1
|
Wu H, Feng E, Yin H, Zhang Y, Chen G, Zhu B, Yue X, Zhang H, Liu Q, Xiong L. Biomaterials for neuroengineering: applications and challenges. Regen Biomater 2025; 12:rbae137. [PMID: 40007617 PMCID: PMC11855295 DOI: 10.1093/rb/rbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
Neurological injuries and diseases are a leading cause of disability worldwide, underscoring the urgent need for effective therapies. Neural regaining and enhancement therapies are seen as the most promising strategies for restoring neural function, offering hope for individuals affected by these conditions. Despite their promise, the path from animal research to clinical application is fraught with challenges. Neuroengineering, particularly through the use of biomaterials, has emerged as a key field that is paving the way for innovative solutions to these challenges. It seeks to understand and treat neurological disorders, unravel the nature of consciousness, and explore the mechanisms of memory and the brain's relationship with behavior, offering solutions for neural tissue engineering, neural interfaces and targeted drug delivery systems. These biomaterials, including both natural and synthetic types, are designed to replicate the cellular environment of the brain, thereby facilitating neural repair. This review aims to provide a comprehensive overview for biomaterials in neuroengineering, highlighting their application in neural functional regaining and enhancement across both basic research and clinical practice. It covers recent developments in biomaterial-based products, including 2D to 3D bioprinted scaffolds for cell and organoid culture, brain-on-a-chip systems, biomimetic electrodes and brain-computer interfaces. It also explores artificial synapses and neural networks, discussing their applications in modeling neural microenvironments for repair and regeneration, neural modulation and manipulation and the integration of traditional Chinese medicine. This review serves as a comprehensive guide to the role of biomaterials in advancing neuroengineering solutions, providing insights into the ongoing efforts to bridge the gap between innovation and clinical application.
Collapse
Affiliation(s)
- Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Enduo Feng
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huanxin Yin
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuxin Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guozhong Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Beier Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuezheng Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
2
|
Zeng W, Luo X, Xu J, Zhang M, Liu S, Zhang Q, Zhu G. Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5086-5100. [PMID: 39791524 DOI: 10.1021/acsami.4c19092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios. To promote both long-term and short-term plasticity of the artificial synaptic transistor, a composite gate dielectric composed of ferroelectric terpolymer P(VDF-TrFE-CFE) and chitosan was intendedly developed, while amorphous metal oxide InZnO was adopted as the channel layer. The transition from short-term to long-term plasticity function was realized on the basis of the electric-double-layer effect and ferroelectric polarization. Benefiting from its low-voltage operation performance, this synaptic transistor was functionalized by connecting with a flexible piezoelectric poly(vinylidene fluoride) capacitor to exhibit tactile stimulus-excited synaptic behavior. Feedback control was further introduced into the tactile synaptic system to imitate two typical scenarios of sensation and response, including the action of a mechanical claw to pain sensation and spontaneous scratching to itch sensation. This work provides a perspective on achieving intelligent perception for soft robotics and healthcare application.
Collapse
Affiliation(s)
- Wanyu Zeng
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Xingsheng Luo
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Jiawei Xu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Mengyun Zhang
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Shixin Liu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Qun Zhang
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Guodong Zhu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Shingaya Y, Iwasaki T, Hayakawa R, Nakaharai S, Watanabe K, Taniguchi T, Aimi J, Wakayama Y. Multifunctional In-Memory Logics Based on a Dual-Gate Antiambipolar Transistor toward Non-von Neumann Computing Architecture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33796-33805. [PMID: 38910437 DOI: 10.1021/acsami.4c06116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In-memory computing may make it possible to realize non-von Neumann computing because the logic circuits are unified in the memory units. We investigated two types of in-memory logic operations, namely, two-input logic circuits and multifunctional artificial synapses. These were realized in a dual-gate antiambipolar transistor (AAT) with a ReS2/WSe2 heterojunction, in which polystyrene with a zinc phthalocyanine core (ZnPc-PS4) was incorporated as a memory layer. Here, reconfigurability is a key concept for both types of device operations and was achieved by merging the Λ-shaped transfer curve of the AAT and the nonvolatile memory effect of ZnPc-PS4. First, we achieved electrically reconfigurable two-input logic circuits. Versatile logic circuits such as AND, OR, NAND, NOR, and XOR circuits were demonstrated by taking advantage of the Λ-shaped transfer curve of the dual-gate AAT. Importantly, the nonvolatile memory function provided the electrical switching of the individual circuits between AND/OR, NAND/NOR, and XOR/NAND circuits with constant input signals. Second, the memory effect was applied to multifunctional artificial synapses. The inhibitory/excitatory and long-term potentiation/depression synaptic operations were electrically reconfigured simply by controlling one parameter (readout voltage), making three distinct responses possible even with the same presynaptic signals. These findings provide hints that may lead to the realization of new in-memory computing architectures beyond the current von Neumann computers.
Collapse
Affiliation(s)
- Yoshitaka Shingaya
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takuya Iwasaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ryoma Hayakawa
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shu Nakaharai
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki,, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Junko Aimi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Yutaka Wakayama
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
He Y, Zhu Y, Wan Q. Oxide Ionic Neuro-Transistors for Bio-inspired Computing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:584. [PMID: 38607119 PMCID: PMC11013937 DOI: 10.3390/nano14070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Current computing systems rely on Boolean logic and von Neumann architecture, where computing cells are based on high-speed electron-conducting complementary metal-oxide-semiconductor (CMOS) transistors. In contrast, ions play an essential role in biological neural computing. Compared with CMOS units, the synapse/neuron computing speed is much lower, but the human brain performs much better in many tasks such as pattern recognition and decision-making. Recently, ionic dynamics in oxide electrolyte-gated transistors have attracted increasing attention in the field of neuromorphic computing, which is more similar to the computing modality in the biological brain. In this review article, we start with the introduction of some ionic processes in biological brain computing. Then, electrolyte-gated ionic transistors, especially oxide ionic transistors, are briefly introduced. Later, we review the state-of-the-art progress in oxide electrolyte-gated transistors for ionic neuromorphic computing including dynamic synaptic plasticity emulation, spatiotemporal information processing, and artificial sensory neuron function implementation. Finally, we will address the current challenges and offer recommendations along with potential research directions.
Collapse
Affiliation(s)
- Yongli He
- Yongjiang Laboratory (Y-LAB), Ningbo 315202, China; (Y.H.); (Y.Z.)
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yixin Zhu
- Yongjiang Laboratory (Y-LAB), Ningbo 315202, China; (Y.H.); (Y.Z.)
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Qing Wan
- Yongjiang Laboratory (Y-LAB), Ningbo 315202, China; (Y.H.); (Y.Z.)
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Sunny MM, Thamankar R. Spike rate dependent synaptic characteristics in lamellar, multilayered alpha-MoO 3 based two-terminal devices - efficient way to control the synaptic amplification. RSC Adv 2024; 14:2518-2528. [PMID: 38226148 PMCID: PMC10788777 DOI: 10.1039/d3ra07757h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Brain-inspired computing systems require a rich variety of neuromorphic devices using multi-functional materials operating at room temperature. Artificial synapses which can be operated using optical and electrical stimuli are in high demand. In this regard, layered materials have attracted a lot of attention due to their tunable energy gap and exotic properties. In the current study, we report the growth of layered MoO3 using the chemical vapor deposition (CVD) technique. MoO3 has an energy gap of 3.22 eV and grows with a large aspect ratio, as seen through optical and scanning electron microscopy. We used transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy for complete characterisation. The two-terminal devices using platinum (Pt/MoO3/Pt) exhibit superior memory with the high-resistance state (HRS) and low-resistance state (LRS) differing by a large resistance (∼MΩ). The devices also show excellent synaptic characteristics. Both optical and electrical pulses can be utilised to stimulate the synapse. Consistent learning (potentiation) and forgetting (depression) curves are measured. Transition from long term depression to long term potentiation can be achieved using the spike frequency dependent pulsing scheme. We have found that the amplification of postsynaptic current can be tuned using such frequency dependent spikes. This will help us to design neuromorphic devices with the required synaptic amplification.
Collapse
Affiliation(s)
- Meenu Maria Sunny
- Department of Physics, Vellore Institute of Technology Vellore TN India
- Centre for Functional Materials, Vellore Institute of Technology Vellore TN India
| | - R Thamankar
- Centre for Functional Materials, Vellore Institute of Technology Vellore TN India
| |
Collapse
|
6
|
Jang HY, Kwon O, Nam JH, Kwon JD, Kim Y, Park W, Cho B. Highly Reproducible Heterosynaptic Plasticity Enabled by MoS 2/ZrO 2-x Heterostructure Memtransistor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52173-52181. [PMID: 36368778 DOI: 10.1021/acsami.2c15497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrically tunable resistive switching of a polycrystalline MoS2-based memtransistor has attracted a great deal of attention as an essential synaptic component of neuromorphic circuitry because its switching characteristics from the field-induced migration of sulfur defects in the MoS2 grain boundaries can realize multilevel conductance tunability and heterosynaptic functionality. However, reproducible switching properties in the memtransistor are usually disturbed by the considerable difficulty in controlling the concentration and distribution of the intrinsically existing sulfur defects. Herein, we demonstrate reliable heterosynaptic characteristics using a memtransistor device with a MoS2/ZrO2-x heterostructure. Compared to the control device with the MoS2 semiconducting channel, the Schottky barrier height was more effectively modulated by the insertion of the insulating ZrO2-x layer below the MoS2, confirmed by an ultraviolet photoelectron spectroscopy analysis and the corresponding energy-band structures. The MoS2/ZrO2-x memtransistor accomplishes dual-terminal (drain and gate electrode) stimulated multilevel conductance owing to the tunable resistive switching behavior under varying gate voltages. Furthermore, the memtransistor exhibits long-term potentiation/depression endurance cycling over 7000 pulses and stable pulse cycling behavior by the pulse stimulus from different terminal regions. The promising candidate as an essential synaptic component of the MoS2/ZrO2-x memtransistors for neuromorphic systems results from the high recognition accuracy (∼92%) of the deep neural network simulation test, based on the training and inference of handwritten numbers (0-9). The simple memtransistor structure facilitates the implementation of complex neural circuitry.
Collapse
Affiliation(s)
- Hye Yeon Jang
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ojun Kwon
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae Hyeon Nam
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jung-Dae Kwon
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea
| | - Yonghun Kim
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea
| | - Woojin Park
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Byungjin Cho
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
7
|
Park KW, Cho WJ. Time-Dependent Sensitivity Tunable pH Sensors Based on the Organic-Inorganic Hybrid Electric-Double-Layer Transistor. Int J Mol Sci 2022; 23:10842. [PMID: 36142756 PMCID: PMC9503050 DOI: 10.3390/ijms231810842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we propose tunable pH sensors based on the electric-double-layer transistor (EDLT) with time-dependent sensitivity characteristics. The EDLT is able to modulate the drain current by using the mobile ions inside the electrolytic gate dielectric. This property allows the implementation of a device with sensitivity characteristics that are simply adjusted according to the measurement time. An extended gate-type, ion-sensitive, field-effect transistor consisting of a chitosan/Ta2O5 hybrid dielectric EDLT transducer, and an SnO2 sensing membrane, were fabricated to evaluate the sensing behavior at different buffer pH levels. As a result, we were able to achieve tunable sensitivity by only adjusting the measurement time by using a single EDLT and without additional gate electrodes. In addition, to demonstrate the unique sensing behavior of the time-dependent tunable pH sensors based on organic−inorganic hybrid EDLT, comparative sensors consisting of a normal FET with a SiO2 gate dielectric were prepared. It was found that the proposed pH sensors exhibit repeatable and stable sensing operations with drain current deviations <1%. Therefore, pH sensors using a chitosan electrolytic EDLT are suitable for biosensor platforms, possessing tunable sensitivity and high-reliability characteristics.
Collapse
Affiliation(s)
| | - Won-Ju Cho
- Department of Electronic Materials Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 139-701, Korea
| |
Collapse
|
8
|
Fu YM, Li H, Wei T, Huang L, Hidayati F, Song A. Sputtered Electrolyte-Gated Transistor with Temperature-Modulated Synaptic Plasticity Behaviors. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:2933-2942. [PMID: 35782154 PMCID: PMC9245437 DOI: 10.1021/acsaelm.2c00395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 05/17/2023]
Abstract
Temperature has always been considered as an essential factor for almost all kinds of semiconductor-based electronic components. In this work, temperature-dependent synaptic plasticity behaviors, which are mimicked by the indium-gallium-zinc oxide thin-film transistors gated with sputtered SiO2 electrolytes, have been studied. With the temperature increasing from 303 to 323 K, the electrolyte capacitance decreases from 0.42 to 0.11 μF cm-2. The mobility increases from 1.4 to 3.7 cm2 V-1 s-1, and the threshold voltage negatively shifts from -0.23 to -0.51 V. Synaptic behaviors under both a single pulse and multiple pulses are employed to study the temperature dependence. With the temperature increasing from 303 to 323 K, the post-synaptic current (PSC) at the resting state increases from 1.8 to 7.3 μA. Under a single gate pulse of 1 V and 1 s, the PSC signal altitude and the PSC retention time decrease from 2.0 to 0.7 μA and 5.1 × 102 to 2.5 ms, respectively. A physical model based on the electric field-induced ion drifting, ionic-electronic coupling, and gradient-coordinated ion diffusion is proposed to understand these temperature-dependent synaptic behaviors. Based on the experimental data on individual transistors, temperature-modulated pattern learning and memorizing behaviors are conceptually demonstrated. The in-depth investigation of the temperature dependence helps pave the way for further electrolyte-gated transistor-based neuromorphic applications.
Collapse
Affiliation(s)
- Yang Ming Fu
- Department
of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, U.K.
| | - Hu Li
- Shandong
Technology Center of Nanodevices and Integration, State Key Laboratory
of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250101, China
| | - Tianye Wei
- Department
of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, U.K.
| | - Long Huang
- Department
of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, U.K.
| | - Faricha Hidayati
- Department
of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, U.K.
| | - Aimin Song
- Department
of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, U.K.
- Shandong
Technology Center of Nanodevices and Integration, State Key Laboratory
of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250101, China
| |
Collapse
|
9
|
Huang CH, Zhang Y, Nomura K. Reconfigurable Artificial Synapses with Excitatory and Inhibitory Response Enabled by an Ambipolar Oxide Thin-Film Transistor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22252-22262. [PMID: 35522905 DOI: 10.1021/acsami.1c24327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A gate-tunable synaptic device controlling dynamically reconfigurable excitatory and inhibitory synaptic responses, which can emulate the fundamental synaptic responses for developing diverse functionalities of the biological nervous system, was developed using ambipolar oxide semiconductor thin-film transistors (TFTs). Since the balanced ambipolarity is significant, a boron-incorporated SnO (SnO:B) oxide semiconductor channel was newly developed to improve the ambipolar charge transports by reducing the subgap defect density, which was reduced to less than 1017 cm-3. The ambipolar SnO:B-TFT could be fabricated with a good reproductivity at the maximum process temperature of 250 °C and exhibited good TFT performances, such as a nearly zero switching voltage, the saturation mobility of ∼1.3 cm2 V-1 s-1, s-value of ∼1.1 V decade-1, and an on/off-current ratio of ∼8 × 103 for the p-channel mode, while ∼0.14 cm2 V-1 s-1, ∼2.2 V decade-1and ∼1 × 103 for n-channel modes, respectively. The ambipolar device imitated potentiation/depression behaviors in both excitatory and inhibitory synaptic responses by using the p- and n-channel transports by tuning a gate bias. The low-power consumptions of <20 and <2 nJ per pulse for the excitatory and inhibitory operations, respectively, were also achieved. The presented device operated under an ambient atmosphere and confirmed a good operation reliability over 5000 pulses and a long-term air environmental stability. The study presents the high potential of an ambipolar oxide-TFT-based synaptic device with a good manufacturability to develop emerging neuromorphic perception and computing hardware for next-generation artificial intelligence systems.
Collapse
Affiliation(s)
- Chi-Hsin Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yong Zhang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Kenji Nomura
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Material Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Min JG, Cho WJ. Sol-Gel Composites-Based Flexible and Transparent Amorphous Indium Gallium Zinc Oxide Thin-Film Synaptic Transistors for Wearable Intelligent Electronics. Molecules 2021; 26:molecules26237233. [PMID: 34885817 PMCID: PMC8658838 DOI: 10.3390/molecules26237233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we propose the fabrication of sol-gel composite-based flexible and transparent synaptic transistors on polyimide (PI) substrates. Because a low thermal budget process is essential for the implementation of high-performance synaptic transistors on flexible PI substrates, microwave annealing (MWA) as a heat treatment process suitable for thermally vulnerable substrates was employed and compared to conventional thermal annealing (CTA). In addition, a solution-processed wide-bandgap amorphous In-Ga-Zn (2:1:1) oxide (a-IGZO) channel, an organic polymer chitosan electrolyte-based electric double layer (EDL), and a high-k Ta2O5 thin-film dielectric layer were applied to achieve high flexibility and transparency. The essential synaptic plasticity of the flexible and transparent synaptic transistors fabricated with the MWA process was demonstrated by single spike, paired-pulse facilitation, multi-spike facilitation excitatory post-synaptic current (EPSC), and three-cycle evaluation of potentiation and depression behaviors. Furthermore, we verified the mechanical robustness of the fabricated device through repeated bending tests and demonstrated that the electrical properties were stably maintained. As a result, the proposed sol-gel composite-based synaptic transistors are expected to serve as transparent and flexible intelligent electronic devices capable of stable neural operation.
Collapse
|
11
|
Yu R, Yan Y, Li E, Wu X, Zhang X, Chen J, Hu Y, Chen H, Guo T. Bi-mode electrolyte-gated synaptic transistor via additional ion doping and its application to artificial nociceptors. MATERIALS HORIZONS 2021; 8:2797-2807. [PMID: 34605840 DOI: 10.1039/d1mh01061a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple types of synaptic transistors that are capable of processing electrical signals similar to the biological neural system hold enormous potential for application in parallel computing, logic circuits and peripheral detection. However, most of these presented synaptic transistors are confined to a single mode of synaptic plasticity under an electrical stimulus, which tremendously limits efficient memory formation and the multifunctional integration of synaptic transistors. Here, we proposed a bi-mode electrolyte-gated synaptic transistor (BEST) with two dynamic processes, the formation of an electrical double layer (EDL) and electrochemical doping (ECD) by tuning the applied voltages, thereby allowing volatile and non-volatile behavior, which is associated with additional ion doping and nanoscale ionic transport. Benefiting from two controllable dynamic processes, we surprisingly found a third state in the transfer curves besides the "off" and "on" states. Moreover, utilizing this unique property, an artificial nociceptor with multilevel modulation of sensitivity was realized based on our bi-mode device. Finally, a haptic sensory system was constructed to exhibit robotic motion that revealed a unique threshold switching behavior, indicating the applicability to peripheral sensing circuits. Hence, the presented bi-mode synaptic transistor provides promising prospects in achieving multiple-mode integrated devices and simplifying neural circuits, which shows great potential in the development of artificial intelligence.
Collapse
Affiliation(s)
- Rengjian Yu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
| | - Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
| | - Enlong Li
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
| | - Xiaomin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
| | - Xianghong Zhang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
| | - Jinwei Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
| | - Yuanyuan Hu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| |
Collapse
|
12
|
Kim SH, Cho WJ. Lithography Processable Ta 2O 5 Barrier-Layered Chitosan Electric Double Layer Synaptic Transistors. Int J Mol Sci 2021; 22:ijms22031344. [PMID: 33572820 PMCID: PMC7866272 DOI: 10.3390/ijms22031344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/16/2023] Open
Abstract
We proposed a synaptic transistor gated using a Ta2O5 barrier-layered organic chitosan electric double layer (EDL) applicable to a micro-neural architecture system. In most of the previous studies, a single layer of chitosan electrolyte was unable to perform lithography processes due to poor mechanical/chemical resistance. To overcome this limitation, we laminated a high-k Ta2O5 thin film on chitosan electrolyte to ensure high mechanical/chemical stability to perform a lithographic process for micropattern formation. Artificial synaptic behaviors were realized by protonic mobile ion polarization in chitosan electrolytes. In addition, neuroplasticity modulation in the amorphous In–Ga–Zn-oxide (a-IGZO) channel was implemented by presynaptic stimulation. We also demonstrated synaptic weight changes through proton polarization, excitatory postsynaptic current modulations, and paired-pulse facilitation. According to the presynaptic stimulations, the magnitude of mobile proton polarization and the amount of weight change were quantified. Subsequently, the stable conductance modulation through repetitive potential and depression pulse was confirmed. Finally, we consider that proposed synaptic transistor is suitable for advanced micro-neural architecture because it overcomes the instability caused when using a single organic chitosan layer.
Collapse
Affiliation(s)
| | - Won-Ju Cho
- Correspondence: ; Tel.: +82-2-940-5163; Fax: +82-2-943-5163
| |
Collapse
|
13
|
Guo J, Liu Y, Li Y, Li F, Huang F. Bienenstock-Cooper-Munro Learning Rule Realized in Polysaccharide-Gated Synaptic Transistors with Tunable Threshold. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50061-50067. [PMID: 33105079 DOI: 10.1021/acsami.0c14325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With reference to the organization of the human brain nervous system, a hardware-based approach that builds massively parallel neuromorphic circuits is of great significance to neuromorphic computing. The Bienenstock-Cooper-Munro (BCM) learning rule, which describes that the synaptic weight modulation exhibits frequency-dependent and tunable frequency threshold characteristics, is more compatible with the working principle of neuromorphic computing systems than spike-timing-dependent plasticity. Therefore, it is interesting to simulate the BCM learning rule on solid-state synaptic devices. Here, we have prepared λ-carrageenan (λ-car) electrolyte-gated oxide synaptic transistors, which exhibit good transistor performances, including a low subthreshold swing of 125 mV/dec, an on/off ratio larger than 106, and a mobility of 9.5 cm2 V-1 s-1. By modulating the initial channel current and spike frequency, the simulation of the BCM rule was successfully realized. The competitive relationship between the drift of protons under an electric field and the spontaneous diffusion of protons can explain this mechanism. The proposed λ-car-gated synaptic transistor has a great significance to neuromorphic computing.
Collapse
Affiliation(s)
- Jianmiao Guo
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yanghui Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yingtao Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fangzhou Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Feng Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
14
|
Dai C, Huo C, Qi S, Dai M, Webster T, Xiao H. Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness. Int J Nanomedicine 2020; 15:8037-8043. [PMID: 33116516 PMCID: PMC7585798 DOI: 10.2147/ijn.s267536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background Artificial synaptic behaviors are necessary to investigate and implement since they are considered to be a new computing mechanism for the analysis of complex brain information. However, flexible and transparent artificial synapse devices based on thin-film transistors (TFTs) still need further research. Purpose To study the application of flexible and transparent thin-film transistors with nanometer thickness on artificial synapses. Materials and Methods Here, we report the design and fabrication of flexible and transparent artificial synapse devices based on TFTs with polyethylene terephthalate (PET) as the flexible substrate, indium tin oxide (ITO) as the gate and a polyvinyl alcohol (PVA) grid insulating layer as the gate insulation layer at room temperature. Results The charge and discharge of the carriers in the flexible and transparent thin-film transistors with nanometer thickness can be used for artificial synaptic behavior. Conclusion In summary, flexible and transparent thin-film transistors with nanometer thickness can be used as pressure and temperature sensors. Besides, inherent charge transfer characteristics of indium gallium zinc oxide semiconductors have been employed to study the biological synapse-like behaviors, including synaptic plasticity, excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and long-term memory (LTM). More precisely, the spike rate plasticity (SRDP), one representative synaptic plasticity, has been demonstrated. Such TFTs are interesting for building future neuromorphic systems and provide a possibility to act as fundamental blocks for neuromorphic system applications.
Collapse
Affiliation(s)
- Chaoqi Dai
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China.,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Changhe Huo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Shaocheng Qi
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Mingzhi Dai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Thomas Webster
- Department of Chemical Engineering, Northeastern University, MA, Boston 02115, USA
| | - Han Xiao
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Liao Q, She D, Lv Z, Gong Y, Ding G, Ye W, Chen J, Xiong Z, Wang G, Zhou Y, Han ST. Modulation of Binary Neuroplasticity in a Heterojunction-Based Ambipolar Transistor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15370-15379. [PMID: 32153180 DOI: 10.1021/acsami.0c00635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To keep pace with the upcoming big-data era, the development of a device-level neuromorphic system with highly efficient computing paradigms is underway with numerous attempts. Synaptic transistors based on an all-solution processing method have received growing interest as building blocks for neuromorphic computing based on spikes. Here, we propose and experimentally demonstrated the dual operation mode in poly{2,2-(2,5-bis(2-octyldodecyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)dithieno[3,2-b]thiophene-5,5-diyl-alt-thiophen-2,5-diyl}(PDPPBTT)/ZnO junction-based synaptic transistor from ambipolar charge-trapping mechanism to analog the spiking interfere with synaptic plasticity. The heterojunction formed by PDPPBTT and ZnO layers serves as the basis for hole-enhancement and electron-enhancement modes of the synaptic transistor. Distinctive synaptic responses of paired-pulse facilitation (PPF) and paired-pulse depression (PPD) were configured to achieve the training/recognition function for digit image patterns at the device-to-system level. The experimental results indicate the potential application of the ambipolar transistor in future neuromorphic intelligent systems.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Qiufan Liao
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Donghong She
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yue Gong
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Wenbin Ye
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jinrui Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ziyu Xiong
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Guoping Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
16
|
Chen Y, Yu H, Gong J, Ma M, Han H, Wei H, Xu W. Artificial synapses based on nanomaterials. NANOTECHNOLOGY 2019; 30:012001. [PMID: 30256764 DOI: 10.1088/1361-6528/aae470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial synapses emulate biological synaptic signals in neuromorphic systems to attain brain-like computation and autonomous learning behaviors in non-von-Neumann systems. Several classes of materials have been applied to this field to achieve numerous functionalities of biological synapses. Nanomaterials (NMs), such as one-dimensional (1D) and two-dimensional (2D) NMs have shown great potential due to their nanometer feature size (1D) and molecular-level thickness (2D). In this paper, we review the development of artificial synapses, and discuss state-of-the-art artificial synapses based on NMs.
Collapse
Affiliation(s)
- Yihang Chen
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China. Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Yu F, Zhu LQ, Gao WT, Fu YM, Xiao H, Tao J, Zhou JM. Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16881-16886. [PMID: 29687712 DOI: 10.1021/acsami.8b03274] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, environment-friendly electronic devices are attracting increasing interest. "Green" artificial synapses with learning abilities are also interesting for neuromorphic platforms. Here, solution-processed chitosan-based polysaccharide electrolyte-gated indium tin oxide (ITO) synaptic transistors are fabricated on polyethylene terephthalate substrate. Good transistor performances against mechanical stress are observed. Short-term synaptic plasticities are mimicked on the proposed ITO synaptic transistor. When applying presynaptic and postsynaptic spikes on gate electrode and drain electrode respectively, spike-timing-dependent plasticity function is mimicked on the synaptic transistor. Transitions from sensory memory to short-term memory (STM) and from STM to long-term memory are also mimicked, demonstrating a "multistore model" brain memory. Furthermore, the flexible ITO synaptic transistor can be dissolved in deionized water easily, indicating potential green neuromorphic platform applications.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , People's Republic of China
- Nano Science and Technology Institute , University of Science and Technology of China , Suzhou 215123 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Li Qiang Zhu
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wan Tian Gao
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , People's Republic of China
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yang Ming Fu
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hui Xiao
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jian Tao
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Ju Mei Zhou
- Faculty of Maritime and Transportation , Ningbo University , Ningbo 315211 , Zhejiang , People's Republic of China
| |
Collapse
|