1
|
Tang K, Wang J, Pei X, Zhu Z, Liu J, Wan Q, Zhang X. Flexible coatings based on hydrogel to enhance the biointerface of biomedical implants. Adv Colloid Interface Sci 2025; 335:103358. [PMID: 39591835 DOI: 10.1016/j.cis.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The use of biomedical implants in surgical techniques promotes the restoration of lost tissue or organ physiological functions in the body. The interface between different materials determines their interactions and ultimately affects the physicochemical properties of biomedical implants. After implantation, the biointerface plays a crucial role in determining the biocompatibility and functionality of biomedical implants. Surface modification of biomaterials by developing novel biomaterials like various flexible coatings to meet the requirements of biointerfaces, such as mechanical performance, compatibility safety, and biological activities, can improve material-biological interactions by maintaining its original volumetric characteristics. Hydrogels possess excellent plasticity, biodegradability, biocompatibility, and extracellular-matrix-like properties, making them widely used in the biomedical field. Moreover, due to their unique three-dimensional crosslinked hydrophilic network, hydrogels can encapsulate a variety of materials, such as small molecules, polymers, and particle. In recent years, it has been proved that coating biomedical implant materials with flexible hydrogels can optimize the biointerface and holds vast potential for implant surface modification. In this review, we first discussed the potential requirements of the biointerface on the surface of implantable materials in both in vitro and in vivo biological microenvironments. Based on these comprehensive reviews, we also introduced the potential applications of hydrogels in both in vitro and in vivo settings. Finally, this review focused on the challenges faced by the biointerface of implantable materials constructed based on hydrogels and proposed future approaches to inspire researchers with new ideas.
Collapse
Affiliation(s)
- Kun Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiang Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Saha E, Khan A, Mallick AI, Mitra J. Purpose-built multicomponent supramolecular silver(I)-hydrogels as membrane-targeting broad-spectrum antibacterial agents against multidrug-resistant pathogens. J Mater Chem B 2024; 12:8767-8777. [PMID: 39140272 DOI: 10.1039/d4tb01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Membrane-targeting compounds are of immense interest to counter complicated multi-drug resistant infections. However, the broad-spectrum effect of such compounds is often unmet due to the surges of antibiotic resistance among majority of Gram-negative bacteria compared to Gram-positive species. Though amphiphiles, synthetic mimics of antimicrobial peptides etc, have been extensively explored for their potential to perturb bacterial membranes, small molecule-based supramolecular hydrogels have remained unexplored. The design of supramolecular hydrogels can be tuned on-demand, catering to desired applications, including facile bacterial membrane perturbation. Considering the strong biocidal properties of Ag-based systems and the bacterial membrane-targeting potential of appended primary amine groups, we designed self-assembled multicomponent supramolecular Ag(I)-hydrogels with urea and DATr (3,5-diamino-1,2,4-triazole) as ligands, which are predisposed for hydrogen bonding and interacting with negatively charged bacterial membranes at physiological pH. The synthesized supramolecular Ag(I)-hydrogels exhibited almost similar antibacterial activity against both Gram-negative (Campylobacter jejuni; C. jejuni) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria, with minimal inhibitory concentration (MIC) of ∼60 μg mL-1. Ag(I)-hydrogels facilitated the disruption of the negatively charged bacterial membrane due to electrostatic interaction and complementary hydrogen bonding facilitated by DATr and urea. Sustained intracellular ROS generation in the presence of Ag(I)-hydrogel further expedited cell lysis. We envisage that the multicomponent supramolecular Ag(I)-hydrogels studied herein can be employed in designing effective antibacterial coatings on a range of medical devices, including surgical instruments. Moreover, the present form of the hydrogels has the potential to improve the antibacterial functionality of conventional antimicrobials, thus revitalizing the effective targeting of hard-to-treat multi-drug-resistant (MDR) bacterial infections in a clinical set up.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| |
Collapse
|
3
|
Zhu B, Xin H, Yang M, Pan L, Zou X, Lv Z, Yao X, Jin X, Xu Y, Gui S, Lu X. Visualized and pH-responsive hydrogel antibacterial coating for ventilator-associated pneumonia. Biomed Pharmacother 2024; 178:117224. [PMID: 39084079 DOI: 10.1016/j.biopha.2024.117224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common healthcare-acquired infection often arising during artificial ventilation using endotracheal intubation (ETT), which offers a platform for bacterial colonization and biofilm development. In particular, the effects of prolonged COVID-19 on the respiratory system. Herein, we developed an antimicrobial coating (FK-MEM@CMCO-CS) capable of visualizing pH changes based on bacterial infection and releasing meropenem (MEM) and FK13-a1 in a controlled manner. Using a simple dip-coating process with controlled loading, chitosan was cross-linked with sodium carboxymethyl cellulose oxidation (CMCO) and coated onto PVC-based ETT to form a hydrogel coating. Subsequently, the coated segments were immersed in an indicator solution containing bromothymol blue (BTB), MEM, and FK13-a1 to fabricate the FK-MEM@CMCO-CS coating. In vitro studies have shown that MEM and FK13-a1 can be released from coatings in a pH-responsive manner. Moreover, anti-biofilm and antibacterial adhesion results showed that FK-MEM@CMCO-CS coating significantly inhibited biofilm formation and prevented their colonization of the coating surface. In the VAP rat model, the coating inhibited bacterial growth, reduced lung inflammation, and had good biocompatibility. The coating can be applied to the entire ETT and has the potential for industrial production.
Collapse
Affiliation(s)
- Baokang Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Hui Xin
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Musheng Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Lingling Pan
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotechnology Products, National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China.
| | - Xuemei Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Hao Z, Li X, Zhang R, Zhang L. Stimuli‐Responsive Hydrogels for Antibacterial Applications. Adv Healthc Mater 2024:e2400513. [PMID: 38723248 DOI: 10.1002/adhm.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials is discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings.
Collapse
Affiliation(s)
- Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
5
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
6
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
7
|
Pan S, Lu D, Gan H, Zhu DZ, Yao Z, Kurup PU, Zhang G, Luo J. Long-range hydrophobic force enhanced interfacial photocatalysis for the submerged surface anti-biofouling. WATER RESEARCH 2023; 243:120383. [PMID: 37506635 DOI: 10.1016/j.watres.2023.120383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Developing anti-biofouling and anti-biofilm techniques is of great importance for protecting water-contact surfaces. In this study, we developed a novel double-layer system consisting of a bottom immobilized TiO2 nanoflower arrays (TNFs) unit and an upper superhydrophobic (SHB) coating along with the assistance of nanobubbles (NBs), which can significantly elevate the interfacial oxygen level by establishing the long-range hydrophobic force between NBs and SHB and effectively maximize the photocatalytic reaction brought by the bottom TNFs. The developed NBs-SHB/TNFs system demonstrated the highest bulk chemical oxygen demand (COD) reduction efficiency at approximately 80% and achieved significant E. coli and Chlorella sp. inhibition efficiencies of 5.38 and 1.99 logs. Meanwhile, the system showed a sevenfold higher resistance to biofilm formation when testing in a wastewater matrix using a wildly collected biofilm seeding solution. These findings provide insights for implementing nanobubble-integrated techniques for submerged surface protection.
Collapse
Affiliation(s)
- Shuo Pan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA.
| | - David Z Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Pradeep U Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.
| | - Jiayue Luo
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Li K, Peng J, Liu Y, Zhang F, Wu D, Luo R, Du Z, Yang L, Liu G, Wang Y. Surface Engineering of Central Venous Catheters via Combination of Antibacterial Endothelium-Mimicking Function and Fibrinolytic Activity for Combating Blood Stream Infection and Thrombosis. Adv Healthc Mater 2023; 12:e2300120. [PMID: 37166220 DOI: 10.1002/adhm.202300120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Long-term blood-contacting devices (e.g., central venous catheters, CVCs) still face the highest incidence of blood stream infection and thrombosis in clinical application. To effectively address these complications, this work reports a dual-functional surface engineering strategy for CVCs by organic integration of endothelium-mimicking and fibrinolytic functions. In this proposal, a lysine (Lys)/Cu2+ -incorporated zwitterionic polymer coating (defined as PDA/Lys/Cu-SB) is designed and robustly fabricated onto commercial CVCs using a facile two-step process. Initially, adhesive ene-functionalized dopamine is covalently reacted with Lys and simultaneously coordinated with bactericidal Cu2+ ions, leading to the deposition of a PDA/Lys/Cu coating on CVCs through mussel foot protein inspired surface chemistry. Next, zwitterionic poly(sulfobetaine methacrylate) (pSB) brushes are grafted onto the PDA/Lys/Cu coating to endow lubricant and antifouling properties. In the final PDA/Lys/Cu-SB coating, endothelium-mimicking function is achieved by combining the catalytic generation of nitric oxide from the chelated Cu2+ with antifouling pSB brushes, which led to significant prevention of thrombosis, and bacterial infection in vivo. Furthermore, the immobilized Lys with fibrinolytic activity show remarkably enhanced long-term anti-thrombogenic properties as evidenced in vivo by demonstrating the capability to lyse nascent clots. Therefore, this developed strategy provides a promising solution for long-term blood-contacting devices to combat thrombosis and infection.
Collapse
Affiliation(s)
- Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuqi Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, 611135, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zongliang Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
9
|
Huang X, Zhang M, Chang L, Zheng D, Lin W, Feng Y, Lu Y. Application Study of Novel Eggshell/Ag Combined with Pit and Fissure Sealants. Int J Nanomedicine 2023; 18:2911-2922. [PMID: 37283713 PMCID: PMC10241214 DOI: 10.2147/ijn.s403974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
Objective The study aims to enhance the anti-caries performance of pit and fissure sealants through the synthesis of novel silver nanocomposites, and to evaluate their mechanical properties and biological safety in vitro and in vivo. Methods The antibacterial properties of synthetic eggshell/Ag were detected by bacterial inhibition zone, minimum bacteriostatic concentration, fluorescence staining and scanning electron microscopy. The synthetic products were then combined with pit and fissure sealants to prepare specimens, and their effects on mechanical properties, antibacterial properties and cytotoxicity were evaluated. Furthermore, an oral mucosal contact model of golden hamsters was established according to the ISO10933 standard to evaluate local stimulation and systemic effects. Results The novel nanocomposite eggshell/Ag was confirmed to exhibit strong broad-spectrum antibacterial activity, and that the eggshell/Ag-modified pit and fissure sealant had strong antibacterial properties against common dental caries bacterial biofilms, without any significant change in mechanical properties. The gradient dilution extract showed acceptable cytotoxicity, and in the golden hamster oral contact model, there were no visible abnormalities in local mucosal tissues, blood indices, or liver and kidney histopathology. Conclusions These findings suggest that eggshell/Ag combined with pit and fissure sealants has strong antibacterial activity and excellent biosafety in vitro and in vivo, making it a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Ming Zhang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Department of Conservative and Endodontic Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Lin Chang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yan Feng
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
10
|
Wang H, Xu X, Wang X, Qu W, Qing Y, Li S, Chen B, Ying B, Li R, Qin Y. Performance optimization of biomimetic ant-nest silver nanoparticle coatings for antibacterial and osseointegration of implant surfaces. BIOMATERIALS ADVANCES 2023; 149:213394. [PMID: 37001309 DOI: 10.1016/j.bioadv.2023.213394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/27/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Infection prevention and bone-implant integration remain major clinical challenges. Silver nanoparticle (AgNPs) bone-implant coatings have received extensive attention. Balancing the toxicity and antibacterial properties of AgNP coatings has become a significant problem. In this study, inspired by the structure of the ant-nest, a polyetherimide (PEI) coating with ant-nest structure was prepared, aiming to realize the structural modification of the AgNPs coating. AgNPs were loaded in the inner porous area of the PEI ant-nest coating, avoiding direct contact between AgNPs and cells. The nanopores on the surface of the coating ensured the orderly release of silver ions. SEM, FTIR, XPS, and XRD experiments confirmed that the PEI ant-nest coating was successfully prepared. Interestingly, in the PEI ant-nest coating, Ag+ showed a steady increase in the release trend within 28 days, and there was no early burst release phenomenon. In -vivo experiments showed a good control effect for local infection. In order to improve the osteogenic properties of the materials, 45S5 bioactive glasses (BG) were loaded to achieve further osseointegration. In general, this natural ant-nest-inspired surface modification coating for orthopedic prostheses provides a new strategy for balancing the antibacterial and toxic effects of AgNP coatings.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Xinyu Xu
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Xingyue Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Wenrui Qu
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Yunan Qing
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Shihuai Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Bo Chen
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Boda Ying
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Ruiyan Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China.
| | - Yanguo Qin
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China.
| |
Collapse
|
11
|
Rit T, Ghosh T, Bhowmik S, Patidar MK, Das AK. Dynamic Multicomponent Reactions-Directed Self-Assembled G-quadruplex Inherent Antibacterial Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6466-6475. [PMID: 37106320 DOI: 10.1021/acs.langmuir.3c00392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nowadays, inherent antibacterial hydrogels have gained significant attention due to their utilization against infectious bacteria. Herein, we focus on the development of an injectable, self-healable, dynamic, and G-quadruplex hydrogel with inherent antibacterial activity. The dynamic self-assembled hydrogel is constructed upon multicomponent reactions (MCR) among guanosine, 2-formylphenylboronic acid, and amino acid/peptides in the presence of potassium ions. The role of amino acid/peptides in the formation of the G-quadruplex hydrogel is studied in detail. The G-quadruplex structure is formed via the π-π stacking of G-quartets. The formation of G-quadruplex is investigated by thioflavin T binding assay, CD spectroscopy, and PXRD. The formation of the dynamic imino-boronate bond in the hydrogels is well characterized by temperature-dependent 11B NMR (VT-NMR) and FT-IR spectroscopy. Furthermore, HR-TEM images and rheological experiments reveal the fibrillar networks and viscoelastic property of the hydrogels. The presence of the dynamic imino-boronate ester bonds makes the hydrogel injectable and self-healable in nature. These dynamic G-quadruplex hydrogels show potential antibacterial activity against a series of Gram-positive and Gram-negative bacteria. The hydrogels have been used for the entrapment and sustained release of an anticancer drug doxorubicin over 48 h at different pHs (4.8, 7.4, and 8.5) and temperature without the influence of any external stimuli. Such injectable and self-healable hydrogels could be used in various applications in the field of biomedical science.
Collapse
Affiliation(s)
- Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Mukesh K Patidar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore 452001, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
12
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
13
|
Wei R, Xiang H, Xie M, Chen G, Zhang X, Zhao C. Programming a Dual-Responsive Switch in Both the Surface and Interior of an Asymmetric Separation Membrane. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Xu M, Luo H, Rong H, Wu S, Zheng Z, Chen B. Calcium alginate gels-functionalized polyurethane foam decorated with silver nanoparticles as an antibacterial agent for point-of-use water disinfection. Int J Biol Macromol 2023; 231:123289. [PMID: 36657545 DOI: 10.1016/j.ijbiomac.2023.123289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
This paper reports the preparation of calcium alginate gels-functionalized PUF decorated with AgNPs (CA/PUF@Ag) by in situ reduction of Ag+ ions to form AgNPs with weakly reducing glycerol in CA/PUF composite. The water-adsorbing capacity, chemical structure, crystalline nature, elemental composition and morphologies of the composite were characterized. The Ag release behavior of CA/PUF@Ag was investigated. The inhibition zone test, time-dependent co-culture assay, test tube test, and antibacterial filtration experiment with Escherichia coli as an indicator of bacterial contamination were conducted to explore the antimicrobial efficacy. Results indicated that the CA/PUF@Ag prepared at 0.25 % w/v of SA could absorb more water with a higher swelling ratio of 8.0 g/g than that of PUF@Ag (6.0 g/g), which was subsequently squeezed by minimal pressure stimuli. The CA/PUF@Ag had a larger initial AgNPs loading amount (8.48 mg/g), lower Ag release concentration (44.35 μg/L) and lower Ag release rate (0.27 %) after 14 days tests than those of PUF@Ag (7.93 mg/g, 80.87 μg/L and 0.60 % respectively). The CA/PUF@Ag was highly reusable because bacterial cells in the squeezed water recovered from the composite were completely inactivated over five cycles of operation, and exhibited good antibacterial efficacy as an antibacterial filter in a flow test.
Collapse
Affiliation(s)
- Mingqi Xu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shuhan Wu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zexin Zheng
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Boyuan Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
15
|
Xiao S, Zhao Y, Jin S, He Z, Duan G, Gu H, Xu H, Cao X, Ma C, Wu J. Regenerable bacterial killing–releasing ultrathin smart hydrogel surfaces modified with zwitterionic polymer brushes. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Building long-lasting antimicrobial and clean surfaces is one of the most effective strategies to inhibit bacterial infection, but obtaining an ideal smart surface with highly efficient, controllable, and regenerative properties still encounters many challenges. Herein, we fabricate an ultrathin brush–hydrogel hybrid coating (PSBMA-P(HEAA-co-METAC)) by integrating antifouling polyzwitterionic (PSBMA) brushes and antimicrobial polycationic (P(HEAA-co-METAC)) hydrogels. The smart bacterial killing–releasing properties can be achieved independently by the opposite volume and conformation changes between the swelling (shrinking) of P(HEAA-co-METAC) hydrogel layer and the shrinking (swelling) of PSBMA brushes. The friction test reveals that both METAC and SBMA components support great lubrication. By tuning the initial organosilane (BrTMOS:KH570) ratios, the prepared PSBMA-P(HEAA-co-METAC) coating exhibits different antibacterial abilities from single “capturing–killing” to versatile “capturing–killing–releasing.” Most importantly, 99% of the bacterial-releasing rate can be easily achieved via 0.5 M NaCl treatment. This smart surface not only possesses long-lasting antibacterial performance, only ∼1.09 × 105 cell·cm−2 bacterial residue even after 72 h exposure to bacteria solutions, but also can be regenerated and triggered between water and salt solution multiple times. This work provides a new way to fabricate antibacterial smart hydrogel coatings with bacterial “killing–releasing” functions and shows great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Yuyu Zhao
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Shuqi Jin
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Zhicai He
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Haining Gu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Hongshun Xu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Jun Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
16
|
Zhou L, Zhao C, Yang W. Durable and covalently attached antibacterial coating based on post-crosslinked maleic anhydride copolymer with long-lasting performance. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Recent Progress on Bioinspired Antibacterial Surfaces for Biomedical Application. Biomimetics (Basel) 2022; 7:biomimetics7030088. [PMID: 35892358 PMCID: PMC9326651 DOI: 10.3390/biomimetics7030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.
Collapse
|
18
|
Shevtsova T, Cavallaro G, Lazzara G, Milioto S, Donchak V, Harhay K, Korolko S, Budkowski A, Stetsyshyn Y. Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128525] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Affiliation(s)
- Qianhui Liu
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| | - Marek W. Urban
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| |
Collapse
|
20
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
21
|
Cao W, Ma W, Lu T, Jiang Z, Xiong R, Huang C. Multifunctional nanofibrous membranes with sunlight-driven self-cleaning performance for complex oily wastewater remediation. J Colloid Interface Sci 2022; 608:164-174. [PMID: 34626964 DOI: 10.1016/j.jcis.2021.09.194] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Developing multifunctional, efficient and durable membrane for long-term usage for treating complex oily wastewater is highly desirable but still a challenge due to the severe membrane fouling. Herein, a hierarchical structured superhydrophilic/underwater superoleophobic nanofibrous with antifouling and visible-light-induced self-cleaning performance was manufactured by a facile combination of electrospun silver/β-cyclodextrin/polyacrylonitrile (Ag/β-CD/PAN) nanofibers and then the in-situ growth of a zinc oxide (ZnO) layer. The formed micro/nano sized hierarchical structure greatly increased the roughness and improved the underwater superoleophobic ability of the membrane. Therefore, the resultant ZnO/Ag/β-CD/PAN membrane displays splendid separation performance for oil/dye/water complex emulsions and high flux recovery (>90%). Meanwhile, the permeation flux of a variety of oil/water emulsions was higher than 619 L m-2h-1 with a separation efficiency above 99.7% under the action of gravity. Furthermore, the as-fabricated membrane exhibits excellent stability towards different harsh conditions (e. g. corrosive solution, high temperature, UV irradiation and ultrasound washing). The robust mechanical and chemical stability, outstanding separation capabilities as well as excellent flux recovery capabilities makes the self-cleaning membrane a good candidate for the remediation of complex oily wastewater.
Collapse
Affiliation(s)
- Wenxuan Cao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhicheng Jiang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
22
|
Dong X, Yao F, Jiang L, Liang L, Sun H, He S, Shi M, Guo Z, Yu Q, Yao M, Che P, Zhang H, Li J. Facile preparation of thermosensitive and antibiofouling physically crosslinked hydrogel/powder for wound healing. J Mater Chem B 2022; 10:2215-2229. [DOI: 10.1039/d2tb00027j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To improve the therapeutic effect of hydrogel for damaged tissue, a series of hydroxybutyl chitosan (HBC) and poly (sulfobetaine methacrylate) (PSBMA) composite hydrogels (HBC-PSB) with thermosensitivity, self-healing, antibiofouling, and synergistic...
Collapse
|
23
|
A lignocellulose-based nanocomposite hydrogel with pH-sensitive and potent antibacterial activity for wound healing. Int J Biol Macromol 2021; 191:1249-1254. [PMID: 34634323 DOI: 10.1016/j.ijbiomac.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
Hydrogel dressings with similar structural characteristics to the extracellular matrix and tunable physicochemical properties have become promising candidates for wound healing. However, the fabrication of an ideal hydrogel dressing with low-cost, good biocompatibility, excellent hemostatic capacity, potent and broad-spectrum antibacterial activity remains a huge challenge. Herein, a lignocellulose-based nanocomposite hydrogel (ATC/SA/PVA) is fabricated by simply mixing Ag nanoparticles loaded, tannic acid-decorated lignocellulose nanofibrils with sodium alginate and polyvinyl alcohol. Based on the dynamic borate ester bonds and multiple weak hydrogen bonds, the fabricated hydrogel exhibits excellent flexibility and self-healing performance. Its highly porous structure endows the gel excellent blood and tissue exudates absorption ability. Interestingly, the release behavior of Ag nanoparticles from hydrogel displays pH dependence, which can facilitate the accumulation of Ag nanoparticles at the wound site, thereby accelerating the process of wound healing. In vitro antibacterial assay demonstrates the potent antibacterial ability of hydrogel against both Gram-positive (S. aureus) and negative bacteria (E. coli). More importantly, in vivo investigations reveal that such hydrogel can effectively accelerate tissue regeneration and wound healing with no obvious adverse effects. All these results suggest that this nanocomposite hydrogel would be a promising candidate to accelerate wound healing.
Collapse
|
24
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
25
|
Huang Y, Bai L, Yang Y, Yin Z, Guo B. Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J Colloid Interface Sci 2021; 608:2278-2289. [PMID: 34774324 DOI: 10.1016/j.jcis.2021.10.131] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022]
Abstract
Burn wounds are susceptible to bacterial infections and are usually accompanied by a large amount of exudate, making the treatment of burn wounds a challenge in the clinic. Here, we developed a biodegradable cryogel with high water absorption and good antibacterial and antibiofilm activity based on gelatin (GT) and silver nanoparticles (Ag NPs) to promote burn wound healing. The porous GT/Ag cryogel had a swelling ratio of up to 4000%, effectively absorbing wound exudate and allowing for gas exchange. Moreover, the GT/Ag cryogel had an excellent killing effect on methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PA), which burn wounds are susceptible to, and can effectively remove mature biofilms. In the rat liver defect noncompressible hemorrhage model, GT/Ag cryogels with shape memory performance showed better hemostatic ability than commercial gelatin sponges. Most importantly, the GT/Ag cryogel was more effective than the TegadermTM dressing and GT cryogel in promoting wound contraction, collagen deposition, and angiogenesis and reducing inflammation in a PA-infected burn wound model. In addition, GT/Ag cryogels degraded in the body within 4 weeks, which alleviated the pain of peeling the dressing from the wound. Therefore, GT/Ag cryogels with outstanding antibacterial properties and effective absorption of wound exudates are excellent candidates for wound dressings to promote burn wound repair.
Collapse
Affiliation(s)
- Ying Huang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061 China
| | - Yutong Yang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061 China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
26
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
27
|
|
28
|
Deng Y, Shavandi A, Okoro OV, Nie L. Alginate modification via click chemistry for biomedical applications. Carbohydr Polym 2021; 270:118360. [PMID: 34364605 DOI: 10.1016/j.carbpol.2021.118360] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Alginate biopolymers are characterized by favorable properties, of biocompatibility, degradability, and non-toxicity. However, the poor stability properties of alginate have limited its suitability for diverse applications. Recently, click chemistry has generated significant research interest due to its high reaction efficiency, high selectivity for a single product, harmless byproducts, and processing simplicity. Alginate modified using click chemistry enables the production of alginate derivatives with enhanced physical and chemical properties. Herein, we review the employment of click chemistry in the development of alginate-based materials or systems. Various click chemistries were highlighted, including azide and alkyne cycloaddition (e.g. Copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC), Strain-promoted alkyne-azide cycloaddition (SPAAC)), Diels-Alder reaction (Inverse electron demand Diels-Alder (IEDDA) cycloaddition, Tetrazine-norbornene Diels-Alder reactions), Thiol-ene/yne addition (Free-radical thiol-ene addition click reactions, Thiol-Michael addition click reactions, Thiol-yne addition click reaction), Oxime based click reactions, and other click reactions. Alginate functionalized with click chemistry and its properties were also discussed. The present study shows that click chemistry may be employed in modifying the mechanical strength, biochemical/biological properties of alginate-based materials. Finally, the applications of alginate-based materials in wound dressing, drug delivery, protein delivery, tissue regeneration, and 3D bioprinting were described and the future perspectives of alginates modified with click chemistry, are subsequently presented. This review provides new insights for readers to design structures and expand applications of alginate using click chemistry reactions in a detailed and more rational manner.
Collapse
Affiliation(s)
- Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Amin Shavandi
- BioMatter unit - 3BIO - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Oseweuba Valentine Okoro
- BioMatter unit - 3BIO - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
29
|
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO 3 Nanoparticles on Different Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1417. [PMID: 33804043 PMCID: PMC8001162 DOI: 10.3390/ma14061417] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Yurij Stetsyshyn
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Joanna Raczkowska
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andre G. Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland;
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| |
Collapse
|
30
|
Xiao J, Zhou Y, Ye M, An Y, Wang K, Wu Q, Song L, Zhang J, He H, Zhang Q, Wu J. Freeze-Thawing Chitosan/Ions Hydrogel Coated Gauzes Releasing Multiple Metal Ions on Demand for Improved Infected Wound Healing. Adv Healthc Mater 2021; 10:e2001591. [PMID: 33320448 DOI: 10.1002/adhm.202001591] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Imbalance of metal ions in the wound microenvironment is a key factor that leads to delayed wound healing. However, single metal administration to enhance wound repair is usually not enough due to the overlapping nature of the wound healing phases. Herein, a facile freeze-thawing strategy is developed to incorporate chitosan/ions hydrogel into medical gauzes to realize on-demand release of multiple ions to accelerate wound healing. In vitro study reveals that the gauzes can temporally release multiple metal ions on demand, and the released metal ions show effectiveness in killing bacteria and expediting cell migration. In vivo studies demonstrate that the metal ions loaded gauzes can efficiently enhance infected wound healing. Further histological analysis find that these metal ion-loaded gauzes accelerate wound healing by promoting granulation formation, collagen deposition and maturation, re-epithelization, angiogenesis, and inhibiting inflammation via regulating the expression of inflammatory factors (e.g., tumor necrosis factor-α) and polarization of macrophages. Thus, this novel metal ions delivery system has great potential in infected tissue repair and antibacterial applications.
Collapse
Affiliation(s)
- Jian Xiao
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Yajiao Zhou
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Mengqi Ye
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325027 P. R. China
| | - Ying An
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Kangning Wang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Qiuji Wu
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Liwan Song
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Junwen Zhang
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325027 P. R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325027 P. R. China
| | - Qianwen Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000 P. R. China
| | - Jiang Wu
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| |
Collapse
|
31
|
Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020; 25:molecules25245795. [PMID: 33302592 PMCID: PMC7764781 DOI: 10.3390/molecules25245795] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.
Collapse
|
32
|
Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv Colloid Interface Sci 2020; 285:102280. [PMID: 33010575 DOI: 10.1016/j.cis.2020.102280] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Hydrogels have emerged as promising antimicrobial materials due to their unique three-dimensional structure, which provides sufficient capacity to accommodate various materials, including small molecules, polymers and particles. Coating substrates with antibacterial hydrogel layers has been recognized as an effective strategy to combat bacterial colonization. To prevent possible delamination of hydrogel coatings from substrates, it is crucial to attach hydrogel layers via stronger links, such as covalent bonds. To date, various surface chemical strategies have been developed to introduce hydrogel coatings on different substrates. In this review, we first give a brief introduction of the major strategies for designing antibacterial coatings. Then, we summarize the chemical methods used to fix the antibacterial hydrogel layer on the substrate, which include surface-initiated graft crosslinking polymerization, anchoring the hydrogel layer on the surface during crosslinking, and chemical crosslinking of layer-by-layer coating. The reaction mechanisms of each method and matched pretreatment strategies are systemically documented with the aim of introducing available protocols to researchers in related fields for designing hydrogel-coated antibacterial surfaces.
Collapse
|
33
|
Dong P, Feng J, Zhang D, Li C, Shi QS, Xie X. In situ synthesis of amply antimicrobial silver nanoparticle (AgNP) by polyzwitterionic copolymers bearing hydroxyl groups. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Huang DN, Wang J, Ren KF, Ji J. Functionalized biomaterials to combat biofilms. Biomater Sci 2020; 8:4052-4066. [PMID: 32500875 DOI: 10.1039/d0bm00526f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogenic microbial biofilms that readily form on implantable medical devices or human tissues have posed a great threat to worldwide healthcare. Hopes are focused on preventive strategies towards biofilms, leaving a thought-provoking question: how to tackle the problem of established biofilms? In this review, we briefly summarize the functionalized biomaterials to combat biofilms and highlight current approaches to eradicate pre-existing biofilms. We believe that all of these strategies, alone or in combination, could represent a blueprint for fighting biofilm-associated infections in the postantibiotic era.
Collapse
Affiliation(s)
- Dan-Ni Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | |
Collapse
|
35
|
Wang Y, Wei T, Qu Y, Zhou Y, Zheng Y, Huang C, Zhang Y, Yu Q, Chen H. Smart, Photothermally Activated, Antibacterial Surfaces with Thermally Triggered Bacteria-Releasing Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21283-21291. [PMID: 31709795 DOI: 10.1021/acsami.9b17581] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of effective antibacterial surfaces to prevent the attachment of pathogenic bacteria and subsequent bacterial colonization and biofilm formation is critically important for medical devices and public hygiene products. In the work reported herein, a smart antibacterial hybrid film based on tannic acid/Fe3+ ion (TA/Fe) complex and poly(N-isopropylacrylamide) (PNIPAAm) is deposited on diverse substrates. This surface is shown to have bacteria-killing and bacteria-releasing properties based on, respectively, near-infrared photothermal activation and subsequent cooling. The TA/Fe complex has three roles in this system: (i) as a universal adhesive "anchor" for surface modification, (ii) as a high-efficiency photothermal agent for ablation of attached bacteria (including multidrug resistant bacteria), and (iii) as a robust linker for immobilization of NH2-terminated PNIPAAm via either Michael addition or Schiff base formation. Moreover, because of the thermoresponsive properties of the immobilized PNIPAAm, almost all of the killed bacteria and other debris can be removed from the surface simply by lowering the temperature. It is shown that this hybrid film can maintain good antibacterial performance after being used for multiple "kill-and-release" cycles and can be applied to various substrates regardless of surface chemistry or topography, thus providing a broadly applicable, simple, and reliable solution to the problems associated with surface-attached bacteria in various healthcare applications.
Collapse
Affiliation(s)
- Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215007, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
36
|
Nastyshyn S, Raczkowska J, Stetsyshyn Y, Orzechowska B, Bernasik A, Shymborska Y, Brzychczy-Włoch M, Gosiewski T, Lishchynskyi O, Ohar H, Ochońska D, Awsiuk K, Budkowski A. Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv 2020; 10:10155-10166. [PMID: 35498562 PMCID: PMC9050227 DOI: 10.1039/c9ra10874b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Non-cytotoxic, temperature-responsive and antibacterial poly(di(ethylene glycol)methyl ether methacrylate) - POEGMA188 based nanocomposite coatings attached to a glass surface were successfully prepared using ATRP polymerization. The thickness, morphology and wettability of the resulting coatings were analyzed using ellipsometry, AFM and contact angle measurements, respectively. The strong impact of the thicknesses of the POEGMA188 grafted brush coatings and content of AgNPs on the morphology and temperature-induced wettability changes of the nanocomposite was demonstrated. In addition to the strong temperature-dependent antibacterial activity, the proposed nanocomposite coatings have no significant cytotoxic effect towards normal cells. Moreover, the slight anti-cancer effect of AgNPs may be suggested.
Collapse
Affiliation(s)
- Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152 31-342 Kraków Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology Al. Mickiewicza 30 30-049 Kraków Poland
| | - Yana Shymborska
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Halyna Ohar
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Dorota Ochońska
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| |
Collapse
|
37
|
Ma M, Zhong Y, Jiang X. Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr Polym 2020; 236:116096. [PMID: 32172898 DOI: 10.1016/j.carbpol.2020.116096] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Polysaccharide hydrogels have been widely used as wound dressings because of their biocompatibility and ability to provide moist environment for wound healing. However, bacterial infection often delays the healing process. Herein, a novel thermosensitive and pH-sensitive hydroxypropyl chitin/tannic acid/ferric ion (HPCH/TA/Fe) composite hydrogel was fabricated by a simple assembly. The pre-cooled hydrogel precursor solution can be injected onto the irregular wound area and gel rapidly at physiological temperature. The TA not only acted as a crosslinker to enhance mechanical properties of the hydrogel, but also as an antibacterial agent which could be sustainably released in response to the acidic environment. The composite hydrogel showed excellent broad-spectrum antibacterial activity up to 7 days with negligible cytotoxicity. Moreover, the hydrogel can inhibit bacterial infection and accelerate the wound healing process without scars in the mouse experiment. These results indicate the potential application of this composite hydrogel for the infected wound healing.
Collapse
Affiliation(s)
- Mengsi Ma
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Yalan Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
38
|
Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110735. [PMID: 32204045 DOI: 10.1016/j.msec.2020.110735] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/30/2022]
Abstract
The emergence of bacterial resistance has become one of the top global concern, and silver nanoparticles (AgNPs) provide alternative strategies for the development of new antimicrobial agent. Herein, three small sizes (1.5-4.0 nm) of well-dispersed AgNPs were successfully synthesized using a thermo-sensitive P(NIPAM-co-MQ) copolymer with coordination ability as a stabilizer. The copolymer stabilized silver nanoparticles (AgNPs@P) displayed good thermo-sensitive characteristics and solution stability at pH = 6.5-8.0. AgNPs@P had high-efficiency and long-term antimicrobial properties for Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). In particular, AgNPs@P3 with ultrasmall size (1.59 nm) exhibited better antimicrobial activity against both normal bacteria and antibiotic-resistant bacteria with a very low MIC value of 4.05 μg/mL. Moreover, AgNPs@P also showed an interesting temperature-dependent antibacterial activity mainly owing to the effect of thermo-sensitive copolymer on AgNPs. It was found that the antibacterial activity of the AgNPs@P also was affected by the proportion of copolymer, sizes of AgNPs, and experimental temperature. The antibacterial mechanism of AgNPs@P involved a variety of ways including destroying cell membranes, internalization of AgNPs and generation of ROS. Our research provides a new perspective for the preparation of effective nanosilver antimicrobial agents.
Collapse
|
39
|
Seidi F, Zhao W, Xiao H, Jin Y, Saeb MR, Zhao C. Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polym Chem 2020. [DOI: 10.1039/d0py00787k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surface of solid substrates is the main part that interacts with the environment.
Collapse
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech
- and Joint International Research Lab of Lignocellulosic Functional Materials
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Huining Xiao
- Department of Chemical Engineering
- University of New Brunswick
- Fredericton
- E3B 5A3 Canada
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech
- and Joint International Research Lab of Lignocellulosic Functional Materials
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Mohammad Reza Saeb
- Department of Resin and Additives
- Institute for Color Science and Technology
- Tehran
- Iran
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
40
|
Zhao Y, Zhang Z, Lu Z, Wang H, Tang Y. Enhanced Energy Transfer in a Donor-Acceptor Photosensitizer Triggers Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38467-38474. [PMID: 31553165 DOI: 10.1021/acsami.9b12375] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photosensitizers (PSs) play a vital role in photodynamic therapy (PDT) for combating bacterial resistance and treating tumor. In this study, we report new donor-acceptor porphyrin PSs with a cationic conjugated oligomer (OPV) as a donor unit and porphyrin (TPP) as an acceptor unit by covalent linkage and achieved a fluorescence resonance energy transfer efficiency of 99% owing to their strong spectral overlap and short distance. The 1O2 yield of porphyrin derivatives is 121% (rose bengal as the standard reference) by virtue of OPVs' excellent light-harvesting ability and high fluorescence resonance energy transfer efficiency, greatly exceeding those of oligomer and porphyrin derivatives reported in the literature. Additionally, the cationic donors significantly improved the water solubility, decreased the aggregation of porphyrin, and promoted the adherence of the PSs to cell membranes through electrostatic interactions. As a result, the D-A porphyrin PSs exhibit dramatic PDT treatment efficiency. The half-inhibitory concentration is as low as 33 and 88 nM for methicillin-resistant Staphylococcus aureus and Escherichia coli, respectively. Therefore, this study provides a new strategy to construct PSs with high 1O2 yield and an excellent treatment effect at a low dose of PSs, which is promising for application in PDT used to treat cancer and microbial infections.
Collapse
Affiliation(s)
- Yantao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Ziqi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhuanning Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Huan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yanli Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
41
|
Yang H, Shen L, Bu H, Li G. Stable and biocompatible hydrogel composites based on collagen and dialdehyde carboxymethyl cellulose in a biphasic solvent system. Carbohydr Polym 2019; 222:114974. [DOI: 10.1016/j.carbpol.2019.114974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|
42
|
Ghasemlou M, Daver F, Ivanova EP, Rhim JW, Adhikari B. Switchable Dual-Function and Bioresponsive Materials to Control Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22897-22914. [PMID: 31180196 DOI: 10.1021/acsami.9b05901] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The colonization of undesired bacteria on the surface of devices used in biomedical and clinical applications has become a persistent problem. Different types of single-function (cell resistance or bactericidal) bioresponsive materials have been developed to cope with this problem. Even though these materials meet the basic requirements of many biomedical and clinical applications, dual-function (cell resistance and biocidal) bioresponsive materials with superior design and function could be better suited for these applications. The past few years have witnessed the emergence of a new class of dual-function materials that can reversibly switch between cell-resistance and biocidal functions in response to external stimuli. These materials are finding increased applications in biomedical devices, tissue engineering, and drug-delivery systems. This review highlights the recent advances in design, structure, and fabrication of dual-function bioresponsive materials and discusses translational challenges and future prospects for research involving these materials.
Collapse
Affiliation(s)
| | | | - Elena P Ivanova
- School of Science , RMIT University , Melbourne VIC 3000 , Australia
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, Department of Food and Nutrition, Bionanocomposite Research Center , Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu , Seoul 02447 , Republic of Korea
| | | |
Collapse
|
43
|
Raczkowska J, Stetsyshyn Y, Awsiuk K, Brzychczy-Włoch M, Gosiewski T, Jany B, Lishchynskyi O, Shymborska Y, Nastyshyn S, Bernasik A, Ohar H, Krok F, Ochońska D, Kostruba A, Budkowski A. "Command" surfaces with thermo-switchable antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109806. [PMID: 31349441 DOI: 10.1016/j.msec.2019.109806] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 01/11/2023]
Abstract
In the presented work "smart" antibacterial surfaces based on silver nanoparticles (AgNPs) embedded in temperature-responsive poly(di(ethylene glycol)methyl ether methacrylate) - (POEGMA188) as well as poly(4-vinylpyridine) - (P4VP) coatings attached to a glass surface were successfully prepared. The composition, thickness, morphology and wettability of the resulting coatings were analyzed using ToF-SIMS, XPS, EDX, ellipsometry, AFM, SEM and CA measurements, respectively. Temperature-switched killing of the bacteria was tested against Escherichia coli ATCC 25922 (representative of Gram-negative bacteria) and Staphylococcus aureus ATCC 25923 (representative of Gram-positive bacteria) at 4 and 37 °C. In general at 4 °C no significant difference was observed between the amounts of bacteria accounted on the grafted brush coatings and within the control sample. In contrast, at 37 °C almost no bacteria were visible for temperature-responsive coating with AgNPs, whereas the growth of bacteria remains not disturbed for "pure" coating, indicating strong temperature-dependent antibacterial properties of AgNPs integrated into brushes.
Collapse
Affiliation(s)
- Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine.
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Benedykt Jany
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland
| | - Halyna Ohar
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Franciszek Krok
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Dorota Ochońska
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Andrij Kostruba
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Pekarska 50, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
44
|
Song L, Sun L, Zhao J, Wang X, Yin J, Luan S, Ming W. Synergistic Superhydrophobic and Photodynamic Cotton Textiles with Remarkable Antibacterial Activities. ACS APPLIED BIO MATERIALS 2019; 2:2756-2765. [DOI: 10.1021/acsabm.9b00149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Liwei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| |
Collapse
|
45
|
Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv Healthc Mater 2019; 8:e1801381. [PMID: 30609261 DOI: 10.1002/adhm.201801381] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Antibacterial coatings that eliminate initial bacterial attachment and prevent subsequent biofilm formation are essential in a number of applications, especially implanted medical devices. Although various approaches, including bacteria-repelling and bacteria-killing mechanisms, have been developed, none of them have been entirely successful due to their inherent drawbacks. In recent years, antibacterial coatings that are responsive to the bacterial microenvironment, that possess two or more killing mechanisms, or that have triggered-cleaning capability have emerged as promising solutions for bacterial infection and contamination problems. This review focuses on recent progress on three types of such responsive and synergistic antibacterial coatings, including i) self-defensive antibacterial coatings, which can "turn on" biocidal activity in response to a bacteria-containing microenvironment; ii) synergistic antibacterial coatings, which possess two or more killing mechanisms that interact synergistically to reinforce each other; and iii) smart "kill-and-release" antibacterial coatings, which can switch functionality between bacteria killing and bacteria releasing under a proper stimulus. The design principles and potential applications of these coatings are discussed and a brief perspective on remaining challenges and future research directions is presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| |
Collapse
|
46
|
Lin JF, Li J, Gopal A, Munshi T, Chu YW, Wang JX, Liu TT, Shi B, Chen X, Yan L. Synthesis of photo-excited Chlorin e6 conjugated silica nanoparticles for enhanced anti-bacterial efficiency to overcome methicillin-resistant Staphylococcus aureus. Chem Commun (Camb) 2019; 55:2656-2659. [DOI: 10.1039/c9cc00166b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nano photodynamic therapy to overcome multidrug resistant bacteria.
Collapse
|
47
|
Li M, Schlaich C, Willem Kulka M, Donskyi IS, Schwerdtle T, Unger WES, Haag R. Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion. J Mater Chem B 2019. [DOI: 10.1039/c9tb00534j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mussel-inspired coatings with tunable wettability were designed, showing enhanced antibacterial efficiency and reduced bacterial adhesion.
Collapse
Affiliation(s)
- Mingjun Li
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
| | - Christoph Schlaich
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
| | | | - Ievgen S. Donskyi
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
- BAM – Federal Institute for Material Science and Testing
| | - Tanja Schwerdtle
- Institute of Nutritional Science
- Department of Food Chemistry
- University of Potsdam
- D-14558 Nuthetal
- Germany
| | - Wolfgang E. S. Unger
- BAM – Federal Institute for Material Science and Testing
- Division of Surface Analysis and Interfacial Chemistry
- 12205 Berlin
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
| |
Collapse
|
48
|
Wang L, Zhao Q, Zhang Z, Lu Z, Zhao Y, Tang Y. Fluorescent Conjugated Polymer/Quarternary Ammonium Salt Co-assembly Nanoparticles: Applications in Highly Effective Antibacteria and Bioimaging. ACS APPLIED BIO MATERIALS 2018; 1:1478-1486. [DOI: 10.1021/acsabm.8b00422] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lianqi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Qi Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Zhuanning Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Yantao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Yanli Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| |
Collapse
|
49
|
Tan M, Horvàth L, Brunetto PS, Fromm KM. Trithiocarbonate-Functionalized PNiPAAm-Based Nanocomposites for Antimicrobial Properties. Polymers (Basel) 2018; 10:E665. [PMID: 30966699 PMCID: PMC6404129 DOI: 10.3390/polym10060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
In this study, four trithiocarbonate-functionalized PNiPAAms with different molecular weights were synthesized and used as a matrix to form composites with silver nanoparticles. Nanocomposites with several polymer-to-silver ratios P:Ag⁺ were prepared in order to evaluate the influence of silver loading. UV studies showed a thermoresponsive behavior of the nanocomposites with a thermo-reversibility according to cooling-heating cycles. Release kinetics demonstrated that the release of silver ions is mainly influenced by the size of the silver nanoparticles (AgNPs), which themselves depend on the polymer length. Antimicrobial tests against E. coli and S. aureus showed that some of the nanocomposites are antimicrobial and even full killing could be induced.
Collapse
Affiliation(s)
- Milène Tan
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Lenke Horvàth
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Priscilla S Brunetto
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
50
|
Casolaro M, Casolaro I, Akimoto J, Ueda M, Ueki M, Ito Y. Antibacterial Properties of Silver Nanoparticles Embedded on Polyelectrolyte Hydrogels Based on α-Amino Acid Residues. Gels 2018; 4:E42. [PMID: 30674818 PMCID: PMC6209242 DOI: 10.3390/gels4020042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Polyelectrolyte hydrogels bearing l-phenylalanine (PHE), l-valine (AVA), and l-histidine (Hist) residues were used as scaffolds for the formation of silver nanoparticles by reduction of Ag⁺ ions with NaBH₄. The interaction with the metal ion allowed a prompt collapse of the swollen hydrogel, due to the neutralization reaction of basic groups present on the polymer. The imidazole nitrogen of the hydrogel with Hist demonstrated greater complexing capacity with the Ag⁺ ion compared to the hydrogels with carboxyl groups. The subsequent reduction to metallic silver allowed for the restoration of the hydrogel's degree of swelling to the starting value. Transmission electron microscopy (TEM) and spectroscopic analyses showed, respectively, a uniform distribution of the 15 nm spherical silver nanoparticles embedded on the hydrogel and peak optical properties around a wavelength of 400 nm due to the surface plasmonic effect. Unlike native hydrogels, the composite hydrogels containing silver nanoparticles showed good antibacterial activity as gram+/gram- bactericides, and higher antifungal activity against S. cerevisiae.
Collapse
Affiliation(s)
- Mario Casolaro
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018⁻2022), Università degli Studi di Siena, via A. Moro, 2-53100 Siena, Italy.
| | - Ilaria Casolaro
- ASST Valtellina e Alto Lario, Dipartimento di Salute Mentale, via Stelvio, 25-23100 Sondrio, Italy.
| | - Jun Akimoto
- Nano Medical Engineering Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Masashi Ueki
- Nano Medical Engineering Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|