P1 and P2, bearing different side-chain groups, were synthesized. Their host–guest complexation and self-inclusion properties were studied by 1H NMR and 2D nuclear overhauser effect spectroscopy (NOESY) NMR measurements. The results showed that the substituents on their phenolic units have a great influence on the self-assembly of both pillar[5]arenes, although they both could form stable pseudo[1]rotaxanes at room temperature. When eight bulky 4-brombutyloxy groups were capped on the cavity, instead of methoxy groups, pseudo[1]rotaxane P1 became less stable and its locked ester group in the inner space of cavity was not as deep as P2, leading to distinctly different host–guest properties between P1 and P2 with 1,6-dibromohexane. Moreover, pillar[5]arene P1 displayed effective molecular recognition toward 1,6-dichlorohexane and 1,2-bromoethane among the guest dihalides. In addition, the self-complex models and stabilities between P1 and P2 were also studied by computational modeling and experimental calculations.
Collapse
|
42
|
Wang X, Lou XY, Jin XY, Liang F, Yang YW. A Binary Supramolecular Assembly with Intense Fluorescence Emission, High pH Stability, and Cation Selectivity: Supramolecular Assembly-Induced Emission Materials. RESEARCH 2019; 2019:1454562. [PMID: 31549044 PMCID: PMC6750118 DOI: 10.34133/2019/1454562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 01/28/2023]
Abstract
We construct a fluorescent supramolecular system (TPE-Q4 ⊂ DSP5) of excellent tolerance to a wide range of pH by the facile self-assembly of a new pillar[5]arene bearing disulfonated arms (DSP5) with an AIE-active tetraphenylethene-based tetratopic guest bearing four quaternary ammonium binding sites (TPE-Q4), which exhibits strong blue emission even in dilute aqueous solutions along with much higher quantum yield and longer fluorescence lifetime than TPE-Q4 itself. This appreciable property can be attributed to the supramolecular assembly-induced emission (SAIE) mechanism endowed by the host-guest inclusion complexation based on synthetic macrocycles. Remarkably, the enhanced fluorescence of the supramolecular assembly is quenched efficiently and exclusively by ferric ions in water with a high Stern-Volmer formula constant of 1.3 × 105 mol-1, demonstrating the excellent cation selectivity and visualized responsiveness in ion sensing and detection.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiao-Yu Jin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
43
|
Applications of macrocyclic compounds for electrochemical sensors to improve selectivity and sensitivity. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Gao J, Wu MX, Dai D, Cai Z, Wang Y, Fang W, Wang Y, Yang YW. N-doped carbon dots covalently functionalized with pillar[5]arenes for Fe 3+ sensing. Beilstein J Org Chem 2019; 15:1262-1267. [PMID: 31293673 PMCID: PMC6604737 DOI: 10.3762/bjoc.15.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/23/2019] [Indexed: 02/04/2023] Open
Abstract
Fluorescent N-doped carbon dots (CN-dots) covalently functionalized with carboxylatopillar[5]arene (CP[5]), namely CCDs, have been prepared the first time. Compared with CN-dots without pillarene units, the newly constructed fluorescent CCDs could recognize Fe3+ with high selectivity. Therefore, such CCDs can potentially serve as a promising chemical sensor for Fe3+ ions.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ming-Xue Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhi Cai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yue Wang
- International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Wenhui Fang
- International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
45
|
Yin ZY, Hu JH, Fu QQ, Gui K, Yao Y. A novel long-alkyl-chained acylhydrazone-based supramolecular polymer gel for the ultrasensitive detection and separation of multianalytes. SOFT MATTER 2019; 15:4187-4191. [PMID: 31065658 DOI: 10.1039/c9sm00624a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
By rationally introducing multi-self-assembly driving forces and coordination binding sites into the same molecule, a designed functional gelator, G, was synthesized. Next, a novel supramolecular polymer material, OGV (1% DMSO), was constructed and used for the ultrasensitive detection and separation of multianalytes in gel states. Interestingly, OGV showed a fluorescent ultrasensitive response for the Hg2+ and Fe3+ ions in water. Moreover, by introducing these metal ions into the OGV, stable metal ion-coordinated supramolecular metallogels (HgG and FeG) were formed, which could sense CN- and H2PO4- in water with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Zhi-Yuan Yin
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | |
Collapse
|
46
|
Zhang J, Li C, Liao C, Zhao P, Yu Y, Zhang S. Cross-Linked Reverse Vesicle as a General and Effective Vehicle for Hydrophobic Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6676-6682. [PMID: 31039611 DOI: 10.1021/acs.langmuir.9b00405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is well-known that vesicles serve as an excellent delivery platform for hydrophilic drugs. However, there is still a lack of a general and effective platform for hydrophobic drug loading. We herein disclose that water-soluble cross-linked reverse vesicles (cRVs) constructed from anionic surfactant 1, a counterpart of normal vesicles, would be excellent vehicles for hydrophobic drugs, the drug loading content (DLC) for which arrived up to 21.1%, 19.8%, and 25.8%, respectively, for three anticancer drugs, paclitaxel, camptothecin, and carmofur. This represents a general drug carrier with high drug loading content for various hydrophobic drugs without the assistance of other external forces. In addition to drug loading superiority, the cRVs were also characterized by robust stability, specific stimulus response, easy postfunctionalization, and good biocompatibility and thus are promising candidates for drug delivery systems.
Collapse
Affiliation(s)
- Jing Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Chuanqi Li
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Chunyan Liao
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Puchen Zhao
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Yunlong Yu
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
- College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| |
Collapse
|
47
|
Wu Z, Ji C, Zhao X, Han Y, Müllen K, Pan K, Yin M. Green-Light-Triggered Phase Transition of Azobenzene Derivatives toward Reversible Adhesives. J Am Chem Soc 2019; 141:7385-7390. [DOI: 10.1021/jacs.9b01056] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xujie Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People’s Republic of China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Kai Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
48
|
Haloalkanes and aromatic hydrocarbons sensing using Langmuir–Blodgett thin film of pillar[5]arene-biphenylcarboxylic acid. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
|
50
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|