1
|
Liu Y, Qin Y, Yu D, Zhuo H, Ma C, Chen K. Enhance Water Electrolysis for Green Hydrogen Production with Material Engineering: A Review. CHEM REC 2025:e202400258. [PMID: 40195465 DOI: 10.1002/tcr.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Water electrolysis, a traditional and highly technology, is gaining significant attention due to the growing demand for renewable energy resources. It stands as a promising solution for energy conversion, offer substantial benefits in environmental protection and sustainable development efforts. The aim of this research is to provide a concise review of the current state-of-the-art in the field of water electrolysis, focusing on the principles of water splitting fundamental, recent advancements in catalytic materials, various advanced characterization methods and emerging electrolysis technology improvements. Moreover, the paper delves into the development trends of catalysts engineering for water electrolysis, providing insight on how to enhance the catalytic performance. With the advancement of technology and the reduction of costs, hydrogen production through water electrolysis is expected to assume a more significant role in future energy ecosystem. This paper not only synthesizes existing knowledge but also highlights emerging opportunities and potential advancements in this field, offering a clear roadmap for further research and innovation.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Qin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Dawei Yu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyue Zhuo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Kai Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
He B, Bai F, Jain P, Li T. A Review of Surface Reconstruction and Transformation of 3d Transition-Metal (oxy)Hydroxides and Spinel-Type Oxides during the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411479. [PMID: 39916593 PMCID: PMC11899548 DOI: 10.1002/smll.202411479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Developing efficient and sustainable electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing energy conversion and storage technologies. 3d transition-metal (oxy)hydroxides and spinel-type oxides have emerged as promising candidates due to their structural flexibility, oxygen redox activity, and abundance in earth's crust. However, their OER performance can be changed dynamically during the reaction due to surface reconstruction and transformation. Essentially, multiple elementary processes occur simultaneously, whereby the electrocatalyst surfaces undergo substantial changes during OER. A better understanding of these elementary processes and how they affect the electrocatalytic performance is essential for the OER electrocatalyst design. This review aims to critically assess these processes, including oxidation, surface amorphization, transformation, cation dissolution, redeposition, and facet and electrolyte effects on the OER performance. The review begins with an overview of the electrocatalysts' structure, redox couples, and common issues associated with electrochemical measurements of 3d transition-metal (oxy)hydroxides and spinels, followed by recent advancements in understanding the elementary processes involved in OER. The challenges and new perspectives are presented at last, potentially shedding light on advancing the rational design of next-generation OER electrocatalysts for sustainable energy conversion and storage applications.
Collapse
Affiliation(s)
- Biao He
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Fan Bai
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Priya Jain
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Tong Li
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
3
|
Liu X, Yang S, Li S, Wang T, Gao X, Chen Y, Zhang W. The Doping of Al 3+ at the Tetrahedral Site of Spinel Mn 3O 4 for Electrocatalytic Water Oxidation. Chemistry 2025; 31:e202403720. [PMID: 39737620 DOI: 10.1002/chem.202403720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/01/2025]
Abstract
Spinel oxides have attracted much attention for electrocatalytic water oxidation. Specially, the Mn-based spinel structures merits fundamental investigation, as Mn is involved in water oxidation in natural photosynthesis. Herein, Al-doped Mn3O4 spinel electrocatalyst was prepared for water oxidation. The Al cations selectively occupy the tetrahedral sites of Mn3O4 spinel structure, leaving Mn(III) at the catalytically critical octahedral sites. The substitution of Al3+ regulated the electronic structure of Mn3O4, induced lattice distortion and produced higher concentration of oxygen vacancy to promote the water oxidation performance.
Collapse
Affiliation(s)
- Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Yu L, Ren Z, Shen T, Li H, Wang L, Li X, Wang Z, Yang Y, Wei M. Anchoring Platinum Nanoparticles onto Oxygen Vacancy-Modified Mixed Metal Oxides for Selective Oxidation Reaction of Aromatic Alcohols. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39968840 DOI: 10.1021/acsami.4c17845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Directed transformation of organic compounds under mild conditions, especially alcohol oxidation, presents great challenges in green chemistry. Herein, we report a platinum nanoparticle catalyst supported on zinc-gallium mixed metal oxides (denoted as Pt/ZnGa-MMOs), which displays superior catalytic activity for the selective oxidation reaction of benzyl alcohol to benzaldehyde (conversion: >99%; selectivity: >99%; reaction rate: 125 mmolbenzyl alcohol gPt-1 h-1). Both experimental studies [X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS)] and DFT calculations reveal the formation of an interfacial structure (Zn2+δ-Ov-Ga3-δ) on the ZnGa-MMOs support. Moreover, in situ Fourier transform infrared (FT-IR) spectroscopic analysis demonstrates that the Pt species acts as an intrinsic active center to promote the oxidation of the carbon-oxygen bond in the benzyl alcohol molecule, with the formation of the benzaldehyde. This work provides an effective strategy for the preparation of heterogeneous catalysts via constructing the support oxygen vacancy to anchor metal sites toward selective oxidation reactions.
Collapse
Affiliation(s)
- Luyao Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xiangcheng Li
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Zhendong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| |
Collapse
|
5
|
Wang X, Singh H, Nath M, Lagemann K, Page K. Excellent Bifunctional Oxygen Evolution and Reduction Electrocatalysts (5A 1/5)Co 2O 4 and Their Tunability. ACS MATERIALS AU 2024; 4:274-285. [PMID: 38737119 PMCID: PMC11083111 DOI: 10.1021/acsmaterialsau.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 05/14/2024]
Abstract
Hastening the progress of rechargeable metal-air batteries and hydrogen fuel cells necessitates the advancement of economically feasible, earth-abundant, inexpensive, and efficient electrocatalysts facilitating both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Herein, a recently reported family of nano (5A1/5)Co2O4 (A = combinations of transition metals, Mg, Mn, Fe, Ni, Cu, and Zn) compositionally complex oxides (CCOs) [Wang et al., Chemistry of Materials, 2023,35 (17), 7283-7291.] are studied as bifunctional OER and ORR electrocatalysts. Among the different low-temperature soft-templating samples, those subjected to 600 °C postannealing heat treatment exhibit superior performance in alkaline media. One specific composition (Mn0.2Fe0.2Ni0.2Cu0.2Zn0.2)Co2O4 exhibited an exceptional overpotential (260 mV at 10 mA cm-2) for the OER, a favorable Tafel slope of 68 mV dec-1, excellent onset potential (0.9 V) for the ORR, and lower than 6% H2O2 yields over a potential range of 0.2 to 0.8 V vs the reversible hydrogen electrode. Furthermore, this catalyst displayed stability over a 22 h chronoamperometry measurement, as confirmed by X-ray photoelectron spectroscopy analysis. Considering the outstanding performance, the low cost and scalability of the synthesis method, and the demonstrated tunability through chemical substitutions and processing variables, CCO ACo2O4 spinel oxides are highly promising candidates for future sustainable electrocatalytic applications.
Collapse
Affiliation(s)
- Xin Wang
- Department
of Materials Science and Engineering, Institute for Advanced Materials
and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Harish Singh
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Manashi Nath
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Kurt Lagemann
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Katharine Page
- Department
of Materials Science and Engineering, Institute for Advanced Materials
and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Karunarathne S, Kannangara YY, Ratwani CR, Sandaruwan C, Wijesinghe WPSL, Kamali AR, Abdelkader AM. Stoichiometrically optimized e g orbital occupancy of Ni-Co oxide catalysts for Li-air batteries. NANOSCALE 2024; 16:7937-7950. [PMID: 38545684 DOI: 10.1039/d4nr00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Li-air battery (LAB) technology is making continuous progress toward its theoretical capacity, which is comparable to gasoline. However, the sluggish reaction at the cathode is still a challenge. We propose a simple strategy to optimize the surface eg occupancy by adjusting the stoichiometric ratios of transition metal-based spinel structures through a controlled hydrothermal synthesis. Three distinct stoichiometries of Ni-Co oxides were used to demonstrate the direct correlation between stoichiometry and catalytic performance. The groundsel flower-like structure having a 1 : 1.4 Ni : Co atomic ratio with high surface area, high defect density, and an abundance of Ni3+ at the surface with semi-filled eg orbitals was found to benefit the structure promoting high catalytic activities in aqueous and aprotic media. The assembled LAB cells employing this cathode demonstrate an exceptional lifespan, operating for 3460 hours and completing 173 cycles while achieving the highest discharge capacity of 13 759 mA h g-1 and low charging overpotentials. The key to this prolonged performance lies in the full reversibility of the cell, attributed to its excellent OER performance. A well-surface adsorbed, amorphous LiO2/Li2O2 discharge product is found to possess high diffusivity and ease of decomposition, contributing significantly to the enhanced longevity of the cell.
Collapse
Affiliation(s)
- Shadeepa Karunarathne
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UK.
| | | | - Chirag R Ratwani
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UK.
| | | | | | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), Northeastern University, Shenyang, 110819, China.
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| | - Amr M Abdelkader
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UK.
| |
Collapse
|
7
|
Tang Z, Li Y, Shi L, Zhang K, Ji Y, Wang X, Yao Y, Liu X, Wang D, Nie K, Xie J, Yang Z, Yan YM. Cu-Modified Palladium Catalysts: Boosting Formate Electrooxidation via Interfacially OH ad-Driven H ad Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8742-8750. [PMID: 38340053 DOI: 10.1021/acsami.3c16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Direct formate fuel cells have gained traction due to their eco-friendly credentials and inherent safety. However, their potential is hampered by the kinetic challenges of the formate oxidation reaction (FOR) on Pd-based catalysts, chiefly due to the unfavorable adsorption of hydrogen species (Had). These species clog the active sites, hindering efficient catalysis. Here, we introduce a straightforward strategy to remedy this bottleneck by incorporating Pd with Cu to expedite the removal of Pd-Had in alkaline media. Notably, Cu plays a pivotal role in bolstering the concentration of hydroxyl adsorbates (OHad) on the surface of catalyst. These OHad species can react with Had, effectively unblocking the active sites for FOR. The as-synthesized catalyst of PdCu/C exhibits a superior FOR performance, boasting a remarkable mass activity of 3.62 A mg-1. Through CO-stripping voltammetry, we discern that the presence of Cu in Pd markedly speeds up the formation of adsorbed hydroxyl species (OHad) at diminished potentials. This, in turn, aids the oxidative removal of Pd-Had, leveraging a synergistic mechanism during FOR. Density functional theory computations further reveal intensified interactions between adsorbed oxygen species and intermediates, underscoring that the Cu-Pd interface exhibits greater oxyphilicity compared to pristine Pd. In this study, we present both experimental and theoretical corroborations, unequivocally highlighting that the integrated copper species markedly amplify the generation of OHad, ensuring efficient removal of Had. This work paves the way, shedding light on the strategic design of high-performing FOR catalysts.
Collapse
Affiliation(s)
- Zheng Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yongjia Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaixin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yebo Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dewei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
8
|
Kumar RS, Mannu P, Prabhakaran S, Nga TTT, Kim Y, Kim DH, Chen J, Dong C, Yoo DJ. Trimetallic Oxide Electrocatalyst for Enhanced Redox Activity in Zinc-Air Batteries Evaluated by In Situ Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303525. [PMID: 37786295 PMCID: PMC10646265 DOI: 10.1002/advs.202303525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Indexed: 10/04/2023]
Abstract
Researchers are investigating innovative composite materials for renewable energy and energy storage systems. The major goals of this studies are i) to develop a low-cost and stable trimetallic oxide catalyst and ii) to change the electrical environment of the active sites through site-selective Mo substitution. The effect of Mo on NiCoMoO4 is elucidated using both in situ X-ray absorption spectroscopy and X-ray diffraction analysis. Also, density functional theory strategies show that NiCoMoO4 has extraordinary catalytic redox activity because of the high adsorption energy of the Mo atom on the active crystal plane. Further, it is demonstrated that hierarchical nanoflower structures of NiCoMoO4 on reduced graphene oxide can be employed as a powerful bifunctional electrocatalyst for oxygen reduction/evolution reactions in alkaline solutions, providing a small overpotential difference of 0.75 V. Also, Zn-air batteries based on the developed bifunctional electrocatalyst exhibit outstanding cycling stability and a high-power density of 125.1 mW cm-2 . This work encourages the use of Zn-air batteries in practical applications and provides an interesting concept for designing a bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Ramasamy Santhosh Kumar
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Pandian Mannu
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Sampath Prabhakaran
- Department of Nano Convergence EngineeringJeonbuk National UniversityJeonjuJeonbuk54896Republic of Korea
| | - Ta Thi Thuy Nga
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Yangsoo Kim
- Korea Basic Science InstituteJeonju CenterJeonju‐siJeollabuk‐do54896Republic of Korea
| | - Do Hwan Kim
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Division of Science Education and Institute of Fusion ScienceJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Jeng‐Lung Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chung‐Li Dong
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Department of Life ScienceJeonbuk National UniversityJeonju‐siJeollabuk‐do54896Republic of Korea
| |
Collapse
|
9
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
10
|
Wang C, Wang T, Liu Q, Jia W, Han X, Wu D. Starch-based porous carbon microsphere composited NiCo 2O 4 nanoflower as bifunctional electrocatalyst for zinc-air battery. Int J Biol Macromol 2023; 241:124604. [PMID: 37116841 DOI: 10.1016/j.ijbiomac.2023.124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
It is significant to explore and design outstanding bifunctional oxygen electrocatalysts to promote the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in zinc-air batteries. Herein, a novel porous carbon microspheres (CMS2) modified by NiCo2O4 nanoflower (CMS2-NiCo2O4) has been prepared as an ORR and OER catalyst. The hierarchical porous structure of CMS provides high conductivity and abundant active sites for ORR, whereas the synergistic effect of NiCo2O4 nanosheets and a small amount of FeZn oxides act as the positive phase for OER. The efficient oxygen catalytic activity is gained by creating a coupling interface between NiCo2O4 and CMS. The optimized CMS2-NiCo2O4 shows a half-wave potential of 0.82 V toward ORR and an overpotential of 392 mV toward OER. Particularly, CMS2-NiCo2O4 also exhibits an excellent peak power density (175.5 mW cm-2) as a catalyst for zinc-air batteries, which is superior to the commercial Pt/C + RuO2 catalyst (120.5 mW cm-2), and it also demonstrates a remarkable stability even after the charge-discharge cycles of 167 h. The prepared CMS2-NiCo2O4 is promising for the application of the bimetallic oxide catalyst for zinc-air battery.
Collapse
Affiliation(s)
- Caige Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Physics and Chemistry Analysis Center, Xinjiang University, Urumqi 830046, China
| | - Qian Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Wei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| | - Xiaofeng Han
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
11
|
Wang J, Fan S, Li X, Niu Z, Liu Z, Bai C, Duan J, Tadé MO, Liu S. Rod-Like Nanostructured Cu-Co Spinel with Rich Oxygen Vacancies for Efficient Electrocatalytic Dechlorination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12915-12923. [PMID: 36863000 DOI: 10.1021/acsami.2c19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dichloromethane (CH2Cl2) hydrodechlorination to methane (CH4) is a promising approach to remove the halogenated contaminants and generate clean energy. In this work, rod-like nanostructured CuCo2O4 spinels with rich oxygen vacancies are designed for highly efficient electrochemical reduction dechlorination of dichloromethane. Microscopy characterizations revealed that the special rod-like nanostructure and rich oxygen vacancies can efficiently enhance surface area, electronic/ionic transport, and expose more active sites. The experimental tests demonstrated that CuCo2O4-3 with rod-like nanostructures outperformed other morphology of CuCo2O4 spinel nanostructures in catalytic activity and product selectivity. The highest methane production of 148.84 μmol in 4 h with a Faradaic efficiency of 21.61% at -2.94 V (vs SCE) is shown. Furthermore, the density function theory proved oxygen vacancies significantly decreased the energy barrier to promote the catalyst in the reaction and Ov-Cu was the main active site in dichloromethane hydrodechlorination. This work explores a promising way to synthesize the highly efficient electrocatalysts, which may be an effective catalyst for dichloromethane hydrodechlorination to methane.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhaodong Niu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiyuan Liu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunpeng Bai
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jun Duan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Moses O Tadé
- Department of Chemical Engineering, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Shaomin Liu
- Department of Chemical Engineering, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
12
|
Thermally constructed stable Zn-doped NiCoO x-z alloy structures on stainless steel mesh for efficient hydrogen production via overall hydrazine splitting in alkaline electrolyte. J Colloid Interface Sci 2023; 640:737-749. [PMID: 36898180 DOI: 10.1016/j.jcis.2023.02.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Hydrogen has a high energy density of approximately 120 to 140 MJ kg-1, which is very high compared to other natural energy sources. However, hydrogen generation through electrocatalytic water splitting is a high electricity consumption process due to the sluggish oxygen evolution reaction (OER). As a result, hydrogen generation through hydrazine-assisted water electrolysis has recently been intensively investigated. The hydrazine electrolysis process requires a low potential compared to the water electrolysis process. Despite this, the utilization of direct hydrazine fuel cells (DHFCs) as portable or vehicle power sources necessitates the development of inexpensive and effective anodic hydrazine oxidation catalysts. Here, we prepared oxygen-deficient zinc-doped nickel cobalt oxide (Zn-NiCoOx-z) alloy nanoarrays on stainless steel mesh (SSM) using a hydrothermal synthesis method followed by thermal treatment. Furthermore, the prepared thin films were used as electrocatalysts, and the OER and hydrazine oxidation reaction (HzOR) activities were investigated in three- and two-electrode systems. In a three-electrode system, Zn-NiCoOx-z/SSM HzOR requires -0.116 V (vs RHE) potential to achieve a 50 mA cm-2 current density, which is dramatically lower than the OER potential (1.493 V vs RHE). In a two-electrode system (Zn-NiCoOx-z/SSM(-)∥Zn-NiCoOx-z/SSM(+)), the overall hydrazine splitting potential (OHzS) required to reach 50 mA cm-2 is only 0.700 V, which is dramatically less than the required potential for overall water splitting (OWS). These excellent HzOR results are due to the binder-free oxygen-deficient Zn-NiCoOx-z/SSM alloy nanoarray, which provides a large number of active sites and improves the wettability of catalysts after Zn doping.
Collapse
|
13
|
Kim MH, Park DH, Byeon JH, Lim DM, Gu YH, Park SH, Park KW. Fe-doped Co3O4 nanostructures prepared via hard-template method and used for the oxygen evolution reaction in alkaline media. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
14
|
Madhu R, Karmakar A, Kundu S. Morphology-Dependent Electrocatalytic Behavior of Cobalt Chromite toward the Oxygen Evolution Reaction in Acidic and Alkaline Medium. Inorg Chem 2023; 62:2726-2737. [PMID: 36715550 DOI: 10.1021/acs.inorgchem.2c03840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exploiting an affordable, durable, and high-performance electrocatalyst for the oxygen evolution reaction (OER) under lower pH condition (acidic) is highly challengeable and much attractive toward the hydrogen-based energy technologies. A spinel CoCr2O4 is observed as a potential noble-metal-free candidate for OER in alkaline medium. The presence of Cr further leads to electronic structure modulation of Co3O4 and thereby greatly increases the corrosive resistance toward OER in acidic environment. Herein, a typical CoCr2O4 with three different morphologies was synthesized for the very first time and employed as an electrocatalyst for OER in alkaline (1 M KOH) and acidic (0.5 M H2SO4) medium. Moreover, different morphologies display a different intrinsic exposed active site and thereby display different electrocatalytic activities. Likewise, the CoCr2O4 Mic (synthesized by the microwave heating method) displays a higher catalytic activity toward OER and delivers a low overpotential of 293 and 290 mV to attain 10 mA/cm2 current density and smaller Tafel slope values of 40 and 151 mV/dec, respectively, in alkaline and acidic environment than the synthesized CoCr2O4 Wet (wet-chemically synthesized) and CoCr2O4 Hyd (hydrothermally synthesized). Moreover, CoCr2O4 Mic exhibits a long-term durability of 24 h (1 M KOH) and 10.5 h (0.5 M H2SO4). The optimized Co-O bond energy in OER condition makes the CoCr2O4 Mic superior than the CoCr2O4 Hyd and CoCr2O4 Wet. Moreover, the substitution of Cr induces the electron delocalization around the Co active species and thereby, positive shifting of the redox potential leads to providing an optimal binding energy for OER intermediates. Also, interestingly, this work represents a catalytic activity trend by a simple experimental result without any complex theoretical calculation. The morphology-dependent electrocatalytic activity obtained in this work will provide a new strategy in the field of electrochemical conversion and energy storage application.
Collapse
Affiliation(s)
- Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| |
Collapse
|
15
|
Cerium-Doped CoMn2O4 Spinels as Highly Efficient Bifunctional Electrocatalysts for ORR/OER Reactions. Catalysts 2022. [DOI: 10.3390/catal12101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Low-cost and highly efficient electrocatalysts for oxygen reactions are highly important for oxygen-related energy storage/conversion devices (e.g., solar fuels, fuel cells, and rechargeable metal-air batteries). In this work, a range of compositionally-tuned cerium-doped CoMn2O4 (Ce-CMO-X) spinels were prepared via oxidizing precipitation and subsequent crystallization method and evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Ce modification into the CMO spinels lead to the changes of surface electronic structure. And Ce-CMO-X catalysts display better electrochemical performance than that of pristine CMO spinel. Among them, Ce-CMO-18% shows the best activity. The Ce-CMO-18% processes a higher ratio of Co3+/Co2+, Mn4+/Mn3+, which is beneficial to ORR performance, while the higher content of oxygen vacancies in Ce-CMO-18% make for better OER performance. Thus, the Ce-doped CMO spinels are potential candidates as bifunctional electrocatalysts for both ORR and OER in alkaline environments. Then, the hybrid Ce-CMO-18%/MWCNTs catalyst was also synthesized, which shows further enhanced ORR and OER activities. It displays an ORR onset potential of 0.93 V and potential of 0.84 V at density of 3 mA cm−2 (at 1600 rpm), which is comparable to commercial Pt/C. The OER onset potential and potential at a current density 10 mA cm-2 are 183 mV and 341 mV. The superior electrical conductivity and oxygen functional groups at the surface of MWCNTs can facilitate the interaction between metal oxides and carbon, which promoted the OER and ORR performances significantly.
Collapse
|
16
|
K Lebechi A, Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. NANOSCALE 2022; 14:10717-10737. [PMID: 35861592 DOI: 10.1039/d2nr02330j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous spinel-type transition metal oxide (PS-TMO) nanocatalysts comprising two kinds of metal (denoted as AxB3-xO4, where A, B = Co, Ni, Zn, Mn, Fe, V, Sm, Li, and Zn) have emerged as promising electrocatalysts for oxygen reduction reactions (ORRs) in energy conversion and storage systems (ECSS). This is due to the unique catalytic merits of PS-TMOs (such as p-type conductivity, optical transparency, semiconductivity, multiple valence states of their oxides, and rich active sites) and porous morphologies with great surface area, low density, abundant transportation paths for intermediate species, maximized atom utilization and quick charge mobility. In addition, PS-TMOs nanocatalysts are easily prepared in high yield from Earth-abundant and inexpensive metal precursors that meet sustainability requirements and practical applications. Owing to the continued developments in the rational synthesis of PS-TMOs nanocatalysts for ORRs, it is utterly imperative to provide timely updates and highlight new advances in this research area. This review emphasizes recent research advances in engineering the morphologies and compositions of PS-TMOs nanocatalysts in addition to their mechanisms, to decipher their structure-activity relationships. Also, the ORR mechanisms and fundamentals are discussed, along with the current barriers and future outlook for developing the next generation of PS-TMOs nanocatalysts for large-scale ECSS.
Collapse
Affiliation(s)
- Augustus K Lebechi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| |
Collapse
|
17
|
Yang WD, Zhao RD, Xiang J, Loy S, Di YF, Li J, Li MT, Ma DM, Wu FF. 3D hierarchical ZnCo 2S 4@Ni(OH) 2 nanowire arrays with excellent flexible energy storage and electrocatalytic performance. J Colloid Interface Sci 2022; 626:866-878. [PMID: 35820221 DOI: 10.1016/j.jcis.2022.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
It is essential for energy storage and conversion systems to construct electrodes and electrocatalysts with superior performance. In this work, ZnCo2S4@Ni(OH)2 nanowire arrays are synthesized on nickel foam by hydrothermal methods. As a supercapacitor electrode, the ZnCo2S4@Ni(OH)2 structure exhibits a specific capacitance of 1,263.0C g-1 at 1 A g-1. The as-fabricated ZnCo2S4@Ni(OH)2//active carbon device can achieve a maximum energy density of 115.4 Wh kg-1 at a power density of 5,400 W kg-1. As electrocatalysts, the ZnCo2S4@Ni(OH)2 structure delivers outstanding performance for oxygen evolution reaction (an overpotential of 256.3 mV at 50 mA cm-2), hydrogen evolution reaction (141.7 mV at 10 mA cm-2), overall water splitting (the cell voltage of 1.53 V at 50 mA cm-2), and a high stability for 13 h.
Collapse
Affiliation(s)
- Wen-Duo Yang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Rong-Da Zhao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China.
| | - Jun Xiang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China.
| | - Sroeurb Loy
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Yi-Fei Di
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Jia Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Mei-Ting Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Dong-Mei Ma
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Fu-Fa Wu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China.
| |
Collapse
|
18
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
19
|
Yang X, Zeng Y, Alnoush W, Hou Y, Higgins D, Wu G. Tuning Two-Electron Oxygen-Reduction Pathways for H 2 O 2 Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107954. [PMID: 35133688 DOI: 10.1002/adma.202107954] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The hydrogen peroxide (H2 O2 ) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy-intensive anthraquinone process and unsafe direct synthesis using H2 and O2 . It enables on-site and decentralized H2 O2 production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)-free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2 O2 production via the 2e- ORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2 to H2 O2 reduction are summarized. Combined with theoretical computation and advanced characterization, a structure-property correlation to guide rational catalyst design with a favorable 2e- ORR process is aimed to provide. Due to the oxidative nature of H2 O2 and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2 O2 are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Wajdi Alnoush
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, 324000, China
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
20
|
Wang X, Zhou Y, Luo J, Sun F, Zhang J. Synthesis of V-doped urchin-like NiCo2O4 with rich oxygen vacancies for electrocatalytic oxygen evolution reactions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kumar A, Jindal M, Rawat S, Sahoo A, Verma R, Chandra D, Kumar S, Thallada B, Yang B. Anisole hydrodeoxygenation over Ni–Co bimetallic catalyst: a combination of experimental, kinetic and DFT study †. RSC Adv 2022; 12:30236-30247. [PMID: 36337943 PMCID: PMC9597293 DOI: 10.1039/d2ra05136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Catalytic hydrodeoxygenation (HDO) of anisole was performed with a series of Ni and Co containing catalysts with different weight ratios on activated carbon (AC) for cyclohexanol production. The catalytic activities of various catalysts revealed that Ni5Co5-AC was the best catalytic system. Structural analysis obtained from XRD, TPR, XPS, and TEM evidently demonstrates that Ni5Co5-AC sample consists of a distorted metal alloy spinel structure and optimum particle size, enhancing its catalytic performance. Kinetics were investigated to identify cyclohexanol production rate, activation energy, and reaction pathway. Structural, experimental, kinetics and density functional simulations suggested that high amount of distorted metallic alloy in Ni5Co5-AC, presence of water, high adsorption efficiency of anisole, and low adsorption tendency of cyclohexanol on metallic alloy surface were the critical factors for HDO of anisole to cyclohexanol. High reducible distorted bimetallic sites with medium size in Ni5Co5-AC promoted the production of cyclohexanol by hydrogenation of anisole and subsequent cleavage of C6H11O–CH3 bond.![]()
Collapse
Affiliation(s)
- Adarsh Kumar
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State UniversityRichlandWA 99354USA
| | - Meenu Jindal
- Academy of Scientific and Innovative Research, Kamla Nehru NagarGhaziabad 201002India,Material Resource Efficiency Division, CSIR-Indian Institute of PetroleumDehradun 248005India
| | - Shivam Rawat
- Academy of Scientific and Innovative Research, Kamla Nehru NagarGhaziabad 201002India,Material Resource Efficiency Division, CSIR-Indian Institute of PetroleumDehradun 248005India
| | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology-DelhiNew Delhi110016India
| | - Rahul Verma
- Department of Chemistry, Indian Institute of Technology KanpurKanpur 20816India
| | - Devesh Chandra
- Academy of Scientific and Innovative Research, Kamla Nehru NagarGhaziabad 201002India,Chemical Technology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampurHP 176 061India
| | - Sagar Kumar
- Material Resource Efficiency Division, CSIR-Indian Institute of PetroleumDehradun 248005India
| | - Bhaskar Thallada
- Academy of Scientific and Innovative Research, Kamla Nehru NagarGhaziabad 201002India,Material Resource Efficiency Division, CSIR-Indian Institute of PetroleumDehradun 248005India
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State UniversityRichlandWA 99354USA
| |
Collapse
|
22
|
Durai L, Gopalakrishnan A, Badhulika S. A low-cost and facile electrochemical sensor for the trace-level recognition of flutamide in biofluids using large-area bimetallic NiCo 2O 4 micro flowers. NEW J CHEM 2022. [DOI: 10.1039/d1nj05246b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel–cobalt-based bimetallic oxide compound (NiCo2O4) as a highly sensitive and selective platform for the detection of flutamide in biological fluids.
Collapse
Affiliation(s)
- Lignesh Durai
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Arthi Gopalakrishnan
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| |
Collapse
|
23
|
Zhao L, Han X, Kong W, Tong Y, Ding Y, Wang J, Li B, Liu Y, Xu J, Xing W. Graphene supported single metal atom catalysts for the efficient hydrogen oxidation reaction in alkaline media. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01959g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single Pt and Ni atoms anchored on the divacancy graphene exhibit both high activity and superior antioxidant capacity for the hydrogen oxidation reaction in alkaline fuel cells.
Collapse
Affiliation(s)
- Lianming Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Xiaonan Han
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Weichao Kong
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yanfu Tong
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yanping Ding
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Jiajun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Bingyu Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yonghui Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Jing Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wei Xing
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| |
Collapse
|
24
|
Validation of enhanced OER performance of the amorphous Al2O3-added Co3O4/NiO two-dimensional ternary nanocomposite. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01898-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Ramakrishnan P, Beom Lee K, Choi GJ, Park IK, Inn Sohn J. Porous hollow nanorod structured chromium-substituted inverse spinel compound: An efficient oxygen evolution reaction catalyst. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Biswas R, Thakur P, Kaur G, Som S, Saha M, Jhajhria V, Singh H, Ahmed I, Banerjee B, Chopra D, Sen T, Haldar KK. Interfacial Engineering of CuCo 2S 4/g-C 3N 4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction. Inorg Chem 2021; 60:12355-12366. [PMID: 34320803 DOI: 10.1021/acs.inorgchem.1c01566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Rathindranath Biswas
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Pooja Thakur
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Gagandeep Kaur
- Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Shubham Som
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Monochura Saha
- Indian Institute of Science Education and Research, Kolkata, Nadia 741246, West Bengal, India
| | - Vandna Jhajhria
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Harjinder Singh
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Imtiaz Ahmed
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Tapasi Sen
- Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Krishna Kanta Haldar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
27
|
Wang X, Zhang J, Ma D, Feng X, Wang L, Wang B. Metal-Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33209-33217. [PMID: 34229429 DOI: 10.1021/acsami.1c02570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal-based multifunctional catalysts have attracted increasing attention owing to high possibilities of substituting the expensive noble-metal-based catalysts in various scenarios. Multivariate metal-organic frameworks (MTV-MOFs) are ideal precursors to prepare multimetallic nanocomposites with high catalytic activity since the uniform distribution and precise regulation of mixed metal centers, as well as the consequent strong synergistic effect, could be readily achieved. Herein, a Mn/Co/Ni trimetallic catalyst (MnCoNi-C-D) with a hollow rhombic dodecahedron shape was synthesized via pyrolysis of the corresponding trimetallic-based MTV-MOF. The catalyst shows outstanding electrochemical activity toward the oxygen reduction reaction including a half-wave potential of 0.82 V and superior tolerance against methanol as well as high stability in an alkaline medium, and its oxygen evolution reaction activity also surpasses a RuO2 catalyst. Moreover, primary and rechargeable zinc-air batteries based on MnCoNi-C-D delivered preferable performances compared with commercial Pt/C-RuO2, including higher peak power density (116.4 mW cm-2), higher specific capacity (841.3 mAh g-1), higher open-circuit potential (OCV) (1.46 V), and better stability for more than 180 h. A comprehensive comparison was also conducted to prove the necessity of employing the MTV-MOF as the precursor and investigate the intrinsic superiority of the catalyst.
Collapse
Affiliation(s)
- Xiaorui Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinwei Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dou Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| | - Lu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| |
Collapse
|
28
|
Xu X, Su L, Zhang Y, Dong L, Miao X. Hierarchical tube brush-like Co 3S 4@NiCo-LDH on Ni foam as a bifunctional electrocatalyst for overall water splitting. NEW J CHEM 2021. [DOI: 10.1039/d1nj02093e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Co3S4@NiCo-LDH/NF nanocomposite exhibits outstanding electrocatalytic performances toward both the HER and OER at high current densities, along with a remarkable durability.
Collapse
Affiliation(s)
- Xiaohu Xu
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 1 Gongyuan Street, Yaodu District, Linfen 041004, China
| | - Le Su
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 1 Gongyuan Street, Yaodu District, Linfen 041004, China
| | - Yujie Zhang
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 1 Gongyuan Street, Yaodu District, Linfen 041004, China
| | - Lijuan Dong
- Shanxi Provincial Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Xingyun Street, Nanjiao District, Datong, 037009, China
| | - Xiangyang Miao
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 1 Gongyuan Street, Yaodu District, Linfen 041004, China
| |
Collapse
|
29
|
|
30
|
Wang X, Liu Y, Wei T, Sun J, Song X, Chen P, He J, Shen X, Zhu G. A Wet Impregnation Strategy for Advanced FeNi‐Based Electrocatalysts towards Oxygen Evolution. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xueyang Wang
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China
| | - Yuanjun Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 202018 China
| | - Tiange Wei
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China
| | - Jinyong Sun
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China
| | - Xuefeng Song
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China
| | - Peng Chen
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
31
|
Zhang YL, Goh K, Zhao L, Sui XL, Gong XF, Cai JJ, Zhou QY, Zhang HD, Li L, Kong FR, Gu DM, Wang ZB. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. NANOSCALE 2020; 12:21534-21559. [PMID: 33112936 DOI: 10.1039/d0nr05511e] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed.
Collapse
Affiliation(s)
- Yun-Long Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wei P, Yang Y, Kang H, Hao Z, Guo D, Liu L. Controllable Synthesis of Fe-Doped NiCo 2 O 4 Nanobelts as Superior Catalysts for Oxygen Evolution Reaction. Chemistry 2020; 26:13725-13729. [PMID: 32452585 DOI: 10.1002/chem.202001082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Indexed: 01/09/2023]
Abstract
As one of the promising clean and renewable technologies, water splitting has been a hot topic, especially the half-reaction of oxygen evolution reaction (OER) due to its sluggish and complex kinetics. Hence, Fe-doped NiCo2 O4 nanobelts were designed and prepared as catalysts toward OER. By increasing the Fe amount, the catalytic performances of the as-synthesized products went up and then decreased. Profiting from the synergistic effect between Fe atom and NiCo2 O4 , all the Fe-NiCo2 O4 catalysts exhibited superior catalytic activities to the corresponding NiCo2 O4 . In addition, the characteristic nanobelt architecture facilitates the conduction of electrons and the exposure of active sites. With the optimal Fe content, the 9.1 % Fe-NiCo2 O4 yielded the smallest overpotential and Tafel slope among the catalysts, distinctly lower than that of RuO2 .
Collapse
Affiliation(s)
- Pengkun Wei
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yang Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Hongzhi Kang
- College of Environment and Resource, Shanxi University, Taiyuan, 30006, P. R. China
| | - Zewei Hao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan, 30006, P. R. China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
33
|
Dymerska A, Kukułka W, Biegun M, Mijowska E. Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction. MATERIALS 2020; 13:ma13183918. [PMID: 32899780 PMCID: PMC7558919 DOI: 10.3390/ma13183918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
Abstract
The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles—Ru, iridium nanoparticles—Ir, and their oxides: RuO2, IrO2, platinum—Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER.
Collapse
|
34
|
Wei P, Hao Z, Kang H, Yang, Guo D, Liu L. Cost‐effective and Efficient Catalyst of Bimetallic Nickel Iron Selenide toward Oxygen Evolution Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengkun Wei
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 300350 P.R. China
| | - Zewei Hao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 300350 P.R. China
| | - Hongzhi Kang
- College of Environment and Resource Shanxi University Taiyuan 30006 P.R. China
| | - Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 300350 P.R. China
| | - Donggang Guo
- College of Environment and Resource Shanxi University Taiyuan 30006 P.R. China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 300350 P.R. China
| |
Collapse
|
35
|
Sreekanth T, Yoo K, Kim J. Thorn-shaped NiCo2O4 nanoparticles as multi-functional electrocatalysts for electrochemical applications. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Mao H, Wang H, Hu X, Zhang P, Xiao Z, Liu J. One-Pot Efficient Catalytic Oxidation for Bio-Vanillin Preparation and Carbon Isotope Analysis. ACS OMEGA 2020; 5:8794-8803. [PMID: 32337441 PMCID: PMC7178775 DOI: 10.1021/acsomega.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most widely used food spices. Aimed at bio-vanillin green production, the natural materials were directly catalytically oxidized efficiently in one pot under low O2 pressure (0.035 MPa) in the presence of a non-noble metal oxidation combined catalyst (NiCo2O4/SiO2 nanoparticles), which showed remarkable advantages of a short synthetic route and less industrial waste. The catalytic system showed good universality to many natural substrates with nearly 100% conversion and 86.3% bio-vanillin yield. More importantly, carbon isotope ratio investigations were employed to verify the origin of the organic matter. One hundred percent 14C content of the obtained vanillin was detected, which indicated that it was an efficient method to distinguish the vanillin from biomass or fossil materials. Furthermore, the 13C isotope examination showed effective distinguishing ability for the vanillin from a particular biomass source. The C isotope detection provides an effective method for commercial vanillin identification.
Collapse
Affiliation(s)
- Haifang Mao
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Hongzhao Wang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Pingyi Zhang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School
of Perfume and Aroma Technology, Shanghai
Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Jibo Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
37
|
Wang H, Chen X, Huang D, Zhou M, Ding D, Luo H. Cation Deficiency Tuning of LaCoO
3
Perovskite as Bifunctional Oxygen Electrocatalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.201902392] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haizhen Wang
- Department of Chemical and Materials Engineering New Mexico State University Las Cruces NM-88003 USA
| | - Xinqi Chen
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center and Department of Mechanical Engineering Northwestern University Evanston IL-60208 USA
| | - Di Huang
- Department of Chemical and Materials Engineering New Mexico State University Las Cruces NM-88003 USA
| | - Meng Zhou
- Department of Chemical and Materials Engineering New Mexico State University Las Cruces NM-88003 USA
| | - Dong Ding
- Energy & Environment Science and Technology Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Hongmei Luo
- Department of Chemical and Materials Engineering New Mexico State University Las Cruces NM-88003 USA
| |
Collapse
|
38
|
Devi HR, Nandan R, Nanda KK. Mechanistic Investigation into Efficient Water Oxidation by Co-Ni-Based Hybrid Oxide-Hydroxide Flowers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13888-13895. [PMID: 32119513 DOI: 10.1021/acsami.9b22956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxides are envisioned as promising catalysts to facilitate water oxidation, and the benign presence of hydroxide moieties can further enhance the catalyst performance. However, the nature of synergy between oxides and hydroxides remains elusive. In this study, we have designed a one-pot solution growth technique for the synthesis of flower-shaped N-doped-C-enveloped NiCo2O4/NixCo(1-x)(OH)y catalysts with varying oxide and hydroxide contents and investigated their water oxidation behavior. The correlation between performance-determining parameters involved in water oxidation, such as the onset potential and overpotential with oxide and/or hydroxide content, oxidation states (oxides), and elemental composition (Co/Ni content), and the possible ways to achieve their optimal values are discussed in detail. Our observations conclude that the onset potential and overpotential are minimal for the hybrid oxide-hydroxide bimetallic system compared with pristine hydroxide or oxide. The optimal hybrid catalyst shows excellent current density, low Tafel slope (82 mV/dec), and low onset potential (281 mV at 2 mA/cm2) and overpotential (348 mV at 10 mA/cm2), besides enduring operational stability in alkaline medium. The low Tafel slope suggests the preferable kinetics for water oxidation, and the poisoning study reveals the direct involvement of metal as active sites. The overall study unveils the synergy in the Co-Ni-based binary transition-metal oxide-hydroxide hybrid, which makes it a potential candidate for water oxidation catalysts, and hence, it is expected that the hybrid will find applications in energy conversion devices, such as electrolyzers.
Collapse
Affiliation(s)
- Hemam Rachna Devi
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Ravi Nandan
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
39
|
Gholamrezaei S, Ghanbari M, Amiri O, Salavati-Niasari M, Foong LK. BaMnO 3 nanostructures: Simple ultrasonic fabrication and novel catalytic agent toward oxygen evolution of water splitting reaction. ULTRASONICS SONOCHEMISTRY 2020; 61:104829. [PMID: 31669839 DOI: 10.1016/j.ultsonch.2019.104829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
In the current paper, the main aim is to fabricate the BaMnO3 nanostructures via the sonochemical route. The various factor, including precursors, reaction time and power of sonication can affect the shape, size, and purity of the samples. We utilized X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray energy dispersive spectroscopy (EDS) to characterize the BaMnO3 nanostructures. The optical property of BaMnO3 nanostructures was explored by Ultraviolet-visible spectroscopy (UV-vis) and the energy gap was suitable for catalytic activity (about 2.75 eV). Changing the precursor can affect the size, nanoparticle shape, architectures, and uniformity of the samples. We employed the BaMnO3 nanostructures for O2 evolution reaction as catalysts. It can observe that increasing the homogeneity of the catalysts can increase the efficiency of the Oxygen evolution reaction. The maximum amount of the O2 evolution and the highest TOF and TON are related to nanoplate disc using barium salicylate as a precursor of barium. As a result, we can nominate the BaMnO3 nanostructures as an effective and novel catalyst for water-splitting reaction.
Collapse
Affiliation(s)
- Sousan Gholamrezaei
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran
| | - Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran
| | - Omid Amiri
- Chemistry Department, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran.
| | - Loke Kok Foong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
40
|
Wu X, Tang C, Cheng Y, Min X, Jiang SP, Wang S. Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry 2020; 26:3906-3929. [PMID: 32057147 DOI: 10.1002/chem.201905346] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Indexed: 11/09/2022]
Abstract
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials.
Collapse
Affiliation(s)
- Xing Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Yi Cheng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - San Ping Jiang
- Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6102, Australia
| | - Shuangyin Wang
- Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
41
|
Pathak M, Jose JR, Chakraborty B, Rout CS. High performance supercapacitor electrodes based on spinel NiCo 2O 4@MWCNT composite with insights from density functional theory simulations. J Chem Phys 2020; 152:064706. [PMID: 32061223 DOI: 10.1063/1.5138727] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this work, we demonstrated the supercapacitor performance of pristine and composites of spinel NiCo2O4 with a multi-walled carbon nanotube (MWCNT) assembled in a two-electrode cell configuration. Spinel NiCo2O4 and NiCo2O4@MWCNT composites were synthesized via a facile hydrothermal method. The supercapacitive performance of as-synthesized NiCo2O4 and NiCo2O4@MWCNT fabricated on Ni-foam was studied in a 0.5M K2SO4 electrolyte using electrochemical measurement techniques. The symmetric cell configuration of NiCo2O4@MWCNT delivers high specific capacitance (374 F/g at 2 A/g) with high energy density and power density (95 Wh/kg and 3 964 W/kg, respectively) compared to that of pristine NiCo2O4 electrodes (137 F/g at 0.6 A/g). Furthermore, the energy storage performance of the asymmetric cells of NiCo2O4//MWCNT and NiCo2O4@MWCNT//MWCNT was studied to enhance cycling stability (retention of 74.85% over 3000 cycles). We have also theoretically studied the supercapacitance performance of pristine NiCo2O4 and NiCo2O4@SWCNT hybrid structures through its structural and electronic properties using density functional theory predictions. The higher specific capacitance of the NiCo2O4@SWCNT hybrid system with high power density and energy density is supported by the enhanced density of states near the Fermi level and increased quantum capacitance of the hybrid structure. We have theoretically computed the diffusion energy barrier of K+ ions of the K2SO4 electrolyte in the NiCo2O4 layer and compared it with the diffusion barrier for Na+ ions. The lesser diffusion energy barrier for K+ ions in the NiCo2O4 layer contributes toward higher energy storage capacity. Thus, owing to superior electrochemical performance of NiCo2O4 composites with MWCNTs, it can serve as a high-performance electrode material for supercapacitor applications.
Collapse
Affiliation(s)
- Mansi Pathak
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore 562112, India
| | - Jeena Rose Jose
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore 562112, India
| |
Collapse
|
42
|
Lu M, Cui X, Song B, Ouyang H, Wang K, Wang Y. Studying the Effect of CuCo
2
S
4
Morphology on the Oxygen Evolution Reaction using a Flexible Carbon Cloth Substrate. ChemElectroChem 2020. [DOI: 10.1002/celc.201902128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minglong Lu
- Institute of Advanced Materials School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| | - Xia Cui
- Institute of Advanced Materials School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
- Postdoctoral Research CenterHefei Technology College Hefei 230012 China
- Jiangsu Huawei Century Electronic Group Co., Ltd. Changzhou 213144 China
| | - Bo Song
- Institute of Advanced Materials School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
- Postdoctoral Research CenterHefei Technology College Hefei 230012 China
- Jiangsu Huawei Century Electronic Group Co., Ltd. Changzhou 213144 China
| | - Hongzhen Ouyang
- Jiangsu Huawei Century Electronic Group Co., Ltd. Changzhou 213144 China
| | - Kunliang Wang
- Jiangsu Huawei Century Electronic Group Co., Ltd. Changzhou 213144 China
| | - Yuqiao Wang
- Institute of Advanced Materials School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| |
Collapse
|
43
|
Ha Y, Shi L, Yan X, Chen Z, Li Y, Xu W, Wu R. Multifunctional Electrocatalysis on a Porous N-Doped NiCo 2O 4@C Nanonetwork. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45546-45553. [PMID: 31724846 DOI: 10.1021/acsami.9b13580] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Developing a multifunctional electrocatalyst with eminent activity, strong durability, and cheapness for the hydrogen/oxygen evolution reaction (HER/OER) and oxygen reduction reaction (ORR) is critical to overall water splitting and regenerative fuel cells. Herein, a nitrogen-doped nanonetwork assembled by porous and defective NiCo2O4@C nanowires grown on nickel foam (N-NiCo2O4@C@NF) is crafted via biomimetic mineralization and following carbonization of phase-transited lysozyme (PTL)-coupled NiCo2O4. The as-obtained N-NiCo2O4@C@NF electrocatalysts exhibit an exceptional catalytic activity with ultralow overpotentials for the HER (42 mV) and OER (242 mV) to afford 10 mA cm-2 while maintaining good stability in alkaline media. Meanwhile, the N-NiCo2O4@C electrocatalysts presents a superior catalytic activity for ORR and a favorable four-electron pathway. The unprecedented catalytic performance arises from a highly porous structure and abundant defects and synergistic effects of components. This work may offer a new possibility in the exploration of multifunctional electrocatalysts for various energy-related electrocatalytic reactions.
Collapse
Affiliation(s)
- Yuan Ha
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Lingxia Shi
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Xiaoxiao Yan
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Ziliang Chen
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Yunpeng Li
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Wei Xu
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Renbing Wu
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| |
Collapse
|
44
|
Eshraghi A, Mirzaei AA, Rahimi R, Atashi H. Effect of Ni–Co morphology on kinetics for Fischer–Tropsch reaction in a fixed-bed reactor. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
N doped carbon dots modified needle-like NiCo2O4 supported on graphene as efficient dual-functional electrocatalyst for oxygen reduction and evolution reactions. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Na S, Lee B, Yoon WY, Yim T, Oh SH. Lead ruthenate nanocrystals on reduced graphene oxides as an efficient bifunctional catalyst for metal–air batteries. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Yuan F, Cheng X, Wang M, Ni Y. Controlled synthesis of tubular ferrite MFe2O4 (M = Fe, Co, Ni) microstructures with efficiently electrocatalytic activity for water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Liang R, Hu A, Li M, Ran Z, Shu C, Long J. Defect regulation of heterogeneous nickel-based oxides via interfacial engineering for long-life lithium-oxygen batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Yang K, Yan Y, Chen W, Zeng D, Ma C, Han Y, Zhang W, Kang H, Wen Y, Yang Y. Yolk-shell bimetallic metal-organic frameworks derived multilayer core-shells NiCo2O4/NiO structure spheres for high-performance supercapacitor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113445] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Li Y, Cheng G, Zhou Z, Liao X, Han S, Ye F, Sun M, Yu L. Shape‐Controlled Synthesis of NiCo
2
O
4
‐rGO as Bifunctional Electrocatalyst for Zn‐Air Battery. ChemElectroChem 2019. [DOI: 10.1002/celc.201901109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yao Li
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| | - Gao Cheng
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| | - Zihao Zhou
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| | - Xiuhong Liao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| | - Shengbo Han
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| | - Fei Ye
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| | - Ming Sun
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| | - Lin Yu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou P. R. China
| |
Collapse
|