1
|
Negi M, Venkatesh V. Near-infrared light-activatable iridium(iii) complexes for synergistic photodynamic and photochemotherapy. Chem Sci 2025; 16:6376-6382. [PMID: 40092598 PMCID: PMC11907644 DOI: 10.1039/d5sc00156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Near-infrared (NIR) light-activatable photosensitizers (PSs) have garnered tremendous interest as PSs for photodynamic therapy (PDT) due to the deeper tissue penetration ability and lower toxicity of NIR radiation. However, the low reactive oxygen species (ROS) production, poor tumor accumulation, and residual toxicity of these PSs pose major challenges for further development in this regime. In this regard, we have meticulously designed and synthesized two novel mitochondria-targeting iridium(iii)-dithiocarbamate-cyanine complexes, Ir1@hcy and Ir2@hcy. In particular, Ir2@hcy exhibited both type I and type II PDT with excellent singlet oxygen (1O2) and hydroxyl radical (˙OH) generation ability under 637 nm/808 nm irradiation, even at an ultra-low power intensity (2 mW cm-2). Under higher-power irradiation (100 mW cm-2), the reactive oxygen species (ROS) production by Ir2@hcy was augmented. The elevated levels of ROS caused the disintegration of Ir2@hcy to produce cytotoxic oxindole scaffolds through the dioxetane mechanism. The synergistic production of ROS and cytotoxic species effectively induced mitochondria-mediated cancer cell death in both in vitro and 3D tumor spheroid models, offering a new avenue to develop combinational phototherapy (PDT + PACT) for cancer treatment with spatio-temporal precision.
Collapse
Affiliation(s)
- Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|
2
|
Tang Y, Zhang Q, Chen H, Chen G, Li Z, Chen G, Lin L, Yu Z, Su M, Zhang B. A Integrated Molecule Based on Ferritin Nanoplatforms for Inducing Tumor Ferroptosis with the Synergistic Photo/Chemodynamic Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5909-5920. [PMID: 39818706 DOI: 10.1021/acsami.4c18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated. In this study, we present a multifunctional nanoplatform, Zn-A4@FRT, featuring a integrated molecule Zn-A4, utilizing tumor-actively targeted ferritin delivery platforms to modulate the TME. In this system, Zn-A4, synthesized from zinc porphyrin (ZPP) and benzaldehyde nitrogen mustellin (BNM), serves dual roles in photo/chemodynamic therapy. Under 660 nm near-infrared laser irradiation, Zn-A4@FRT activates ZPP photosensitizers to produce toxic ROS by depleting dissolved oxygen in cancer cells, while a Fenton-like reaction enhances ROS generation. This system also induces ferroptosis through lipid peroxide accumulation, glutathione depletion, and glutathione peroxidase 4 downregulation, thereby improving the efficacy of chemodynamic therapy (CDT) and PDT in breast cancer treatment. This multifaceted strategy highlights the potential of Zn-A4@FRT as an effective approach for comprehensive cancer treatment.
Collapse
Affiliation(s)
- Yan Tang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiaoling Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huiyang Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guimei Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Gui Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Lin
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Su
- Department of Oncology, Guangzhou Development District Hospital, Guangzhou, Guangdong 510730, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
| |
Collapse
|
3
|
Monisha S, Myithili T, Ajithkumar S, Sudharsan K, Keerthana T, Sarikalakshmi B, Pandi M, Kalimuthu P. Aggregation assisted enhancement of singlet oxygen generation by 4-ethynylphenyl substituted porphyrin photosensitizer for photodynamic therapy. Photochem Photobiol 2024. [PMID: 39706810 DOI: 10.1111/php.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
Modulating the photophysical properties of photosensitizers is an effective approach to enhance singlet oxygen generation for photodynamic therapy. Porphyrins are the most widely used photosensitizers due to their biocompatible nature. Aggregation-induced emission (AIE) characteristics of photosensitizers are one of the advantageous features that will enhance fluorescence, intersystem crossing, and efficient triplet state generation. Herein, we demonstrate two glycosylated porphyrin photosensitizers, ZnGEPOH (with two ethynyl groups) and ZnGPOH (without two ethynyl groups), which exhibit AIE. Detailed studies revealed that ZnGEPOH exhibited a two-fold increase in singlet oxygen production than ZnGPOH due to AIE. The photo-cytotoxicity of ZnGPOH and ZnGEPOH were evaluated using cancer cell lines A549 and AGS. ZnGEPOH shows superior photo-cytotoxicity with cell viability of 21% and 19% for A549 and AGS, respectively, at 250 μg/mL concentration in 48 h. Moreover, ZnGEPOH exhibits minimal photo-cytotoxicity towards the control cell line HEK 293.
Collapse
Affiliation(s)
- Sekar Monisha
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Thangavel Myithili
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Samuthirakani Ajithkumar
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Kumaresan Sudharsan
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Thangaraj Keerthana
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Baskaran Sarikalakshmi
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Mohan Pandi
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Palanisamy Kalimuthu
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| |
Collapse
|
4
|
Ouyang J, Li D, Zhu L, Cai X, Liu L, Pan H, Ma A. Application and Challenge of Metalloporphyrin Sensitizers in Noninvasive Dynamic Tumor Therapy. Molecules 2024; 29:4828. [PMID: 39459197 PMCID: PMC11510167 DOI: 10.3390/molecules29204828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy. Developing efficient sensitizers with good biocompatibility and controllability is an important aim in dynamic therapy. Porphyrins and metalloporphyrins attract great attention due to their excellent photophysical properties and low cytotoxicity under non-light. Compared to porphyrins, metalloporphyrins show greater potential for dynamic therapy due to their enhanced photochemical and photophysical properties after metal ions coordinate with porphyrin rings. This paper reviews some metalloporphyrin-based sensitizers used in photo/sonodynamic therapy and combined therapy. In addition, the probable challenges and bottlenecks in clinical translation are also discussed.
Collapse
Affiliation(s)
- Jiacheng Ouyang
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Dan Li
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Cai
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Aiqing Ma
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang 523808, China
| |
Collapse
|
5
|
Pebam M, Khatun S, Ali MS, Srivastava A, Rengan AK. Self-assembled IR dye/mitoxantrone loaded Porphysomes nanosystem for enhanced combinatorial chemo-photothermal cancer therapy. Colloids Surf B Biointerfaces 2024; 241:113985. [PMID: 38838443 DOI: 10.1016/j.colsurfb.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chemo-photothermal therapy (PTT) is an emerging non-invasive cancer treatment modality. Light-responsive porphysomes (DPP IR Mtx @Lipo NPs) nanosystems ablate breast cancer cells upon oxidative stress and hyperthermia. The unique self-assembled porphysomes were formed spherical shape in the size range of 150 ± 30 nm formed by the co-assembly of porphyrins along with IR 775 and chemotherapeutic drug, Mitoxantrone (Mtx), forming a camouflaged nanosystem (DPP IR Mtx @Lipo NPs, porphysomes). The advent of the prepared porphysomes aids in proper tuning of NIR absorbance improving singlet oxygen species generation among other anticancer drugs. The eminent release of DPP and adjuvant chemo-drug, Mitoxantrone from the self-assembled porphysomes is triggered by IR 775, a NIR photosensitizer upon laser irradiation. These multifunctional DPP IR Mtx @Lipo NPs have an efficient photothermal conversion efficiency of 65.8% as well as bioimaging properties. In-vitro studies in 2D and 3D models showed a significant cell death of 4T1 cells via the apoptotic pathway when irradiated with NIR laser, causing minimal damage to nearby healthy cells. DPP IR Mtx @Lipo NPs exhibited commingled PDT/PTT interdependent via NIR laser exposure, leading to mitochondrial disruption. Interestingly, the transient transfection using p53-GFP in cancer cells followed by DPP IR Mtx @Lipo NPs treatment causes rapid cell death. The activation of p53-dependent apoptosis pathways was vividly expressed, evidenced by the upregulation of Bax and increased pattern of Caspase-3 cleavage. This effect was pronounced upon transfection and induction with DPP IR Mtx @Lipo NPs, particularly in comparison to non-transfected malignant breast cancer 4T1 cells.
Collapse
Affiliation(s)
- Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aditya Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India.
| |
Collapse
|
6
|
Filošević Vujnović A, Čabrijan S, Mušković M, Malatesti N, Andretić Waldowski R. Systemic Effects of Photoactivated 5,10,15,20-tetrakis( N-methylpyridinium-3-yl) Porphyrin on Healthy Drosophila melanogaster. BIOTECH 2024; 13:23. [PMID: 39051338 PMCID: PMC11270250 DOI: 10.3390/biotech13030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Porphyrins are frequently employed in photodynamic therapy (PDT), a non-invasive technique primarily utilized to treat subcutaneous cancers, as photosensitizing agents (PAs). The development of a new PA with improved tissue selectivity and efficacy is crucial for expanding the application of PDT for the management of diverse cancers. We investigated the systemic effects of 5,10,15,20-tetrakis(N-methylpyridinium-3-yl)-porphyrin (TMPyP3) using Drosophila melanogaster adult males. We established the oral administration schedule and demonstrated that TMPyP3 was absorbed and stored higher in neuronal than in non-neuronal extracts. Twenty-four hours after oral TMPyP3 photoactivation, the quantity of hydrogen peroxide (H2O2) increased, but exclusively in the head extracts. Regardless of photoactivation, TMPyP3 resulted in a reduced concentration of H2O2 after 7 days, and this was linked with a decreased capacity to climb, as indicated by negative geotaxis. The findings imply that systemic TMPyP3 therapy may disrupt redox regulation, impairing cellular signaling and behavioral outcomes in the process. To determine the disruptive effect of porphyrins on redox homeostasis, its duration, and the mechanistic variations in retention across various tissues, more research is required.
Collapse
Affiliation(s)
- Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (S.Č.); (M.M.); (N.M.); (R.A.W.)
| | | | | | | | | |
Collapse
|
7
|
Li Z, Zhang Z, Ma L, Wen H, Kang M, Li D, Zhang W, Luo S, Wang W, Zhang M, Wang D, Li H, Li X, Wang H. Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202400049. [PMID: 38193338 DOI: 10.1002/anie.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Danxia Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
8
|
Nisa K, Lone IA, Arif W, Singh P, Rehmen SU, Kumar R. Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Med Chem 2023; 14:2438-2458. [PMID: 38107171 PMCID: PMC10718592 DOI: 10.1039/d3md00396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.
Collapse
Affiliation(s)
- Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ishfaq Ahmad Lone
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Waseem Arif
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University Meerut-250005 India
| | - Sajad Ur Rehmen
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| |
Collapse
|
9
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
10
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
11
|
Cai F, Ye K, Chen M, Tian Y, Chen P, Lin H, Chen T, Ma L. High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Liu Z, Li H, Tian Z, Liu X, Guo Y, He J, Wang Z, Zhou T, Liu Y. Porphyrin-Based Nanoparticles: A Promising Phototherapy Platform. Chempluschem 2022; 87:e202200156. [PMID: 35997087 DOI: 10.1002/cplu.202200156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, is an emerging form of non-invasive treatment. The combination of imaging technology and phototherapy is becoming an attractive development in the treatment of cancer, as it allows for highly effective therapeutic results through image-guided phototherapy. Porphyrins have attracted significant interest in the treatment and diagnosis of cancer due to their excellent phototherapeutic effects in phototherapy and their remarkable imaging capabilities in fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. However, porphyrins suffer from poor water solubility, low near-infrared absorption and insufficient tumor accumulation. The development of nanotechnology provides an effective way to improve the bioavailability, phototherapeutic effect and imaging capability of porphyrins. This review highlights the research results of porphyrin-based small molecule nanoparticles in phototherapy and image-guided phototherapy in the last decade and discusses the challenges and directions for the development of porphyrin-based small molecule nanoparticles in phototherapy.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Hui Li
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Tao Zhou
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| |
Collapse
|
13
|
Zhang R, Zhu Y, Luo X, Zhang Q, Wu F. Synergistic photodynamic and photothermal effects of organic nanomaterials derived from cross-linked porphyrin polymer. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
|
15
|
Zhang Y, Wang Y, Chen L, Zheng J, Fan X, Xu X, Zhou G, Ullah N, Feng X. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing. Biomaterials 2022; 285:121546. [DOI: 10.1016/j.biomaterials.2022.121546] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|
16
|
Yue L, Li H, Sun Q, Luo X, Wu F, Zhu X. Organic Nanoparticles Based on D-A-D Small Molecule: Self-Assembly, Photophysical Properties, and Synergistic Photodynamic/Photothermal Effects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:502. [PMID: 35057220 PMCID: PMC8781609 DOI: 10.3390/ma15020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Cancer is one of the major diseases threatening human health. Traditional cancer treatments have notable side-effects as they can damage the immune system. Recently, phototherapy, as a potential strategy for clinical cancer therapy, has received wide attention due to its minimal invasiveness and high efficiency. Herein, a small organic molecule (PTA) with a D-A-D structure was prepared via a Sonogashira coupling reaction between the electron-withdrawing dibromo-perylenediimide and electron-donating 4-ethynyl-N,N-diphenylaniline. The amphiphilic organic molecule was then transformed into nanoparticles (PTA-NPs) through the self-assembling method. Upon laser irradiation at 635 nm, PTA-NPs displayed a high photothermal conversion efficiency (PCE = 43%) together with efficient reactive oxygen species (ROS) generation. The fluorescence images also indicated the production of ROS in cancer cells with PTA-NPs. In addition, the biocompatibility and photocytotoxicity of PTA-NPs were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and live/dead cell co-staining test. Therefore, the as-prepared organic nanomaterials were demonstrated as promising nanomaterials for cancer phototherapy in the clinic.
Collapse
Affiliation(s)
- Liangliang Yue
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, China
| | - Haolan Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
| | - Qi Sun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, China
| |
Collapse
|
17
|
Cao Y, Zhang X, Ren B, Yang X. Lactose-conjugated porphyrin: synthesis and photobiological evaluation as potential agents for photodynamic therapy. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porphyrin-based photosensitizers are conventional photodynamic agents that are used clinically. However, their clinical applications have been overshadowed by poor water solubility. In addition, they have weak tumor selectivity, which may cause undesirable side effects. The preparation of novel porphyrin derivatives has been explored for potential applications in photodynamic therapy (PDT). To achieve this goal, lactose-conjugated porphyrin nanoparticles (Lac-Por NPs) have been synthesized and characterized. PDT with Lac-Por NPs exhibited tumor-specific cytotoxicity in lactose receptor-overexpressing HepG2 cells in vitro and in vivo. In summary, we designed and synthesized lactose conjugate porphyrins with enhanced water solubility and tumor selectivity. This work expands the application range of porphyrin-based photosensitizers for cancer treatment.
Collapse
Affiliation(s)
- Yue Cao
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
| | - Xin Zhang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
| | - Bo Ren
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
| | - Xiaodong Yang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, Jilin 130052, People’s Republic of China
| |
Collapse
|
18
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 803] [Impact Index Per Article: 200.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Zhang Y, Fang F, Chen Y, Li M, Li L, Li W, Zhang J. Hollow mesoporous polyaniline nanoparticles with high drug payload and robust photothermal capability for cancer combination therapy. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Huang X, Sun X, Wang W, Shen Q, Shen Q, Tang X, Shao J. Nanoscale metal-organic frameworks for tumor phototherapy. J Mater Chem B 2021; 9:3756-3777. [PMID: 33870980 DOI: 10.1039/d1tb00349f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-Organic Frameworks (MOFs) are constructed from metal ions/cluster nodes and functional organic ligands through coordination bonds. Owing to the advantages of diverse synthetic methods, easy modification after synthesis, large adsorption capacity for heavy metals, and short equilibrium time, considerable attention has recently been paid to MOFs for tumor phototherapy. Through rational tuning of metal ions and ligands, MOFs present abundant properties for various applications. Light-triggered phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is an emerging cancer treatment approach. Nanosized MOFs can be applied as phototherapeutic agents to accomplish phototherapy with excellent phototherapeutic efficacy. This review outlines the latest advances in the field of phototherapy with various metal ion-based MOFs.
Collapse
Affiliation(s)
- Xuan Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Xu Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Qing Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Xuna Tang
- Department of Endodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang, Nanjing 210008, P. R. China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| |
Collapse
|
21
|
Nie X, Wu S, Liao S, Chen J, Huang F, Li W, Wang Q, Wei Q. Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125786. [PMID: 33873032 DOI: 10.1016/j.jhazmat.2021.125786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Toward the goal of preventing microbial infections in hospitals or other healthcare institutions, here we developed a self-disinfecting textile with synergistic photodynamic/photothermal antibacterial property. Porphyrinic Metal-organic frameworks (PCN-224) and Ag nanoparticles (NPs) were in situ grown on knitted cotton textile (KCT) successively to achieve rapid photodynamic antibacterial and durable bacteriostatic effect. Light-driven singlet oxygen (1O2) generated from PCN-224 and heat generated from Ag could function synergistically to realize rapid bacterial inactivation. Interestingly, 1O2 could promote Ag NPs to be degraded to release more Ag+ ions, achieving durable bacteriostatic effect. Antibacterial assay demonstrated 6 and 4.49 log unit inactivation toward two typical bacterial strains (E. coli and S. aureus) under Xe arc lamp in 30 min, respectively. Even after ten washes, the textile still maintained 6 log unit bacterial inactivation. Mechanism study proved light-driven 1O2 and heat are main factors causing bacterial inactivation, they could work synergistically to enhance bacterial inactivation efficiency. Photothermal study revealed that the textile could reach to 69 ℃ under visible light and 79.1 ℃ under 780-nm light-laser, which showed much potential in photothermal material applications. Taken together, our findings demonstrated a synergistic self-disinfecting cotton textile that exhibited constructive significance for preventing microbial infections and transmissions.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Juanfen Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids Surf B Biointerfaces 2021; 205:111841. [PMID: 33992824 DOI: 10.1016/j.colsurfb.2021.111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
Phototherapy has gained great attention in the past decade owing to the advantages of high selectivity and low toxicity. However, it's still a challenge to develop a single photosensitizer that can achieve both photothermal and photodynamic effects. Herein, we design and synthesize a new organic compound (PIT) with a typical D-A-D structure through the covalent conjugation of perylene diimides (PDI) and triphenylamine (TPA). The amphiphilic PIT could be transformed to the nanoparticles (PIT NPs) through nanoprecipitation method. PIT NPs exhibit good water dispersibility with particle size around 70 nm. Because of the efficient NIR absorption, PIT NPs display high photothermal conversion efficiency (PCE) (η = 46.1 %) and strong photoacoustic signal under irradiation of 635 nm laser. Moreover, under the same laser irradiation, significant reactive oxygen species can be induced by PIT NPs both in aqueous solution and cancer cells. The MTT assay demonstrate the good biocompatibility and outstanding photocytotoxicity of PIT NPs. Thus, the as-prepared PIT NPs could be used as excellent candidates for photoacoustic imaging and photodynamic/photothermal therapy.
Collapse
|
23
|
Bhattacharyya A, Jameei A, Karande AA, Chakravarty AR. BODIPY-attached zinc(II) complexes of curcumin drug for visible light assisted photo-sensitization, cellular imaging and targeted PDT. Eur J Med Chem 2021; 220:113438. [PMID: 33915370 DOI: 10.1016/j.ejmech.2021.113438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Boron-dipyrromethene (BODIPY) based photosensitizers as porphyrinoids and curcumin as natural product possess exciting photophysical features suitable for theranostic applications, namely, imaging and photodynamic therapy (PDT). Limited aqueous solubility and insufficient physiological stability, however, reduce their efficacy significantly. We have designed a novel strategy to deliver these two unusable cytotoxins simultaneously in cancer cells and herein, report the synthesis, characterization and imaging-assisted photocytotoxicity of three zinc(II) complexes containing N3-donor dipicolylamine (dpa) ligands (L1-3) and O,O-donor curcumin (Hcur) viz. [Zn(L1)(cur)]Cl (1), [Zn(L2)(cur)]Cl (2) and [Zn(L3)(cur)]Cl (3), where L2 and L3 have pendant fluorescent BODIPY and non-emissive di-iodo-BODIPY moieties. Metal chelation imparted remarkable biological stability (pH ∼7.4) to the respective ligands and induces significant aqueous solubility. These ternary complexes could act as replacements of the existing metalloporphyrin-based PDT photosensitizers as their visible-light photosensitizing ability is reinforced by the dual presence of blue light absorbing curcumin and green light harvesting BODIPY units. Complex 2 having emissive BODIPY unit L2 and curcumin, showed mitochondria selective localization in HeLa, MCF-7 cancer cells and complex 3, the di-iodinated analogue of complex 2, exhibited type-I/II PDT activity via inducing apoptosis through mitochondrial membrane disruption in cancer cells while being significantly nontoxic in dark and to the healthy cells.
Collapse
Affiliation(s)
- Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India
| | - Aida Jameei
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India.
| |
Collapse
|
24
|
Self-assembly of a symmetrical dimethoxyphenyl substituted Zn(II) phthalocyanine into nanoparticles with enhanced NIR absorbance for singlet oxygen generation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Bhattacharyya A, Jameei A, Saha R, Garai A, Karande AA, Chakravarty AR. BODIPY-linked cis-dichlorido zinc(ii) conjugates: the strategic design of organelle-specific next-generation theranostic photosensitizers. Dalton Trans 2021; 50:103-115. [DOI: 10.1039/d0dt03342a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cis-dichlorido Zn(ii)–BODIPY-based smart theranostic photosensitizers, as alternatives to Zn-porphyrins/phthalocyanines, show mitochondrion-targeted and imaging guided type-II photodynamic therapeutic activity.
Collapse
Affiliation(s)
- Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Aida Jameei
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Anjali A. Karande
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
26
|
Gao Y, Li Q, Li C, Gao L, Chen H, Liu T, Huang Y, Liu Z, Li S. Terselenophene Regioisomer Conjugated Polymer Materials for High-Performance Cancer Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55605-55613. [PMID: 33258595 DOI: 10.1021/acsami.0c16064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular isomerization is a fundamental issue in the development of functional materials, with a crucial impact on photophysical properties. However, up to now, their effect on photothermal conversion is rarely investigated. Here, two near-infrared (NIR)-absorbing regioisomer conjugated polymers integrated with cis/trans-terselenophenes are designed and synthesized as efficient photothermal agents to enhance cancer phototheranostics. It is demonstrated that enhanced quinoidal resonance of trans-terselenophenes allows the resulting trans-CP to possess more planar backbone to further increase the effective conjugation length and result in the strong absorption spectra at 808 nm. Characterization of photophysical properties has proved that the photothermal conversion efficiency of trans-CP nanoparticles is up to 61.4%, and they are 210% as strong as cis-CP nanoparticles (29.4%). Further in vitro and in vivo works demonstrate efficient photothermal therapeutic effects with the guidance of photoacoustic imaging. This work affords a new understanding of the molecular isomerization into the development of conjugated materials for high-performance cancer phototheranostics.
Collapse
Affiliation(s)
- Yijian Gao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China
| | - Qianqian Li
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China
| | - Chunli Li
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Leyi Gao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Tingting Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
27
|
Self-assembly of methylene violet-conjugated perylene diimide with photodynamic/photothermal properties for DNA photocleavage and cancer treatment. Colloids Surf B Biointerfaces 2020; 196:111351. [DOI: 10.1016/j.colsurfb.2020.111351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
|
28
|
Mei L, Gao X, Shi Y, Cheng C, Shi Z, Jiao M, Cao F, Xu Z, Li X, Zhang J. Augmented Graphene Quantum Dot-Light Irradiation Therapy for Bacteria-Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40153-40162. [PMID: 32805864 DOI: 10.1021/acsami.0c13237] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper proposes a highly efficient antibacterial system based on a synergistic combination of photodynamic therapy, photothermal therapy, and chemotherapy. Chitosan oligosaccharide functionalized graphene quantum dots (GQDs-COS) with short-term exposure to 450 nm visible light are used to promote rapid healing in bacteria-infected wounds. The GQDs undergo strong photochemical transformation to rapidly produce radical oxygen species and heat under light illumination, while the COS has an innate antimicrobial ability. Moreover, the positively charged GQDs-COS can easily capture bacteria via electrostatic interactions and kill Gram-positive and Gram-negative bacteria by multivalent interactions and synergistic effects. The antibacterial action of this nanocomposite causes irreversible damage to outer and inner bacterial membranes, resulting in cytoplasm leakage and death. The system has good hemocompatibility and low cytotoxicity and can improve the healing of infected wounds, as demonstrated by the examination of pathological tissue sections and inflammatory markers. These results suggest that GQDs anchored with bioactive molecules are a potential photo-activated antimicrobial strategy for anti-infective therapy.
Collapse
Affiliation(s)
- Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xiaoran Gao
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, P. R. China
- College of International Education, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yanmei Shi
- Scientific Research Center, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Cui Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, P. R. China
| | - Zongkai Shi
- College of International Education, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Fengyi Cao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Zhenlong Xu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xiumin Li
- Scientific Research Center, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, P. R. China
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, United States
| | - Junxia Zhang
- Scientific Research Center, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, P. R. China
| |
Collapse
|
29
|
Sun YM, Jiang X, Liu ZY, Liu LG, Liao YH, Zeng L, Ye Y, Liu HY. Hydroxy-corrole and its gallium(III) complex as new photosensitizer for photodynamic therapy against breast carcinoma. Eur J Med Chem 2020; 208:112794. [PMID: 32916313 DOI: 10.1016/j.ejmech.2020.112794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Three mono-hydroxy corroles 1-3 and their gallium(III) complexes Ga1-3 were synthesized, and their photodynamic antitumour activities towards breast cancer cells were investigated. All corroles showed excellent cytotoxicity against the MDA-MB-231 and 4T1 cell lines upon light irradiation at 625 nm. Ga3 exhibited excellent phototoxicity and selectivity against MDA-MB-231 cells, with an IC50 of 0.06 ± 0.03 μM and a selective index value of 1338.83 (relative to human normal Huvec cells). The performance of Ga3 was even better than that of the clinical photodynamic therapy drug m-THPC. A preliminary mechanistic investigation revealed that corrole 3 and Ga3 were mainly located in the cytoplasm. Upon irradiation, they could generate intracellular reactive oxygen to destroy the mitochondrial membrane potential and arrest the cell cycle at the sub-G1 phase. Flow cytometry revealed that corrole 3 and Ga3 induced cancer cell apoptosis after photodynamic treatment. Corrole 3 and Ga3 displayed negligible cytotoxicity in the dark. These results suggest that corrole 3 and Ga3 are promising candidates for use in the photodynamic therapy of breast cancer.
Collapse
Affiliation(s)
- Yan-Mei Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Xiao Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Ze-Yu Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Ling-Gui Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yu-Hui Liao
- Molecular Diagnosis & Treatment of Central Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Lei Zeng
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
30
|
Wu F, Chen J, Yue L, Li H, Wang H, Zhu X. A Simple Strategy to Fabricate Phthalocyanine-Encapsulated Nanodots for Magnetic Resonance Imaging and Antitumor Phototherapy. ACS APPLIED BIO MATERIALS 2020; 3:3681-3689. [PMID: 35025239 DOI: 10.1021/acsabm.0c00325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photothermal agents can transfer the absorbed light to heat energy, offering a noninvasive and controllable method to kill tumor cells and tissues. Here, we develop a simple and high-output strategy to prepare photothermal nanodots (MnPc-NDs) by the self-assembly and carbonization of manganese phthalocyanine. The aggregation of phthalocyanine molecules in the nanodots induces an efficient photothermal conversion. Thanks to the high thermal stability of phthalocyanine, the macrocycle is well preserved in the core of nanodots under the controlled hydrothermal temperature. Moreover, the as-prepared MnPc-NDs disperse well in aqueous solution with an average nanoscale size around 60 nm. The intense absorption in near-infrared (NIR) region, along with efficient reactive oxygen generation, high photothermal conversion efficiency (η = 59.8%), and excellent magnetic resonance contrast performances of MnPc-NDs endow them with great potential for MRI-guided cancer phototherapy. Therefore, the contribution provides a facile way to develop theranostic MnPc-NDs for precise and efficient cancer imaging and therapy.
Collapse
Affiliation(s)
- Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Jingwen Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P. R. China
| | - Liangliang Yue
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China.,Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Haolan Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P. R. China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| |
Collapse
|
31
|
Jin R, Yang J, Ding P, Li C, Zhang B, Chen W, Zhao YD, Cao Y, Liu B. Antitumor immunity triggered by photothermal therapy and photodynamic therapy of a 2D MoS 2 nanosheet-incorporated injectable polypeptide-engineered hydrogel combinated with chemotherapy for 4T1 breast tumor therapy. NANOTECHNOLOGY 2020; 31:205102. [PMID: 32018232 DOI: 10.1088/1361-6528/ab72b9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A multifunctional PC10A/DOX/MoS2 hydrogel was designed and prepared for chemotherapy/photothermal therapy/photodynamic therapy of 4T1 tumor, and the immune responses triggered by photothermal and photodynamic effect of MoS2 nanosheet in the hydrogel were also studied. Positively charged DOX and negatively charged PC10A were loaded on the surface of MoS2 nanosheet through layer-by-layer method to prepare hybrid PC10A/DOX/MoS2 nanoparticles. PC10A/DOX/MoS2 nanoparticles were dispersed in PC10A hydrogel to prepare PC10A/DOX/MoS2 hydrogel. 2D MoS2 nanosheet in the hydrogel was simultaneously utilized as photothermal agent and photodynamic agent for the generation of hyperthermia and reactive oxygen species, respectively. This PC10A/DOX/MoS2 hydrogel was injectable and possessed excellent biocompatibility. The results of in vivo tumor-bearing mice experiments showed that a remarkably enhance tumor inhibition was observed by the combination of chemo-photothermal-photodynamic therapy compared with photothermal therapy, photodynamic therapy, or chemotherapy alone. In addition, the results of in vivo therapy exhibited that the PC10A/DOX/MoS2 hydrogel with laser irradiation could activate antitumor immune effects to suppress the growth of primary 4T1 breast tumors and distal lung metastatic nodules. Therefore, these results demonstrated that the PC10A/DOX/MoS2 hydrogel was promising to be utilized in antitumor immunity therapy triggered by photothermal therapy and photodynamic therapy for malignant tumor.
Collapse
Affiliation(s)
- Ruimei Jin
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Benavides BS, Valandro S, Cioloboc D, Taylor AB, Schanze KS, Kurtz DM. Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry 2020; 59:1618-1629. [PMID: 32283930 PMCID: PMC7927158 DOI: 10.1021/acs.biochem.9b01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes b at specific sites in its protein shell. The heme b can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]n} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al. (2018) Biomacromolecules 19, 178-187]. This report describes the X-ray crystal structure of ZnPP-Bfr and the effects of loaded iron on the photophysical properties of the ZnPP. The crystal structure of ZnPP-Bfr shows a unique six-coordinate zinc in the ZnPP with two axial methionine sulfur ligands. Steady state and transient ultraviolet-visible absorption and luminescence spectroscopies show that irradiation with light overlapping the Soret absorption causes oxidation of ZnPP to the cation radical ZnPP•+ only when the ZnPP-Bfr is loaded with [FeO(OH)]n. Femtosecond transient absorption spectroscopy shows that this photooxidation occurs from the singlet excited state (1ZnPP*) on the picosecond time scale and is consistent with two oxidizing populations of Fe3+, which do not appear to involve the ferroxidase center iron. We propose that [FeO(OH)]n clusters at or near the inner surface of the protein shell are responsible for ZnPP photooxidation. Hopping of the photoinjected electrons through the [FeO(OH)]n would effectively cause migration of Fe2+ through the inner cavity to pores where it exits the protein. Reductive iron mobilization is presumed to be a physiological function of Bfrs. The phototriggered Fe3+ reduction could be used to identify the sites of iron mobilization within the Bfr protein shell.
Collapse
Affiliation(s)
- Brenda S Benavides
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Silvano Valandro
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniela Cioloboc
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology and X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio (UT Health San Antonio), San Antonio, Texas 78229, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Donald M Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
33
|
Deng J, Li H, Yang M, Wu F. Palladium porphyrin complexes for photodynamic cancer therapy: effect of porphyrin units and metal. Photochem Photobiol Sci 2020; 19:905-912. [DOI: 10.1039/c9pp00363k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ROS generation ability and photocytotoxicity of the synthesized porphyrin compounds were enhanced with the number of porphyrin units in the photosensitizers.
Collapse
Affiliation(s)
- Jingran Deng
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Haolan Li
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Mengqian Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| |
Collapse
|
34
|
Kyropoulou M, DiLeone S, Lanzilotto A, Constable EC, Housecroft CE, Meier WP, Palivan CG. Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromol Biosci 2019; 20:e1900291. [DOI: 10.1002/mabi.201900291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Myrto Kyropoulou
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Stefano DiLeone
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Angelo Lanzilotto
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Edwin C. Constable
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | | | - Wolfgang P. Meier
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| |
Collapse
|
35
|
Zhang C, Wu J, Liu W, Zheng X, Wang P. Natural-Origin Hypocrellin-HSA Assembly for Highly Efficient NIR Light-Responsive Phototheranostics against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44989-44998. [PMID: 31755268 DOI: 10.1021/acsami.9b18345] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tumor hypoxia severely limits the therapeutic efficacy of solid tumors in photodynamic therapy. One strategy is to develop photosensitizers with simultaneously high efficiency in photodynamic (PDT) and photothermal therapies (PTT) in a single natural-origin phototheranostic agent to overcome this problem. However, less attention has been paid to the natural-origin phototheranostic agent with high PDT and PTT efficiencies even though they have negligible side effects and are environmentally sustainable in comparison with many reported phototheranostic agents. In addition, almost all clinical applied photosensitizers are of natural origin so far. Herein, we synthesized a natural product-based hypocrellin derivative (AETHB), with a high singlet oxygen quantum yield of 0.64 as an efficient photosensitizer different from commercially available porphyrin-based photosensitizers. AETHB is further assembled with human serum albumin to construct nanoparticles (HSA-AETHB NPs) with a high photothermal conversion efficiency (more than 50%). As-prepared HSA-AETHB NPs have shown good water solubility and biocompatibility, pH and light stability, wide absorption (400-750 nm), and NIR emission centered at 710 nm. More importantly, HSA-AETHB NPs can be applied for fluorescent/photoacoustic dual-mode imaging and simultaneously highly efficient PDT/PTT in hypoxic solid tumors. Therefore, this natural-origin multifunctional phototheranostic agent is showing very promising for effective, precise, and safe cancer therapy in clinical applications.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
36
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [PMID: 31546465 DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
37
|
Guan Q, Zhou LL, Li YA, Li WY, Wang S, Song C, Dong YB. Nanoscale Covalent Organic Framework for Combinatorial Antitumor Photodynamic and Photothermal Therapy. ACS NANO 2019; 13:13304-13316. [PMID: 31689082 DOI: 10.1021/acsnano.9b06467] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite the excellent photodynamic and photothermal properties of organic molecular photosensitizers (PSs) and photothermal agents (PTAs), such as porphyrin and naphthalocyanine, their poor water solubility severely impedes their biological applications. Covalent organic frameworks (COFs), as an emerging class of organic crystalline porous materials, possess free active end groups (bonding defects) and large inner pores, which make them an ideal type of nanocarriers for loading hydrophobic organic molecular PSs and PTAs by both bonding defect functionalization (BDF) and guest encapsulation approaches to obtain multifunctional nanomedicines for PDT/PTT combination therapy. In this work, we report a nanoscale COF (NCOF) prepared via a facile synthetic approach under ambient conditions. Furthermore, a dual-modal PDT/PTT therapeutic nanoagent, VONc@COF-Por (3), is successfully fabricated by stepwise BDF and guest encapsulation processes. The covalently grafted porphyrinic PS (Por) and the noncovalently loaded naphthalocyanine PTA (VONc) are independently responsible for the PDT and PTT functionalities of the nanoagent. Upon visible (red LED) and NIR (808 nm laser) irradiation, VONc@COF-Por (3) displayed high 1O2 generation and photothermal conversion ability (55.9%), consequently providing an excellent combined PDT/PTT therapeutic effect on inhibiting MCF-7 tumor cell proliferation and metastasis, which was well evidenced by in vitro and in vivo experiments. We believe that the results obtained herein can significantly promote the development of NCOF-based multifunctional nanomedicines for biomedical applications.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , P. R. China
- School of Chemical and Biological Engineering , Qilu Institute of Technology , Jinan 250200 , P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , P. R. China
| | - Shumei Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , P. R. China
| | - Chun Song
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
38
|
Das RK, Panda S, Bhol CS, Bhutia SK, Mohapatra S. N-Doped Carbon Quantum Dot (NCQD)-Deposited Carbon Capsules for Synergistic Fluorescence Imaging and Photothermal Therapy of Oral Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15320-15329. [PMID: 31682135 DOI: 10.1021/acs.langmuir.9b03001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Use of nanomaterials blessed with both therapeutic and diagnostic properties is a proficient strategy in the treatment of cancer in its early stage. In this context, our paper reports the synthesis of uniform size N-rich mesoporous carbon nanospheres of size 65-70 nm from pyrrole and aniline precursors using Triton-X as a structure-directing agent. Transmission electron microscopy reveals that these carbons spheres contain void spaces in which ultrasmall nitrogen-doped quantum dots (NCQD) are captured within the matrix. These mesoporous hollow NCQD captured carbon spheres (NCQD-HCS) show fluorescence quantum yield up to 14.6% under λex = 340 nm. Interestingly, samples calcined at >800 °C clearly absorb in the wavelength range 700-1000 nm and shows light-to-heat conversion efficiency up to 52%. In vitro experiments in human oral cancer cells (FaDu) show that NCQD-HCS are internalized by the cells and induce a substantial thermal ablation effect in FaDu cells when exposed under a 980 nm near-infrared laser.
Collapse
|
39
|
Tang Y, Xue L, Yu Q, Chen D, Cheng Z, Wang W, Shao J, Dong X. Smart Aza-BODIPY Photosensitizer for Tumor Microenvironment-Enhanced Cancer Phototherapy. ACS APPLIED BIO MATERIALS 2019; 2:5888-5897. [DOI: 10.1021/acsabm.9b00836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunyun Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Lei Xue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Qing Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Zijin Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
40
|
Ussia M, Urso M, Miritello M, Bruno E, Curcuruto G, Vitalini D, Condorelli GG, Cantarella M, Privitera V, Carroccio SC. Hybrid nickel-free graphene/porphyrin rings for photodegradation of emerging pollutants in water. RSC Adv 2019; 9:30182-30194. [PMID: 35530201 PMCID: PMC9072085 DOI: 10.1039/c9ra06328e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 12/05/2022] Open
Abstract
A novel hybrid photoactive material based on graphene foam (G) coupled with porphyrin-based polymers (Porph rings) was formulated by using a time-saving procedure to remove nickel from the final device. Specifically, Porph rings were spin coated onto the G platform with the double function of a visible-light photocatalyst and protective agent during nickel etching. The characterization of G-Porph rings was assessed by Scanning Electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). The novel material showed photocatalytic ability in degrading different classes of pollutants such as the herbicide 2,4 dichlorophenoxyacetic acid (2,4-D), polyethylene glycol (PEG) as an ingredient of care and health products, and also the methylene blue (MB) dye. UV-Vis spectroscopy, total organic carbon (TOC) and soft mass spectrometry techniques were used to monitor the photocatalytic process. The best performance in terms of photocatalytic efficiency was exhibited versus PEG and MB degradation. Furthermore, to determine the individual contribution of Reactive Oxygen Species (ROS) produced, free radical and hole scavenging tests were also carried out. Finally, a detailed map of the photocatalytic degradation mechanisms was proposed, reporting also the calculation of Porph rings' Highest Occupied Molecular Orbital (HOMO) and Lowest Occupied Molecular Orbital (LUMO) energy level values.
Collapse
Affiliation(s)
- Martina Ussia
- University of Catania, Department of Physics and Astronomy "Ettore Majorana" Via Santa Sofia 64 95123 Catania Italy
- CNR-IMM Catania Via Santa Sofia 64 95123, Catania Italy
| | - Mario Urso
- University of Catania, Department of Physics and Astronomy "Ettore Majorana" Via Santa Sofia 64 95123 Catania Italy
- CNR-IMM Catania Via Santa Sofia 64 95123, Catania Italy
| | | | - Elena Bruno
- University of Catania, Department of Physics and Astronomy "Ettore Majorana" Via Santa Sofia 64 95123 Catania Italy
- CNR-IMM Catania Via Santa Sofia 64 95123, Catania Italy
| | | | | | - Guglielmo G Condorelli
- University of Catania, Department of Chemistry and INSTM UdR Catania Viale Andrea Doria 6 95125 Catania Italy
| | | | | | - Sabrina C Carroccio
- CNR-IMM Catania Via Santa Sofia 64 95123, Catania Italy
- CNR-IPCB Via Paolo Gaifami 18 95126, Catania Italy
| |
Collapse
|
41
|
Chen L, Li D, Wang Y, Duan C. Highly efficient solar steam generation of supported metal-organic framework membranes by a photoinduced electron transfer process. NANOSCALE 2019; 11:11121-11127. [PMID: 31070200 DOI: 10.1039/c8nr09080g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porphyrin-based molecules possess excellent photophysical properties and are widely applied in photothermal fields. Nonetheless, these molecules featuring small cross sections of optical absorption and high radiative recombination rates lead to inferior performance of photothermal conversion. Herein, porphyrin paddle-wheel framework-3 (PPF-3) composed of tetrakis (4-carboxyphenyl) porphyrin (TCPP) and Co2+ was utilized to study the possibility of the enhanced photothermal effect induced by a photoinduced electron transfer (PET) process. Finally, the supported PPF-3 membrane exhibited comparable solar steam generation performance to a supported membrane of Au nanoparticles. The solar thermal receiver efficiency of the supported PPF-3 membrane was increased to 70.3% which was ∼420% higher than that of the supported TCPP membrane. The enhanced performance benefits from the PPF-3 structure and components that enable the broadening of the optical absorption range and suppress the radiative recombination of excitons by PET from the lowest unoccupied molecular orbital (LUMO) of TCPP to cobalt ions. Based on the ubiquitous structures of metal-organic frameworks (MOFs), the research opens a new avenue for the applications of MOFs as cost-efficient and eligible photothermal materials.
Collapse
Affiliation(s)
- Liyong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | |
Collapse
|
42
|
Liu Y, Zhang Y, Li X, Gao X, Niu X, Wang W, Wu Q, Yuan Z. Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy. NANOSCALE 2019; 11:10429-10438. [PMID: 31112176 DOI: 10.1039/c9nr02140j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescent dyes, as a key factor in fluorescence imaging, usually exhibit a low signal-to-noise ratio (SNR) due to the limited loading capacities of delivery systems (usually less than 10.0 wt%) and their uncontrolled release. Herein, we developed a type of pH-responsive nanoplatform (MnO2/ZnCOF@Au&BSA) based on a zinc porphyrin covalent organic framework (COF), in which the zinc porphyrin (ZnPor) loading rate is 22.5 wt%. At pH = 7.4, the interlinked ZnPor in the assembly state did not show a fluorescence signal ("off" state). Together with the pH-triggered disintegration of ZnCOF in tumor cells (pH = 5.5), the scattered ZnPor displayed an obvious fluorescence signal recovery ("on" state). Simultaneously, the shed BSA-coated gold nanoparticles ingeniously caused the fluorescence signal to be further amplified through the metal-enhanced fluorescence effect, which was about 3.0-fold higher in vivo than in the free ZnPor group. Combined with the excellent photothermal therapy effect by the nanoplatform itself with the tumor inhibition rate of 79.5%, this nanosystem effectively solves the problem of low loading capacities and imaging SNR by traditional delivery systems, and successfully develops the potential of COFs for fluorescence imaging, achieving the purpose of integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Xiang Y, Mao C, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung KWK, Zheng D, Wang X, Wu S. Rapid and Superior Bacteria Killing of Carbon Quantum Dots/ZnO Decorated Injectable Folic Acid-Conjugated PDA Hydrogel through Dual-Light Triggered ROS and Membrane Permeability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900322. [PMID: 31021489 DOI: 10.1002/smll.201900322] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Indexed: 05/19/2023]
Abstract
One of the most difficult challenges in the biomedical field is bacterial infection, which causes tremendous harm to human health. In this work, an injectable hydrogel is synthesized through rapid assembly of dopamine (DA) and folic acid (FA) cross-linked by transition metal ions (TMIs, i.e., Zn2+ ), which was named as DFT-hydrogel. Both the two carboxyl groups in the FA molecule and catechol in polydopamine (PDA) easily chelates Zn2+ to form metal-ligand coordination, thereby allowing this injectable hydrogel to match the shapes of wounds. In addition, PDA in the hydrogel coated around carbon quantum dot-decorated ZnO (C/ZnO) nanoparticles (NPs) to rapidly generate reactive oxygen species (ROS) and heat under illumination with 660 and 808 nm light, endows this hybrid hydrogel with great antibacterial efficacy against Staphylococcus aureus (S. aureus, typical Gram-positive bacteria) and Escherichia coli (E. coli, typical Gram-negative bacteria). The antibacterial efficacy of the prepared DFT-C/ZnO-hydrogel against S. aureus and E. coli under dual-light irradiation is 99.9%. Importantly, the hydrogels release zinc ions over 12 days, resulting in a sustained antimicrobial effect and promoted fibroblast growth. Thus, this hybrid hydrogel exhibits great potential for the reconstruction of bacteria-infected tissues, especially exposed wounds.
Collapse
Affiliation(s)
- Yiming Xiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Congyang Mao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Xiangmei Liu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Doudou Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Dong Zheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Shuilin Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| |
Collapse
|
44
|
Zhang Z, Yu HJ, Wu S, Huang H, Si LP, Liu HY, Shi L, Zhang HT. Synthesis, characterization, and photodynamic therapy activity of 5,10,15,20-Tetrakis(carboxyl)porphyrin. Bioorg Med Chem 2019; 27:2598-2608. [PMID: 30992204 DOI: 10.1016/j.bmc.2019.03.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023]
Abstract
Water-soluble porphyrins are considered promising drug candidates for photodynamic therapy (PDT). This study investigated the PDT activity of a new water-soluble, anionic porphyrin (1-Zn), which possesses four negative charges. The photodynamic anticancer activity of 1-Zn was investigated by the MTT assay, with mTHPC as a positive control. The cellular distribution was determined by fluorescence microscopy. Holographic and phase contrast images were recorded after 1-Zn treatment with a HoloMonitor™ M3 instrument. The inhibition of A549 cell growth achieved by inducing apoptosis was investigated by flow cytometry and fluorescence microscopy. DNA damage was investigated by the comet assay. The expression of apoptosis-related proteins was also measured by western blot assays. 1-Zn had better phototoxicity against A549 cells than HeLa and HepG2 cancer cells. Interestingly, 1-Zn was clearly located almost entirely in the cell cytoplasmic region/organelles. The late apoptotic population was less than 1.0% at baseline in the untreated and only light-treated cells and increased to 40.5% after 1-Zn treatment and irradiation (P < 0.05). 1-Zn triggered significant ROS generation after irradiation, causing ΔΨm disruption (P < 0.01) and DNA damage. 1-Zn induced A549 cell apoptosis via the mitochondrial apoptosis pathway. In addition, 1-Zn bound in the groove of DNA via an outside binding mode by pi-pi stacking and hydrogen bonding. 1-Zn exhibits good photonuclease activity and might serve as a potential photosensitizer (PS) for lung cancer cells.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Hua-Jun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Li-Ping Si
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China
| | - Hai-Yang Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, PR China.
| | - Lei Shi
- Department of Chemistry, Guangdong University of Education, Guangzhou 510303, PR China.
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China.
| |
Collapse
|
45
|
Yang X, Yu Q, Yang N, Xue L, Shao J, Li B, Shao J, Dong X. Thieno[3,2-b]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. J Mater Chem B 2019; 7:2454-2462. [PMID: 32255122 DOI: 10.1039/c8tb03185a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diketopyrrolopyrrole (DPP) based organic molecules have drawn significant research attention as phototheranostic agents. Herein, based on thieno[3,2-b]thienyl-DPP (TT-DPP), a near-infrared small molecule photosensitizer diethyl 3,3'-((((2,5-bis(2-decyltetradecyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)bis(thieno[3,2-b]thiophene-5,2-diyl))bis-(4,1-phenylene))bis(7-bromo-10H-phenothiazine-10,3-diyl))(2E,2'E)-diacrylate (PDBr), with a high singlet oxygen (1O2) quantum yield of 67%, was developed. After nano-precipitation, the hydrophilic PDBr NPs present an encouraging photothermal conversion efficiency of 35.7% and excellent fluorescence/infrared-thermal imaging performance. In vitro studies disclosed the high phototoxicity but low dark cytotoxicity of PDBr NPs to tumor cells. Furthermore, PDBr NPs can effectively impede the tumor growth without noticeable side effects in living mice through imaging-guided synergistic photothermal/photodynamic therapy. Therefore, PDBr NPs could be a promising nanotheranostic agent for imaging-guided synergistic photothermal and photodynamic therapy in the clinic.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wei Z, Liang P, Xie J, Song C, Tang C, Wang Y, Yin X, Cai Y, Han W, Dong X. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem Sci 2019; 10:2778-2784. [PMID: 30996997 PMCID: PMC6419942 DOI: 10.1039/c8sc04123g] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022] Open
Abstract
Herein, a nano-integrated strategy was used to combine an anti-angiogenic agent sorafenib and a photosensitizer chlorin e6 to form carrier-free multifunctional nanoparticles (SC NPs) for synergetic anti-angiogenic therapy and phototherapy. SC NPs (diameter, ∼152 nm) presented excellent water dispersity and passive targeting ability towards tumor sites in vivo based on the enhanced permeability and retention (EPR) effect, which could be monitored by fluorescence imaging. Besides, SC NPs exhibited effective reactive oxygen species (ROS) generation and photothermal conversion abilities for both photodynamic therapy (PDT) and photothermal therapy (PTT). At a rather low dosage (200 μg kg-1) and illumination with laser (660 nm, 500 mW cm-2), SC NPs could attack tumor tissues by killing the internal tumor cells via mild phototherapy, simultaneously cutting off the external nutrient and oxygen supplements of the tumor cells via anti-angiogenesis. Besides, oxygen consumption in the PDT process may be combined with anti-angiogenic therapy to further cause cell apoptosis by tumor starvation. In addition to the highly efficient therapeutic effect in vivo, SC NPs possessed excellent biosafety and biocompatibility, making them promising for fluorescence imaging-guided synergetic anti-angiogenic therapy and phototherapy in clinic.
Collapse
Affiliation(s)
- Zheng Wei
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Pediatric Dentistry , Nanjing Stomatology hospital , Medical school of Nanjing University , 30 zhongyang road , Nanjing , 210008 , China
| | - Pingping Liang
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Junqi Xie
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Chuanhui Song
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Chuanchao Tang
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Yufeng Wang
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Xiteng Yin
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Yu Cai
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Wei Han
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| |
Collapse
|
47
|
Zhang J, Chen J, Ren J, Guo W, Li X, Chen R, Chelora J, Cui X, Wan Y, Liang XJ, Hao Y, Lee CS. Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency. Biomaterials 2018; 181:92-102. [DOI: 10.1016/j.biomaterials.2018.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
|
48
|
Meso-substituted porphyrin photosensitizers with enhanced near-infrared absorption: Synthesis, characterization and biological evaluation for photodynamic therapy. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|