1
|
Chen H, Chen Z, Liu Z, Xiong J, Yan Q, Fei T, Zhao X, Xue F, Zheng H, Lian H, Chen Y, Xu L, Peng Q, He X. From Coils to Crawls: A Snake-Inspired Soft Robot for Multimodal Locomotion and Grasping. NANO-MICRO LETTERS 2025; 17:243. [PMID: 40304871 PMCID: PMC12043558 DOI: 10.1007/s40820-025-01762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Currently, numerous biomimetic robots inspired by natural biological systems have been developed. However, creating soft robots with versatile locomotion modes remains a significant challenge. Snakes, as invertebrate reptiles, exhibit diverse and powerful locomotion abilities, including prey constriction, sidewinding, accordion locomotion, and winding climbing, making them a focus of robotics research. In this study, we present a snake-inspired soft robot with an initial coiling structure, fabricated using MXene-cellulose nanofiber ink printed on pre-expanded polyethylene film through direct ink writing technology. The controllable fabrication of initial coiling structure soft robot (ICSBot) has been achieved through theoretical calculations and finite element analysis to predict and analyze the initial structure of ICSBot, and programmable ICSBot has been designed and fabricated. This robot functions as a coiling gripper capable of grasping objects with complex shapes under near infrared light stimulation. Additionally, it demonstrates multi-modal crawling locomotion in various environments, including confined spaces, unstructured terrains, and both inside and outside tubes. These results offer a novel strategy for designing and fabricating coiling-structured soft robots and highlight their potential applications in smart and multifunctional robotics.
Collapse
Affiliation(s)
- He Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Zhong Chen
- Dongfang Electric Academy of Science and Technology Co. Ltd, Chengdu, 611731, People's Republic of China.
| | - Zonglin Liu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Jinhua Xiong
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qian Yan
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Teng Fei
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Xu Zhao
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Fuhua Xue
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Haowen Zheng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Huanxin Lian
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Yunxiang Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Liangliang Xu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
- Suzhou Research Institute of HIT, Suzhou, 215104, People's Republic of China.
| | - Xiaodong He
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
| |
Collapse
|
2
|
Sangsawang P, Wisuttirattanamanee C, Aueng-Aree N, Thivasasith A, Ittisanronnachai S, Kaiyasuan C, Ngamroj P, Phophuttharaksa N, Tanalikhit P, Chavanalikigorn N, Mueanngern Y. Bifunctional metavanadate promoted chitosan/cassava biopolymer films with photo-switchable wetting properties: unveiling the surface restructuring mechanism. RSC Adv 2025; 15:7758-7768. [PMID: 40070393 PMCID: PMC11895528 DOI: 10.1039/d4ra08196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Biopolymer films derived from starch and chitosan were soaked in vanadium salt solutions to produce vanadium metallopolymer films. Visible light irradiation induces significant color shifts from yellow to green due to changes in the oxidation state of vanadium. The material was observed to undergo dramatic structural changes upon incorporation of vanadium, with further restructuring occurring after visible light illumination. Metallopolymer films exhibited enhanced hydrophobic properties, which were further amplified when the material was irradiated with visible light, resulting in water contact angles up to 103°. X-ray photoelectron spectroscopy (XPS) measurements reveal that photoirradiation reduces vanadium metal from the 5+ (VO3 -) oxidation state to lower oxidation states. Initially, V5+ (VO3 -) interacts electrostatically with -NH3 + moieties in chitosan. These interactions were diminished following photoreduction as the formation of reduced species such as V4+ (VO2+) decreases the interaction of vanadium (previously V5+) with -NH3 +. As the biopolymer chain breaks free from vanadium, interactions between neighboring polymer strands increase, leading to significant shifts in biopolymer surface structuring. Atomic force microscopy (AFM) measurements showed high root mean square (RMS) roughness values in starch-chitosan control films due to free interactions between biopolymer chains. Upon vanadium soaking, the chains were pulled inward by electrostatic attraction, which created a constraint that reduced the configurational states of the polymer and prevented the chains from interacting with neighboring polymer chains, significantly lowering RMS roughness. After photoirradiation, the electrostatic forces became repulsive, which released the polymer from this constraint and led to a slight increase in RMS roughness. The newly structured surface, dominated by high-frequency features, aligns well with the hydrophobicity model being developed in this work. To verify the reversible nature of the film's surface properties, irradiation and oxidative treatment cycles were conducted, and the contact angle of water was shown to drastically cycle from >100° following irradiation to ≈60° after oxidative treatments. This reversible property provides prospects and design parameters for the fabrication of future smart photo-switchable biopolymer films.
Collapse
Affiliation(s)
- Pongpop Sangsawang
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Chayada Wisuttirattanamanee
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Nichaphat Aueng-Aree
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Anawat Thivasasith
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Chokchai Kaiyasuan
- School of Molecular Science and Engineering (MSE), Vidyasirimedhi Institute of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Pawarisa Ngamroj
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Natthakit Phophuttharaksa
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Pattarapon Tanalikhit
- Department of Physics, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Natputthiya Chavanalikigorn
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Yutichai Mueanngern
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| |
Collapse
|
3
|
He J, Huang P, Li B, Xing Y, Wu Z, Lee TC, Liu L. Untethered Soft Robots Based on 1D and 2D Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413648. [PMID: 39838723 DOI: 10.1002/adma.202413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials. First, the performance of soft actuators designed with different structures is compared. Then, the development of basic locomotion forms, including crawling, jumping, swimming, rolling, gripping, and multimodal, mimicking biological motion mechanisms under dynamic stimuli, is discussed. Subsequently, various self-sustained movements based on imbalance mechanisms under static stimuli are introduced, including light tracking, self-oscillating, self-crawling, self-rolling, and flying. Following that, the progress in soft actuators integrated with additional functionalities such as sensing, energy harvesting, and storage is summarized. Finally, the challenges faced in this field and the prospects for future development are discussed.
Collapse
Affiliation(s)
- Jingwen He
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London (UCL), London, WC1H 0AJ, UK
- Department of Chemistry, University College London (UCL), London, WC1H 0AJ, UK
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
4
|
Seyda D, Dincer O, İnce D, Cugunlular M, Unalan HE, Çınar Aygün S. Bismuth-Tin Core-Shell Particles From Liquid Metals: A Novel, Highly Efficient Photothermal Material that Combines Broadband Light Absorption with Effective Light-to-Heat Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407771. [PMID: 39375946 PMCID: PMC11615822 DOI: 10.1002/advs.202407771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Indexed: 10/09/2024]
Abstract
This study presents a pioneering investigation of hybrid bismuth-tin (BiSn) liquid metal particles for photothermal applications. It is shown that the intrinsic core-shell structure of liquid metal particles can be instrumentalized to combine the broadband absorption characteristics of defect-rich nano-oxides and the high light-to-heat conversion efficiency of metallic particles. Even though bismuth or tin does not show any photothermal characteristics alone, optimization of the core-shell structure of BiSn particles leads to the discovery of novel, highly efficient photothermal materials. Particles with optimized structures can absorb 85% of broadband light and achieve over 90% photothermal conversion efficiency. It is demonstrated that these particles can be used as a solar absorber for solar water evaporation systems owing to their broadband absorption capability and become a non-carbon alternative enabling scalable applications. We also showcased their use in polymer actuators in which a near-infrared (NIR) response stems from their oxide shell, and fast heating/cooling rates achieved by the metal core enable rapid response and local movement. These findings underscore the potential of BiSn liquid metal-derived core-shell particles for diverse applications, capitalizing on their outstanding photothermal properties as well as their facile and scalable synthesis conditions.
Collapse
Affiliation(s)
- Dogu Seyda
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Orcun Dincer
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
- Present address:
Department of Chemical and Materials EngineeringConcordia UniversityMontrealQuebecH3G 1M8Canada
| | - Duygu İnce
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Murathan Cugunlular
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Husnu Emrah Unalan
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Simge Çınar Aygün
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| |
Collapse
|
5
|
Krysztofik A, Pula P, Pochylski M, Zaleski K, Gapinski J, Majewski P, Graczykowski B. Fast Photoactuation and Environmental Response of Humidity-Sensitive pDAP-Silicon Nanocantilevers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403114. [PMID: 38781555 DOI: 10.1002/adma.202403114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Multi-responsive nanomembranes are a new class of advanced materials that can be harnessed in complex architectures for micro and nano-manipulators, artificial muscles, energy harvesting, soft robotics, and sensors. The design and fabrication of responsive membranes must meet such challenges as trade-offs between responsiveness and mechanical durability, volumetric low-cost production ensuring low environmental impact, and compatibility with standard technologies or biological systems This work demonstrates the fabrication of multi-responsive, mechanically robust poly(1,3-diaminopropane) (pDAP) nanomembranes and their application in fast photoactuators. The pDAP films are developed using a plasma-assisted polymerization technique that offers large-scale production and versatility of potential industrial relevance. The pDAP layers exhibit high elasticity with the Young's modulus of ≈7 GPa and remarkable mechanical durability across 20-80 °C temperatures. Notably, pDAP membranes reveal immediate and reversible contraction triggered by light, rising temperature, or reducing relative humidity underpinned by a reversible water sorption mechanism. These features enable the fabrication of photoactuators composed of pDAP-coated Si nanocantilevers, demonstrating ms timescale response to light, tens of µm deflections, and robust performance up to kHz frequencies. These results advance fundamental research on multi-responsive nanomembranes and hold the potential to boost versatile applications in light-to-motion conversion and sensing toward the industrial level.
Collapse
Affiliation(s)
- Adam Krysztofik
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznań, 61-614, Poland
| | - Przemyslaw Pula
- Faculty of Chemistry, University of Warsaw, Pasteur 1, Warsaw, 02-093, Poland
| | - Mikolaj Pochylski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznań, 61-614, Poland
| | - Karol Zaleski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Jacek Gapinski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznań, 61-614, Poland
| | - Pawel Majewski
- Faculty of Chemistry, University of Warsaw, Pasteur 1, Warsaw, 02-093, Poland
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznań, 61-614, Poland
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
6
|
Chen JW, Wei YG, Lo HY, Lu S, Chen YC, Lei CF, Liu PL, Yu P, Tsou NT, Yasuhara A, Wu WW, Chu YH. Mechanically Robust Interface at Metal/Muscovite Quasi van der Waals Epitaxy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47715-47724. [PMID: 37769228 DOI: 10.1021/acsami.3c09129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Quasi van der Waals epitaxy is an approach to constructing the combination of 2D and 3D materials. Here, we quantify and discuss the 2D/3D interface structure and the corresponding features in metal/muscovite systems. High-resolution scanning transmission electron microscopy reveals the atomic arrangement at the interface. The theoretical results explain the formation mechanism and predict the mechanical robustness of these metal/muscovite quasi van der Waals epitaxies. The evidence of superior interface quality is delivered according to the outstanding performance of the designed systems in both retention (>105 s) and cycling tests (>105 cycles) through electromechanical measurements. With high-temperature X-ray reciprocal space mapping, the unique anisotropy of thermal expansion is discovered and predicted to sustain the thermal stress with a sizable thermal actuation. A maximum bending curvature of 264 m-1 at 243 °C can be obtained in the silver/muscovite heteroepitaxy. The electrothermal and photothermal methods show a fast response to thermal stress and demonstrate the interface robustness.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yun-Guan Wei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hung-Yang Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - SiCheng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yi-Che Chen
- Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Fong Lei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Po-Liang Liu
- Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Nien-Ti Tsou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Akira Yasuhara
- EM Application Department of EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Li Q, Jiao Y. Ultrafast Photothermal Actuators with a Large Helical Curvature Based on Ultrathin GO and Biaxially Oriented PE Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55828-55838. [PMID: 36484521 DOI: 10.1021/acsami.2c18478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In nature, there are some amazing superfast actuations (Venus flytrap) and large-curvature helical deformations (the awn of Erodium). Although many bionic actuators have been made (electrothermal, hygroscopic, photoinduced), most of their actuations are slow and small, not comparable to the wonderful ones in nature. Here, we report an ultrafast photothermal actuator with large-curvature curling based on an ultrathin graphene oxide (GO) and biaxially oriented polyethylene (BOPE) bilayer film (thickness ∼11 μm). By virtue of the fast temperature changing rate (peak: 900 °C s-1 during infrared heating and -1200 °C s-1 during cooling) and the great difference in the coefficient of thermal expansion of GO and BOPE layers, the actuator deforms rapidly and greatly. The maximum bending speed and curvature can reach 5300° s-1 and 22 cm-1, respectively, which are comparable to those of wonderful natural actuators and far exceed the performances of the reported artificial actuators. Different from ordinary helical actuators made of uniaxial anisotropic materials, our actuator is based on a typical biaxial anisotropic material of BOPE. However, the morphing behaviors of this type of actuator have not been reported before. So for the first time, we systematically studied this problem through experiments and simulations using the GO-BOPE actuator as a prototype and have drawn clear conclusions. In addition, functional GO-BOPE actuators capable of winding around and manipulating tiny objects were also designed and developed. We think this ultrafast large-curvature photothermal actuator will have wide application prospects in bionic actuations and dexterous robots.
Collapse
Affiliation(s)
- Qingwei Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yan Jiao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
8
|
Sun M, Wang P, Zheng G, Dai K, Liu C, Shen C. Multi-stimuli-responsive actuator based on bilayered thermoplastic film. SOFT MATTER 2022; 18:5052-5059. [PMID: 35758137 DOI: 10.1039/d2sm00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, soft actuators have attracted considerable interest owing to their biomimetic performance. Unfortunately, it remains a great challenge to fabricate multi-stimuli-responsive soft actuators by a facile but low-cost method. Herein, a thermoplastic film with bilayered architecture was designed and fabricated by a one-step method. This bilayered thermoplastic film can act as a soft actuator, demonstrating versatile shape-programmable performance in response to acetone vapor exposure and temperature change. Interestingly, diverse biomimetic devices including a worm-like self-walker, crawler-type robot and soft gripper can be realized, which highlights its promising applications in biomimetic robots, artificial muscles and automatic devices. Considering the one-step preparation process and the low-cost raw materials, this approach can be cost-effectively scaled up for practical production.
Collapse
Affiliation(s)
- Mengdi Sun
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Panlong Wang
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Guoqiang Zheng
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Kun Dai
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Chuntai Liu
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Changyu Shen
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Wang M, Zhou L, Deng W, Hou Y, He W, Yu L, Sun H, Ren L, Hou X. Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators. ACS NANO 2022; 16:2672-2681. [PMID: 35040625 DOI: 10.1021/acsnano.1c09477] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.
Collapse
Affiliation(s)
- Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Lei Zhou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wenyan Deng
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wen He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Xu Hou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Centre of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
10
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Zhao H, Qi X, Ma Y, Sun X, Liu X, Zhang X, Tian M, Qu L. Wearable Sunlight-Triggered Bimorph Textile Actuators. NANO LETTERS 2021; 21:8126-8134. [PMID: 34570519 DOI: 10.1021/acs.nanolett.1c02578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photothermal bimorph actuators have attracted considerable attention in intelligent devices because of their cordless control and lightweight and easy preparation. However, current photothermal bimorph actuators are mostly based on films or papers driven by near-infrared sources, which are deficient in flexibility and adaptability, restricting their potential in wearable applications. Herein, a bimorph textile actuator that can be scalably fabricated with a traditional textile route and autonomously triggered by sunlight is reported. The active layer and passive layer of the bimorph are constructed by polypropylene tape and a MXene-modified polyamide filament. Because of the opposite thermal expansion and MXene-enhanced photothermal efficiency (>260%) of the bimorph, the textile actuator presents effective deformation (1.38 cm-1) under low sunlight power (100 mW/cm2). This work provides a new pathway for wearable sunlight-triggered actuators and finds attractive applications for smart textiles.
Collapse
Affiliation(s)
- Hongtao Zhao
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yulong Ma
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuantong Sun
- Department of Materials, The University of Manchester, Manchester M139PL, United Kingdom
| | - Xuqing Liu
- Department of Materials, The University of Manchester, Manchester M139PL, United Kingdom
| | - Xueji Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
12
|
Luo XJ, Li L, Zhang HB, Zhao S, Zhang Y, Chen W, Yu ZZ. Multifunctional Ti 3C 2T x MXene/Low-Density Polyethylene Soft Robots with Programmable Configuration for Amphibious Motions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45833-45842. [PMID: 34520189 DOI: 10.1021/acsami.1c11056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To diversify the motion modes of multifunctional soft robots capable of shape programming, we fabricate a biomimetic and programmable Ti3C2Tx MXene/low-density polyethylene (LDPE) bilayer actuator by spraying an aqueous dispersion of MXenes onto a plasma-activated LDPE film, followed by optimal thermal regulations. Because of the eminent light absorption and photothermal/electrothermal features of MXenes and the extremely mismatched thermal expansion coefficients between the two layers, the MXene/LDPE actuator can be sensitively driven by many stimuli of near-infrared light, electricity, and heat. The initial configuration of the bilayer actuator can be programmed by tuning the thermal regulation temperature, thereby assembling multiple actuation units to achieve biomimetic functions, such as artificial iris, mechanical arms, and flying birds. More importantly, in virtue of free shape cutting and programmable configuration, the MXene/LDPE bilayer actuator can perform untethered locomotion including crawling, rolling, and sailing. The soft robots can not only move on the ground in different forms but also sail on water along any designated routes and complete the surface cargo transportation driven by a near-infrared laser via the photothermal Marangoni effect. The shape-programmable methodology for the three amphibious motion modes lays foundations for wide applications of the MXene-based soft robots.
Collapse
Affiliation(s)
- Xin-Jie Luo
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lulu Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sai Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light‐Driven Self‐Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Bin Zi
- School of Mechanical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing The Hong Kong Polytechnic University Hong Kong 999077 P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| |
Collapse
|
14
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light-Driven Self-Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021; 60:20511-20517. [PMID: 34272927 DOI: 10.1002/anie.202108058] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Developing self-oscillating soft actuators that enable autonomous, continuous, and directional locomotion is significant in biomimetic soft robotics fields, but remains great challenging. Here, an untethered soft photoactuators based on covalently-bridged black phosphorus-carbon nanotubes heterostructure with self-oscillation and phototactic locomotion under constant light irradiation is designed. Owing to the good photothermal effect of black phosphorus heterostructure and thermal deformation of the actuator components, the new actuator assembled by heterostructured black phosphorus, polymer and paper produces light-driven reversible deformation with fast and large response. By using this actuator as mechanical power and designing a robot configuration with self-feedback loop to generate self-oscillation, an inchworm-like actuator that can crawl autonomously towards the light source is constructed. Moreover, due to the anisotropy and tailorability of the actuator, an artificial crab robot that can simulate the sideways locomotion of crabs and simultaneously change color under light irradiation is also realized.
Collapse
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Bin Zi
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
15
|
Zheng Q, Xu C, Jiang Z, Zhu M, Chen C, Fu F. Smart Actuators Based on External Stimulus Response. Front Chem 2021; 9:650358. [PMID: 34136462 PMCID: PMC8200850 DOI: 10.3389/fchem.2021.650358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Smart actuators refer to integrated devices that are composed of smart and artificial materials, and can provide actuation and dampening capabilities in response to single/multi external stimuli (such as light, heat, magnetism, electricity, humidity, and chemical reactions). Due to their capability of dynamically sensing and interaction with complex surroundings, smart actuators have attracted increasing attention in different application fields, such as artificial muscles, smart textiles, smart sensors, and soft robots. Among these intelligent material, functional hydrogels with fiber structure are of great value in the manufacture of smart actuators. In this review, we summarized the recent advances in stimuli-responsive actuators based on functional materials. We emphasized the important role of functional nano-material-based additives in the preparation of the stimulus response materials, then analyzed the driving response medium, the preparation method, and the performance of different stimuli responses in detail. In addition, some challenges and future prospects of smart actuators are reported.
Collapse
Affiliation(s)
- Qinchao Zheng
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chenxue Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chen Chen
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Fanfan Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Chen Y, Yang J, Zhang X, Feng Y, Zeng H, Wang L, Feng W. Light-driven bimorph soft actuators: design, fabrication, and properties. MATERIALS HORIZONS 2021; 8:728-757. [PMID: 34821314 DOI: 10.1039/d0mh01406k] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Soft robots that can move like living organisms and adapt to their surroundings are currently in the limelight from fundamental studies to technological applications, due to their advances in material flexibility, human-friendly interaction, and biological adaptation that surpass conventional rigid machines. Light-fueled smart actuators based on responsive soft materials are considered to be one of the most promising candidates to promote the field of untethered soft robotics, thereby attracting considerable attention amongst materials scientists and microroboticists to investigate photomechanics, photoswitch, bioinspired design, and actuation realization. In this review, we discuss the recent state-of-the-art advances in light-driven bimorph soft actuators, with the focus on bilayer strategy, i.e., integration between photoactive and passive layers within a single material system. Bilayer structures can endow soft actuators with unprecedented features such as ultrasensitivity, programmability, superior compatibility, robustness, and sophistication in controllability. We begin with an explanation about the working principle of bimorph soft actuators and introduction of a synthesis pathway toward light-responsive materials for soft robotics. Then, photothermal and photochemical bimorph soft actuators are sequentially introduced, with an emphasis on the design strategy, actuation performance, underlying mechanism, and emerging applications. Finally, this review is concluded with a perspective on the existing challenges and future opportunities in this nascent research Frontier.
Collapse
Affiliation(s)
- Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Weng M, Xiao Y, Yao L, Zhang W, Zhou P, Chen L. Programmable and Self-Healing Light-Driven Actuators through Synergetic Use of Water-Shaping and -Welding Methods. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55125-55133. [PMID: 33253523 DOI: 10.1021/acsami.0c14380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape programming is critical for the fabrication of a light-driven actuator with complex shape morphing, which demonstrates potential applications in remote-controlled light-driven soft robots. However, it remains a huge challenge to obtain light-driven actuators having advantages of complex shape morphing, self-healing function, and facile fabrication simultaneously. Here, we report a facile strategy to obtain programmable and self-healing light-driven actuators with complex shape morphing. Various initial shapes of actuators can be programmed by synergetic use of water-shaping and -welding methods, which provides unlimited opportunities for fabricating actuators with predesigned shapes and subsequently demonstrating complex shape morphing. A template transfer method is used to prepare a single-layer graphene oxide (GO) film with asymmetric surface structures, which acts as the basic actuator and has the self-healing function based on the hydrophilic property of GO. It shows bending morphing under near-infrared (NIR) light irradiation due to the photothermal effect and asymmetric morphology on the opposite surfaces. Four more types of actuators are programmed from the basic actuator through the water-shaping method, which exhibits bending, unbending, twisting, and untwisting, respectively, under NIR light illumination. In addition, an S-shape actuator and a flower-shape actuator are programmed from the basic actuators through the water-welding method. By simply turning over the S-shape actuator, it can perform a bidirectional crawling motion. Finally, two intricate bionic light-driven actuators (tendril-shape and octopus-shape) are constructed, which are unattainable from conventional fabrication methods of actuators. We believe that this study will unlock a new way to programmable, self-healing, and light-driven soft robots with tunable and complex shape morphing.
Collapse
Affiliation(s)
- Mingcen Weng
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Yiwen Xiao
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Liqiang Yao
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Peidi Zhou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| |
Collapse
|
18
|
Zhao J, Li Q, Miao B, Pi H, Yang P. Controlling Long-Distance Photoactuation with Protein Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000043. [PMID: 32307812 DOI: 10.1002/smll.202000043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Long-distance wireless actuation indicates precise remote control over materials, sensors, and devices that are widely utilized in biomedical, defence, disaster relief, deep ocean, and outer space applications to replace human work. Unlike radio frequency (RF) control, which has low tolerance toward electromagnetic interference (EMI), light control represents a promising method to overcome EMI. Nonetheless, long-distance light-controlled wireless actuation able to compete with RF control has not been achieved until now due to the lack of highly light-sensitive actuator designs. Here, it is demonstrate that amyloid-like protein aggregates can organize photomodule single-layer reduced graphene oxide (rGO) into a well-defined multilayer stack to display long-distance photoactuation. The amyloid-like proteinaceous component docks the rGO layers together to form a hybrid film, which can reliably adhere onto various material surfaces with robust interfacial adhesion. The sensitive photothermal effect and a fast bending in 1 s to switch a circuit are achieved after forming the film on a plastic substrate and irradiating the bilayer film with a blue laser from 100 m away. A photoactuation distance of 50 km can be further extrapolated based on a commercial high-power laser. This study reveals the great potential of amyloid-like aggregates in remote light control of robots and devices.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Qian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bianliang Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Hemu Pi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
19
|
Ji Y, Xing Y, Li X, Shao LH. Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. NANOMATERIALS 2019; 9:nano9121704. [PMID: 31795263 PMCID: PMC6956020 DOI: 10.3390/nano9121704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
A dual-stimuli responsive soft actuator based on the three-dimensional (3D) porous carbon nanotube (CNT) sponge and its composite with polydimethylsiloxane (PDMS) was developed, which can realize both electrothermal and electrochemical actuation. The bimorph actuator exhibited a bending curvature of 0.32 cm−1·W−1 under electrothermal stimulation on land. The displacement of the electrochemical actuator could reach 4 mm under a 5 V applied voltage in liquid. The dual-responsive actuator has demonstrated the applications on multi-functional amphibious soft robots as a crawling robot like an inchworm, a gripper to grasp and transport the cargo and an underwater robot kicking a ball. Our study presents the versatility of the CNT sponge-based actuator, which can be used both on land and in water.
Collapse
|
20
|
Ji M, Li Q, Cho IH, Kim J. Rapid Design and Analysis of Microtube Pneumatic Actuators Using Line-Segment and Multi-Segment Euler-Bernoulli Beam Models. MICROMACHINES 2019; 10:mi10110780. [PMID: 31739512 PMCID: PMC6915588 DOI: 10.3390/mi10110780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/05/2022]
Abstract
Soft material-based pneumatic microtube actuators are attracting intense interest, since their bending motion is potentially useful for the safe manipulation of delicate biological objects. To increase their utility in biomedicine, researchers have begun to apply shape-engineering to the microtubes to diversify their bending patterns. However, design and analysis of such microtube actuators are challenging in general, due to their continuum natures and small dimensions. In this paper, we establish two methods for rapid design, analysis, and optimization of such complex, shape-engineered microtube actuators that are based on the line-segment model and the multi-segment Euler–Bernoulli’s beam model, respectively, and are less computation-intensive than the more conventional method based on finite element analysis. To validate the models, we first realized multi-segment microtube actuators physically, then compared their experimentally observed motions against those obtained from the models. We obtained good agreements between the three sets of results with their maximum bending-angle errors falling within ±11%. In terms of computational efficiency, our models decreased the simulation time significantly, down to a few seconds, in contrast with the finite element analysis that sometimes can take hours. The models reported in this paper exhibit great potential for rapid and facile design and optimization of shape-engineered soft actuators.
Collapse
Affiliation(s)
- Myunggi Ji
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA; (M.J.); (Q.L.)
| | - Qiang Li
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA; (M.J.); (Q.L.)
| | - In Ho Cho
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jaeyoun Kim
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA; (M.J.); (Q.L.)
- Correspondence: ; Tel.: +1-515-294-4214
| |
Collapse
|
21
|
Li X, Li M, Xu J, You J, Yang Z, Li C. Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat Commun 2019; 10:3514. [PMID: 31383861 PMCID: PMC6683165 DOI: 10.1038/s41467-019-11466-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/25/2019] [Indexed: 11/08/2022] Open
Abstract
Liquid metal (LM) droplets show the superiority in coalescing into integral liquid conductors applicable in flexible and deformable electronics. However, the large surface tension, oxide shells and poor compatibility with most other materials may prevent spontaneous coalescence of LM droplets and/or hybridisation into composites, unless external interventions (e.g., shear and laser) are applied. Here, we show that biological nanofibrils (NFs; including cellulose, silk fibroin and amyloid) enable evaporation-induced sintering of LM droplets under ambient conditions into conductive coating on diverse substrates and free-standing films. The resultants possess an insulating NFs-rich layer and a conductive LM-rich layer, offering flexibility, high reflectivity, stretchable conductivity, electromagnetic shielding, degradability and rapid actuating behaviours. Thus this sintering approach not only extends fundamental knowledge about sintering LM droplets, but also starts a new scenario of producing flexible coating and free-standing composites with flexibility, conductivity, sustainability and degradability, and applicable in microcircuits, wearable electronics and soft robotics.
Collapse
Affiliation(s)
- Xiankai Li
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China
- Center of Material and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Li
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Jie Xu
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China
- Center of Material and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun You
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhiqin Yang
- School of Materials Science and Engineering Harbin Institute of Technology, Harbin, 150001, China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China.
- Center of Material and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Sun Z, Yang L, Zhang D, Bian F, Song W. High-performance biocompatible nano-biocomposite artificial muscles based on a renewable ionic electrolyte made of cellulose dissolved in ionic liquid. NANOTECHNOLOGY 2019; 30:285503. [PMID: 30849765 DOI: 10.1088/1361-6528/ab0e33] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, high-performance biocompatible nano-biocomposite artificial muscles were developed via various thicknesses of renewable microporous ionic electrolytes (ICEs) made of natural biopolymer cellulose dissolved in ionic liquid with excellent ionic conductivity and flexibility. The changing thickness experiments illustrated that 0.7 mm thick ICEs could deliver outstanding areal capacitance of 44.708 mF cm-2 and ionic conductivity of 79.7 μS cm-1, as well as minimum resistance of 1.61 Ω. The current density changed from 1 to 10 Ag-1, and improvements were achieved in energy density (from 3.88 to 21.25 Wh kg-1) and power density (from 2.63 to 5.51 KW kg-1). The voltage window widened from 0.5 to 1 V, and improvements were gained in energy density (from 4.13 to 22.01 Wh kg-1) and power density (from 1.25 to 2.81 KW kg-1). Moreover, good flexibility of 0.7 mm thick ICE with porosity of 89.61% and elastic modulus of 74.38 MPa was discovered. Electromechanical experiments demonstrated from the above results that the maximum peak displacement with 0.3 mm ICE was 5.33 mm at 5 V 0.02 Hz sine wave voltage, and the maximum displacement and force with 0.7 mm ICE was 17.44 mm and 5.93 mN at 5 V DC voltages. These findings suggest that the explored excellent ionic conductivity and flexibility of ICEs holds great promise for the further study of high-performance green actuators.
Collapse
Affiliation(s)
- Zhuangzhi Sun
- Province Key Laboratory of Forestry Intelligent Equipment Engineering, College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150000, People's Republic of China. Ministry of Education Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Harbin 150000, People's Republic of China
| | | | | | | | | |
Collapse
|