1
|
Wu X, Geng C, Cheng W, Wang Z, Zhang Y, Wu D, Tang X. An ultrasensitive homogeneous electrochemical strategy for ochratoxin a sensing based on nanoscale PCN-224@MB@Apt. Talanta 2025; 287:127695. [PMID: 39923674 DOI: 10.1016/j.talanta.2025.127695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
In this reasearch, a homogeneous electrochemical sensor based on PCN-224@MB@Apt was fabricated for the ultrasensitive determination of ochratoxin A (OTA). Firstly, nanoscale PCN-224 were synthesized as the nanocarrier to embed the signal probe of methylene blue (MB). Then, the OTA aptamer (Apt) was added and connected to PCN-224@MB via the Zr-O-P bond between Zr metal sites of PCN-224 and phosphate group of Apt as the biogate. When OTA exists, the Apt would preferentially bind with OTA and fall off from PCN-224@MB, leading to the release of MB and generation of differential pulse voltammetry (DPV) response. The DPV response of MB was linearly correlated with the amount of OTA. The optimized PCN-224@MB@Apt sensor showed outstanding detection performance towards OTA with a low detection limit of 2.6 × 10-5 ng/mL (S/N = 3) and wide linear range (10-4-10 ng/mL). Meanwhile, the fabricated homogeneous electrochemical sensor exhibited splendid stability, reproducibility, and specificity. To assess the practical applicability, the PCN-224@MB@Apt sensor was applied to detect OTA in real corn samples and desirable recovery rates varying from 83.2 % to 109.6 % were obtained.
Collapse
Affiliation(s)
- Xi Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chenggang Geng
- Changzhou Food and Drug Fiber Quality Supervision and Inspection Center, Changzhou 213000, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
2
|
Wang C, Wang Z, Gao M, Zhu Y, Zhu H, Zhou L, Zhou Y, Tian X, Liu Y, Zhang Y, Sun S, Meng C, Hong X, Wang Y, Yang M, Fan N, Huang H, Chen Z, Ge Y, Li J, Jiang K, Zhang H, Qiu M, Wang H. Highly Stable and Integrable Graphene/Molybdenum Disulfide Heterojunction Field-Effect Transistor-Based miRNA Biosensor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28585-28596. [PMID: 40313004 DOI: 10.1021/acsami.5c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
MicroRNAs (miRNAs) are important noncoding RNA molecules that participate in gene regulation and are widely associated with the occurrence and development of various cancers. Developing rapid, highly sensitive, low-cost, and highly stable miRNA detection methods is of great significance for clinical diagnosis. Field-effect transistors (FETs) based on two-dimensional (2D) materials have been proven to have great potential in the field of miRNA detection due to their label-free, rapid, highly sensitive, low-power, and portable features. However, biosensors based on 2D material FETs require the application of an external gate voltage in solution, which seriously hinders the integration, miniaturization, and signal stability of the devices. This study proposes a graphene-molybdenum disulfide heterojunction (G/MoS2) FET biosensing platform to detect miRNA-21 and miRNA-155 without the need for an external gate voltage. The results demonstrate a detection time of approximately 30 min, a linear response range spanning from 10 fM to 10 nM, and limits of detection of 6.06 fM for miRNA-21 and 2.59 fM for miRNA-155. Through comparative experiments, the biosensor shows excellent selectivity and can distinguish target miRNAs from nontarget miRNAs. The G/MoS2 FET biosensor developed in this study provides a technical platform for miRNA detection and has a broad application prospect, especially in the early diagnosis of diseases and the screening of biomarkers.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Ziqian Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Yihan Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Honghai Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Lizhuo Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yujie Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xilin Tian
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yi Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yule Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Shuo Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Changle Meng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Mingmin Yang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Hao Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Zhi Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Yanqi Ge
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Jianqing Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Huide Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
3
|
Sharma DS, Jamwal VL, Siddharth PHS, Angurana SL, Gandhi SG, Rath D. Electrochemical microfluidic biosensors for the detection of cancer biomarker miRNAs. Talanta 2025; 294:128282. [PMID: 40339339 DOI: 10.1016/j.talanta.2025.128282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Cancer is a formidable adversary in contemporary healthcare. Routine screening and early diagnosis are crucial for favourable therapeutic outcomes. Publications, clinical trials, and patent landscape analysis suggest miRNA as promising biomarkers for diagnosis and prognosis of various cancers. This review intends to shed a holistic view of the current and futuristic methods for electrochemical biosensing platforms, using miRNA as biomarkers, coupled with microfluidics, machine learning techniques, and portable electronic devices. Electrochemical biosensors are thoroughly reviewed as they are promising candidate in the design and development of such devices where there is an in-depth exploration of the existing molecular techniques and sophisticated electrochemical biosensing strategies developed for the detection of miRNAs. Additionally, the review will critically analyze diverse signal enhancement strategies and microfluidic platforms specifically tailored for the detection of miRNA. Practical examples of such integrated electrochemical microfluidic biosensors are thoroughly cited along with the prospect of integration of these techniques with portable electronics, highlighting the future potential of highly integrated and accessible diagnostic solutions. Furthermore, the review will also encompass an assessment of the ongoing clinical trials investigating the utility of miRNA as cancer biomarker in diagnostic settings. Moreover, by assessing existing patents, the review shall provide a nuanced understanding of the intellectual property landscape, identifying key players, emerging technologies, and potential future directions. Our review with a 360-degree updated view on molecular biology components, electrochemical biosensors, engineering device design, clinical trials and patent landscape would appeal to researchers, engineers and clinicians working in the area of cancer molecular diagnosis.
Collapse
Affiliation(s)
- Dakshita Snud Sharma
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - Vijay Lakshmi Jamwal
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - P H Sai Siddharth
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - Shabab Lalit Angurana
- Radiation Oncology, All India Institute of Medical Sciences, Vijaypur, Jammu, 184 120, Jammu and Kashmir, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu, 180 001, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| | - Dharitri Rath
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Shao H, Xue X, Sun Z, Zheng X, Shi P. Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification. Anal Chim Acta 2025; 1336:343444. [PMID: 39788648 DOI: 10.1016/j.aca.2024.343444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification. Methylene blue (MB) and Hemin are chosen as two electrochemical species. Then the ratiometric electrochemical sensor were developed, which showed favorable performance of miRNA-21 detection, and exhibited a detection concentration range from 1 fM to 10 nM. Notably, the limit of detection for this biosensor was 0.15 fM. Overall, this strategy for miRNA detection holds significant promise for early cancer screening.
Collapse
Affiliation(s)
- Honglei Shao
- School of Chemistry & Chemical Engineering, Linyi University, China
| | - Xingming Xue
- School of Chemistry & Chemical Engineering, Linyi University, China
| | - Zhaomei Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China.
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China.
| |
Collapse
|
5
|
Song W, Du W, Wang Z, Xu T, Liu Z, Bai L. Signal amplification strategy based on target-controlled release of mediator for ultrasensitive self-powered biosensing of acetamiprid. Talanta 2025; 281:126844. [PMID: 39277931 DOI: 10.1016/j.talanta.2024.126844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Self-powered biosensors with high sensitivity have garnered significant interest for their potential applications in the realm of portable sensing. Herein, a self-powered biosensor with a novel signal amplification strategy was developed by integrating target-controlled release of mediator with an enzyme biofuel cell for the ultrasensitive detection of acetamiprid (ACE). Zeolitic imidazolate framework-67 was utilized as both a nanocontainer for capturing the electron mediator 2,2'-azidobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and a precursor for the synthesis of cobalt nanoparticles/nitrogen, sulfur-codoped carbon nanotubes (Co NPs/NS-CNTs), which were employed as the electrode material for constructing both the glucose oxidase-based bioanode and the laccase-based biocathode. The target analyte ACE can specifically bind to its aptamer, leading to the release of ABTS, which cyclically participates in the catalytic reaction of the biocathode, thereby amplifying the electrochemical signal. By leveraging the benefits of ABTS cyclic catalysis and the effective electrocatalysis of bioelectrodes based on Co NPs/NS-CNTs, the self-powered biosensor has a broad detection range of 0.1-1000 fM and a low detection limit of 25 aM toward ACE. The proposed signal amplification approach presents a promising strategy for enhancing sensitivity and enabling portable analysis in applications of food safety, environmental monitoring, and medical diagnostics.
Collapse
Affiliation(s)
- Wencong Song
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Wenhui Du
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhuqin Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Tingqiang Xu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhicheng Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Lu Bai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
6
|
Kushwaha S, Goel A, Singh AV. Serum microRNA Biomarker Expression in HIV and TB: A Concise Overview. Infect Disord Drug Targets 2025; 25:e18715265305638. [PMID: 39506419 DOI: 10.2174/0118715265305638240930054842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024]
Abstract
Non-coding RNAs (ncRNAs), specifically MicroRNAs or miRNAs, are now understood to be essential regulators in the complex field of gene expression. By selectively binding to certain mRNA targets, these tiny RNA molecules control the expression of genes, leading to mRNA degradation or translational repression. The discovery of miRNAs has significantly advanced biomedical research, particularly in elucidating the molecular mechanisms underlying various diseases and exploring innovative therapeutic approaches. Recent progress in miRNA research has provided insights into their biogenesis, functional roles, and potential clinical applications. Despite the absence of established methodologies for clinical implementation, miRNAs show great promise as diagnostic and therapeutic agents for a wide array of diseases. Their distinctive attributes, such as high specificity, sensitivity, and accessibility, position them as ideal candidates for biomarker development and targeted therapy. Achieving a comprehensive understanding of miRNA biology and functionality is crucial to fully harnessing their potential in medicine. Ongoing research efforts aim to unravel the intricate mechanisms of miRNA-mediated gene regulation and to develop novel approaches for utilizing miRNAs in disease diagnosis, prognosis, and treatment. This review provides a comprehensive analysis of current knowledge on miRNAs, focusing on their biogenesis, regulatory mechanisms, and potential clinical applications. By synthesizing existing evidence and highlighting key research findings, this review aims to inspire further exploration into the diverse roles of miRNAs in health and disease. Ultimately, this endeavour could result in the development of innovative miRNA-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shweta Kushwaha
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, Uttar Pradesh, India
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, Uttar Pradesh, India
| |
Collapse
|
7
|
Qi Q, Liu Z, Chen X, Yu J, Li X, Wang R, Liu Y, Chen J. Promoted electrochemical performance by MOF on MOF composite catalyst of microbial fuel cell: CuCo-MOF@ZIF-8 and the comparison between two-step hydrothermal method and dual-solution method. Biosens Bioelectron 2024; 264:116693. [PMID: 39167887 DOI: 10.1016/j.bios.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
The microbial fuel cell (MFC) is a device that simultaneously achieves electricity generation and sewage degradation. In this study, a novel cathode catalyst metal-organic frameworks (MOFs) have been fabricated by two-step hydrothermal and dual-solution method (CuCo-MOF@ZIF-8). The synthesized trimetal MOFs exhibited a 3D badminton-like structure morphology and porosity. The results of the characterizations showed that CuCo-MOF@ZIF-8 possesses greater surface area porosity and novel functional groups. The Trimetal MOF-on-MOF mode not only demonstrated the stability of the structure but also enhanced its mechanism. Molecular mechanism analysis revealed changes in the organic ligand and metal binding site due to the transformation of Cu2+ to Cu+, Co2+ to Co3+, and Zn-N to Zn-O organic connection. Furthermore, differences between the two fabrication methods were compared. The solid-state single preparation (CuCo-MOF@ZIF-8-1), was synthesized using the two-step hydrothermal method; the liquid mixed preparation material (CuCo-MOF@ZIF-8-2), was synthesized using the dual-solution method; they exhibited completely different chemical structures and morphologies during material testing and characterization. The maximum output power density of CuCo-MOF@ZIF-8-2-MFC was 246.38 mW/m2, about 2.49 times of ZIF-8 (98.72 mW/m2). The output voltage of CuCo-MOF@ZIF-8-1-MFC was measured at 357 mV over 10 d, while that of CuCo-MOF@ZIF-8-2-MFC reached 365 mV over 12 d.
Collapse
Affiliation(s)
- Qin Qi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Zhen Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xiaomin Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Jiale Yu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xin Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
8
|
Gong Y, Han H, Ma Z. Ultrasensitive self-powered biosensor with facile chemical signal amplification strategy using hydrogen peroxide-triggered silver oxidation reaction. Talanta 2024; 279:126570. [PMID: 39018949 DOI: 10.1016/j.talanta.2024.126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The amplification strategies used for self-powered biosensor based on biofuel cell (BFC-SPB) need to be further developed. Because the currently developed strategies utilized the complicated hybridization of DNA or poorly readable current signal of capacitors for amplification, which limits the practical application in public health emergencies. Here, we present a facile chemical amplification strategy for BFC-SPB. The 5-min amplification was triggered by simply adding H2O2 solution dropwise to the sensing cathode after the formation of the immune sandwich. The Ag NP of immunoprobe were oxidized to Ag(I), which can be served as the electron acceptor of the cathode. The amount of immunoprobe was positively correlated with that of the antigen, resulting in corresponding and high concentration of Ag(I) after the amplification, which enhanced the ability of the cathode as the electron acceptor. Meanwhile the glucose oxidation reaction (GOR) was performed on the bioanode modified with glucose oxidase (GOx). After assembling the bioanode and sensing cathode, the open circuit voltage of the BFC-SPB, measured by digital multimeter, distinctly rised with the elevated concentration of the antigen. To demonstrate the proof of concept, immunoglobulin G (IgG), selecting as a model analyte, was sensitively detected using this method. Result indicated that the limit of detection was 4.4 fg mL-1 (0.03 amol mL-1) in the linear range of 1 pg mL-1-10 μg mL-1. This work initiates a brand-new way of chemical amplification strategy for BFC-SPB, and offers a promising platform for practical applications.
Collapse
Affiliation(s)
- Yichen Gong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
9
|
Xue J, Wang Y, Jing Y, Li X, Chen S, Xu Y, Song RB. Recent advances in microbial fuel cell-based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes. Anal Bioanal Chem 2024; 416:4649-4662. [PMID: 38457006 DOI: 10.1007/s00216-024-05230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
With the rapid development of society, it is of paramount importance to expeditiously assess environmental pollution and provide early warning of toxicity risks. Microbial fuel cell-based self-powered biosensors (MFC-SPBs) have emerged as a pivotal technology, obviating the necessity for external power sources and aligning with the prevailing trends toward miniaturization and simplification in biosensor development. In this case, vigorous advancements in MFC-SPBs have been acquired in past years, irrespective of whether the target identification event transpires at the anode or cathode. The present article undertakes a comprehensive review of developed MFC-SPBs, categorizing them into substrate effect and microbial activity effect based on the nature of the target identification event. Furthermore, various enhancement strategies to improve the analytical performance like accuracy and sensitivity are also outlined, along with a discussion of future research trends and application prospects of MFC-SPBs for their better developments.
Collapse
Affiliation(s)
- Junjun Xue
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Yuxin Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jing
- Henan Joint International Research Laboratory of Intelligent Water Treatment System, Qingshuiyuan Technology Co., Ltd., Jiyuan, China
| | - Xiaoxuan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Suping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Ying Xu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| | - Rong-Bin Song
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Chakraborty I, Olsson RT, Andersson RL, Pandey A. Glucose-based biofuel cells and their applications in medical implants: A review. Heliyon 2024; 10:e33615. [PMID: 39040310 PMCID: PMC11261083 DOI: 10.1016/j.heliyon.2024.e33615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In glucose biofuel cells (G-BFCs), glucose oxidation at the anode and oxygen reduction at the cathode yield electrons, which generate electric energy that can power a wide range of electronic devices. Research associated with the development of G-BFCs has increased in popularity among researchers because of the eco-friendly nature of G-BFCs (as related to their construction) and their evolution from inexpensive bio-based materials. In addition, their excellent specificity towards glucose as an energy source, and other properties, such as small size and weight, make them attractive within various demanding applied environments. For example, G-BFCs have received much attention as implanted devices, especially for uses related to cardiac activities. Envisioned pacemakers and defibrillators powered by G-BFCs would not be required to have conventional lithium batteries exchanged every 5-10 years. However, future research is needed to develop G-BFCs demonstrating more stable power consistency and improved lifespan, as well as solving the challenges in converting laboratory-made implantable G-BFCs into implanted devices in the human body. The categorization of G-BFCs as a subcategory of different biofuel cells and their performance is reviewed in this article.
Collapse
Affiliation(s)
| | - Richard T. Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Richard L. Andersson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Annu Pandey
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| |
Collapse
|
11
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
12
|
Ouyang R, Huang Y, Ma Y, Feng M, Liu X, Geng C, Zhao Y, Zhou S, Liu B, Miao Y. Nanomaterials promote the fast development of electrochemical MiRNA biosensors. RSC Adv 2024; 14:17929-17944. [PMID: 38836170 PMCID: PMC11149695 DOI: 10.1039/d3ra08258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/18/2024] [Indexed: 06/06/2024] Open
Abstract
Cancer has become the leading cause of death worldwide. In recent years, molecular diagnosis has demonstrated great potential in the prediction and diagnosis of cancer. MicroRNAs (miRNAs) are short oligonucleotides that regulate gene expression and cell function and are considered ideal biomarkers for cancer detection, diagnosis, and patient prognosis. Therefore, the specific and sensitive detection of ultra-low quantities of miRNA is of great significance. MiRNA biosensors based on electrochemical technology have advantages of high sensitivity, low cost and fast response. Nanomaterials show great potential in miRNA electrochemical detection and promote the rapid development of electrochemical miRNA biosensors. Some methods and signal amplification strategies for miRNA detection in recent years are reviewed herein, followed by a discussion of the latest progress in electrochemical miRNA detection based on different types of nanomaterial. Future perspectives and challenges are also proposed for further exploration of nanomaterials to bring breakthroughs in electrochemical miRNA detection.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ying Huang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuanhui Ma
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Meina Feng
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xi Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
13
|
Sun S, Su M, Xiao H, Yin X, Liu Y, Yang W, Chen Y. Self-powered biosensing platform for Highly sensitive detection of soluble CD44 protein. Talanta 2024; 272:125824. [PMID: 38422906 DOI: 10.1016/j.talanta.2024.125824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
In this study, a self-powered biosensor based on an enzymatic biofuel cell was proposed for the first time for the ultrasensitive detection of soluble CD44 protein. The as-prepared biosensor was composed of the co-exist aptamer and glucose oxidase bioanode and bilirubin oxidase modified biocathode. Initially, the electron transfer from bioanode to biocathode was hindered due to the presence of the aptamer with high insulation, generating a low open-circuit voltage (EOCV). Once the target CD44 protein was present, it was recognized and captured by the aptamer at the bioanode, thus the interaction between the target CD44 protein and the immobilized aptamer caused the structural change at the surface of the electrode, which facilitated the transfer of electrons. The EOCV showed a good linear relationship with the logarithm of the CD44 protein concentrations in the range of 0.5-1000 ng mL-1 and the detection limit was 0.052 ng mL-1 (S/N = 3). The sensing platform showed excellent anti-interference performance and outstanding stability that maintained over 97% of original EOCV after 15 days. In addition, the relative standard deviation (1.40-1.96%) and recovery (100.23-101.31%) obtained from detecting CD44 protein in real-life blood samples without special pre-treatment indicated that the constructed biosensor had great potential for early cancer diagnosis.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Meng Su
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Han Xiao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Xiaoshuang Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Ying Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Yun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China.
| |
Collapse
|
14
|
Farzin MA, Naghib SM, Rabiee N. Advancements in Bio-inspired Self-Powered Wireless Sensors: Materials, Mechanisms, and Biomedical Applications. ACS Biomater Sci Eng 2024; 10:1262-1301. [PMID: 38376103 DOI: 10.1021/acsbiomaterials.3c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The rapid maturation of smart city ecosystems is intimately linked to advances in the Internet of Things (IoT) and self-powered sensing technologies. Central to this evolution are battery-less sensors that are critical for applications such as continuous health monitoring through blood metabolites and vital signs, the recognition of human activity for behavioral analysis, and the operational enhancement of humanoid robots. The focus on biosensors that exploit the human body for energy-spanning wearable, attachable, and implantable variants has intensified, driven by their broad applicability in areas from underwater exploration to biomedical assays and earthquake monitoring. The heart of these sensors lies in their diverse energy harvesting mechanisms, including biofuel cells, and piezoelectric, triboelectric, and pyroelectric nanogenerators. Notwithstanding the wealth of research, the literature still lacks a holistic review that integrates the design challenges and implementation intricacies of such sensors. Our review seeks to fill this gap by thoroughly evaluating energy harvesting strategies from both material and structural perspectives and assessing their roles in powering an array of sensors for myriad uses. This exploration offers a comprehensive outlook on the state of self-powered sensing devices, tackling the nuances of their deployment and highlighting their potential to revolutionize data gathering in autonomous systems. The intent of this review is to chart the current landscape and future prospects, providing a pivotal reference point for ongoing research and innovation in self-powered wireless sensing technologies.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 13114-16846, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 13114-16846, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
15
|
Mousazadeh M, Daneshpour M, Rafizadeh Tafti S, Shoaie N, Jahanpeyma F, Mousazadeh F, Khosravi F, Khashayar P, Azimzadeh M, Mostafavi E. Nanomaterials in electrochemical nanobiosensors of miRNAs. NANOSCALE 2024; 16:4974-5013. [PMID: 38357721 DOI: 10.1039/d3nr03940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nanomaterial-based biosensors have received significant attention owing to their unique properties, especially enhanced sensitivity. Recent advancements in biomedical diagnosis have highlighted the role of microRNAs (miRNAs) as sensitive prognostic and diagnostic biomarkers for various diseases. Current diagnostics methods, however, need further improvements with regards to their sensitivity, mainly due to the low concentration levels of miRNAs in the body. The low limit of detection of nanomaterial-based biosensors has turned them into powerful tools for detecting and quantifying these biomarkers. Herein, we assemble an overview of recent developments in the application of different nanomaterials and nanostructures as miRNA electrochemical biosensing platforms, along with their pros and cons. The techniques are categorized based on the nanomaterial used.
Collapse
Affiliation(s)
- Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Livogen Pharmed, Research and Innovation Center, Tehran, Iran
| | - Saeed Rafizadeh Tafti
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Faezeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Khosravi
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, 9050, Ghent, Belgium.
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 89165-887, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Chen Z, Ge C, Zhu X, Sun P, Sun Z, Derkach T, Zhou M, Wang Y, Luan M. A novel nanoprobe for visually investigating the controversial role of miRNA-34a as an oncogene or tumor suppressor in cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:667-675. [PMID: 38230518 DOI: 10.1039/d3ay02270f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.
Collapse
Affiliation(s)
- Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaokai Zhu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zeyuan Sun
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Tetiana Derkach
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaoguang Wang
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
17
|
Cao L, Chen J, Pang J, Qu H, Liu J, Gao J. Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors. Molecules 2024; 29:257. [PMID: 38202838 PMCID: PMC10780655 DOI: 10.3390/molecules29010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.
Collapse
Affiliation(s)
- Lili Cao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (J.P.); (H.Q.); (J.L.); (J.G.)
| | | | | | | | | | | |
Collapse
|
18
|
Meng J, Xu Z, Zheng S, Yang H, Wang T, Wang H, Zhang Y. Development of a regenerable dual-trigger tripedal DNA walker electrochemical biosensor for sensitive detection of microRNA-155. Anal Chim Acta 2024; 1285:342026. [PMID: 38057049 DOI: 10.1016/j.aca.2023.342026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Since microRNAs (miRNAs) are valuable biomarkers for disease diagnosis and prognosis, the pursuit of enhanced detection sensitivity through signal amplification strategies has emerged as a prominent focus in low-abundance miRNA detection research. DNA walkers, as dynamic DNA nanodevice, have gained significant attention for their applications as signal amplification strategies. To overcome the limitations of unipedal DNA walkers with a restricted signal amplification efficiency, there is a great need for multi-pedal DNA walkers that offer improved walking and signal amplification capabilities. Here, we employed a combination of catalytic hairpin assembly (CHA) and APE1 enzymatic cleavage reactions to construct a tripedal DNA walker, driving its movement to establish a cascade signal amplification system for the electrochemical detection of miRNA-155. The biosensor utilizes tumor cell-endogenous microRNA-155 and APE1 as dual-trigger for DNA walker formation and walking movement, leading to highly efficient and controllable signal amplification. The biosensor exhibited high sensitivity, with a low detection limit of 10 pM for microRNA-155, and successfully differentiated and selectively detected microRNA-155 from other interfering RNAs. Successful detection in 20 % serum samples indicates its potential clinical application. In addition, we harnessed strand displacement reactions to create a gentle yet efficient electrode regeneration strategy, to addresses the time-consuming challenges during electrode modification processes. We have successfully demonstrated the stability of current signals even after multiple cycles of electrode regeneration. This study showcased the high-efficiency amplification potential of multi-pedal DNA walkers and the effectiveness and versatility of strand displacement in biosensing applications. It opens a promising path for developing regenerable electrochemical biosensors. This regenerable strategy for electrochemical biosensors is both label-free and cost-effective, and holds promise for detecting various disease-related RNA targets beyond its current application.
Collapse
Affiliation(s)
- Jinting Meng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihao Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shasha Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongqun Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianfu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Sailapu SK, Liébana S, Merino-Jimenez I, Esquivel JP, Sabaté N. Towards a REASSURED reality: A less-is-more electronic design strategy for self-powered glucose test. Biosens Bioelectron 2024; 243:115708. [PMID: 37862757 DOI: 10.1016/j.bios.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
Sensing strategies adopting minimal electronic systems help in realizing REASSURED diagnostic tests. However, the challenge in developing such strategies escalates with demand in power and electronics during pursuit of reliable and accurate sensing. Herein, we present an electronic design strategy using a smart strip, operating with power generated from 3.5 μL of serum sample, to reveal glucose concentration through a response preserved in a capacitor. Further, by integrating an NFC tag alongside the strip, we devised a self-powered glucose measuring card, mobile-glucocard (or mGlucocard) for retrieving this stored digital response using smartphone, enabling 'connected mobile-health diagnostics'. The response from our device relates linearly to glucose concentration offering a sensitivity of 11.3 mV/mM and good correlation (R = 0.974) with colorimetric reference method. Interestingly, the design strategy uses only four components - two resistors, diode, and capacitor - of simple architecture likely transferable to printed technologies to deliver advanced self-powered sustainable devices.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Susana Liébana
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Irene Merino-Jimenez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
20
|
Yang L, Guo H, Gao Q, Hou T, Zhang J, Liu X, Li F. Integrating Reliable Pt-S Bond-Mediated 3D DNA Nanomachine with Magnetic Separation in a Homogeneous Electrochemical Strategy for Exosomal MicroRNA Detection with Low Background and High Sensitivity. Anal Chem 2023; 95:17834-17842. [PMID: 37988125 DOI: 10.1021/acs.analchem.3c03914] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Precise and sensitive analysis of exosomal microRNA (miRNA) is of great importance for noninvasive early disease diagnosis, but it remains a great challenge to detect exosomal miRNA in human blood samples because of their small size, high sequence homology, and low abundance. Herein, we integrated reliable Pt-S bond-mediated three-dimensional (3D) DNA nanomachine and magnetic separation in a homogeneous electrochemical strategy for the detection of exosomal miRNA with low background and high sensitivity. The 3D DNA nanomachine was easily prepared via a facile and rapid freezing method, and it was capable of resisting the influence of biothiols, thus endowing it with high stability. Notably, the as-developed magnetic 3D DNA nanomachine not only enabled the detection system to have a low background but also coupled with liposome nanocarriers to synergistically amplify the current signal. Consequently, by ingeniously combining the low background and multiple signal-amplification strategies in homogeneous electrochemical biosensing, highly sensitive detection of exosomal miRNA was successfully achieved. More significantly, with good anti-interference ability, the as-proposed method could effectively discriminate plasma samples from cancer patients and healthy subjects, thus showing a high potential for application in the nondestructive early clinical diagnosis of disease.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
21
|
Tang D, Shi J, Wu Y, Luo H, Yan J, Huang KJ, Tan X. Flexible Self-Powered Sensing System Based on Novel DNA Circuit Strategy and Graphdiyne for Thalassemia Gene by Rapid Naked-Eye Tracking and Open-Circuit Voltage. Anal Chem 2023; 95:16374-16382. [PMID: 37871958 DOI: 10.1021/acs.analchem.3c03841] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Based on the controllable instantaneous self-assembly ability of long-chain branched DNA nanostructures and the synergistic effect between nucleic acid amplification without enzymes, a highly sensitive and highly specific self-powered biosensing platform is developed. Two-dimensional graphdiyne is prepared, modified on flexible carbon cloth, and then functionalized with gold nanoparticles. When DNA mi-tubes are applied on it, target thalassemia gene CD122 triggers a dual-catalytic hairpin assembly reaction. The generated nanoscale DNA is precisely captured by the DNA mi-tube, exposing binding sites and activating the hybridization chain reaction to form long-chain branched DNA. Double-stranded DNA, along with dendritic DNA carrying a large number of guanine bases, precisely captures the signal molecule methylene blue (MB), generating a significant electrochemical signal. The redox reaction of MB also causes a proportional change in the system's color, achieving a colorimetric detection functionality. An efficient dual-mode self-powered sensing platform, therefore, is established for detecting the thalassemia gene CD122. The linear response range of target concentration to open-circuit voltage and RGB Blue value is 0.0001-10,000 pM. The detection limit under electrochemical mode is 36.3 aM (S/N = 3), and under colorimetric mode, it is as low as 12.1 aM (S/N = 3). The new method exhibits high sensitivity, excellent selectivity, and high accuracy, providing a universal strategy for designing novel biosensing platforms that can be extended to the detection of other biomolecules.
Collapse
Affiliation(s)
- Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
22
|
Wang C, Wang Y, Liu J, Li F, Gai P. Nanozyme-Based Biofuel Cell Ingeniously Coupled with Luminol Chemiluminescence System through In Situ Co-Reactant Generation for Dual-Signal Biosensing. Anal Chem 2023; 95:15763-15768. [PMID: 37816228 DOI: 10.1021/acs.analchem.3c03270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Classical luminol-based chemiluminescence (CL) is the process of emitting light enhanced by the addition of coreactant hydrogen peroxide (H2O2). To address the instability issue of H2O2 decomposition, herein, we proposed a nanozyme-based biofuel cell (BFC) ingeniously coupled with a luminol CL system via in situ generation of H2O2. Specifically, the gold nanoparticle (AuNP) nanozyme with glucose oxidase-like activity can act as the anodic enzyme of BFC to catalyze the oxidation of glucose to produce H2O2 and electrons. In this case, H2O2 as a coreactant enhanced the CL intensity and the cathode of the BFC obtained electrons to generate the open circuit voltage (EOCV) signals. As a result, a dual-signal biosensing platform was successfully constructed. Interestingly, the AuNPs-catalyzed system operates in an alkaline medium, which precisely meets the pH requirement for luminol luminescence. Such a BFC-CL system not only greatly lessens the effect of unstable exogenous H2O2 on the signal stability but also enhances the CL of luminol. Furthermore, both CL and EOCV signals present a positive correlation with the glucose concentration. Therefore, this novel BFC-CL system shows good performance for dual-signal biosensing, which would serve as a valuable guideline for the design and application of BFC-based self-powered or CL biosensors.
Collapse
Affiliation(s)
- Cui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuqing Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Junhua Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
23
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
24
|
Zhang Y, Li H, Guo Z, Wang X, Zhou N. Immobilization-free electrochemical homogeneous aptasensor for highly sensitive detection of carcinoembryonic antigen by dual amplification strategy. Anal Chim Acta 2023; 1274:341586. [PMID: 37455072 DOI: 10.1016/j.aca.2023.341586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Electrochemical aptasensor has been widely studied, while its practical application is limited by the unavoidable variations of aptamer loading densities and low signal amplification efficiency. To overcome these restrictions, an immobilization-free and label-free electrochemical homogeneous aptasensor was constructed for carcinoembryonic antigen (CEA) assay by combining RecJf exonuclease-mediated target cycling strategy and rolling circle amplification technology. In this system, the pre-immobilization of aptamers or other relevant signal elements on the electrode substrate is no longer necessary, thus the electrochemical homogeneous aptasensor shows good versatility on different transducers. Moreover, the whole recognition and signal amplification process are activated instantaneously by a non-professional operation of the solution mixture. This strategy can not only increase the stability (95.1% after 30 days of storage) and reproducibility (2.12% among five independent electrodes), but also further improve the sensitivity (detection limit of fg mL-1 level) due to the free target recognition and dual signal amplification in the homogeneous solution phase. The proposed immobilization-free electrochemical homogeneous aptasensors on different electrode substrates both achieve satisfactory results in actual sample tests, which has the potential for commercial applications and the establishment of other target platforms in the future.
Collapse
Affiliation(s)
- Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hui Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zongkang Guo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
25
|
Shi J, Qin W, Lin Y, Li M, Wu Y, Luo H, Yan J, Huang KJ, Tan X. Enhancing biosensing with fourfold amplification and self-powering capabilities: MoS 2@C hollow nanorods-mediated DNA hexahedral framework architecture for amol-level liver cancer tumor marker detection. Anal Chim Acta 2023; 1271:341413. [PMID: 37328239 DOI: 10.1016/j.aca.2023.341413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional carbon-coated molybdenum disulfide (MoS2@C) hollow nanorods are combined with nucleic acid signal amplification strategies and DNA hexahedral nanoframework to construct a novel self-powered biosensing platform for ultra-sensitive dual-mode detection of tumor suppressor microRNA-199a. The nanomaterial is applied on carbon cloth and then modified with glucose oxidase or using as bioanode. A large number of double helix DNA chains are produced on bicathode by nucleic acid technologies including 3D DNA walker, hybrid chain reaction and DNA hexahedral nanoframework to adsorb methylene blue, producing high EOCV signal. Methylene blue also is reduced and an increased RGB Blue value is observed. For microRNA-199a detection, the assay shows a extensive linear range of 0.0001-100 pM with a low detection limit of 4.94 amol/L (S/N = 3). The method has been applied to the detection of actual serum samples, providing a novel method for the accurate and sensitive detection of tumor markers.
Collapse
Affiliation(s)
- Jinyue Shi
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Weiling Qin
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Yu Lin
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Mingxiang Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Yeyu Wu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Hu Luo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China.
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China.
| |
Collapse
|
26
|
Gao YP, Huang KJ, Wang BY, Xu Q, Shuai H, Li G. Constructed a self-powered sensing platform based on nitrogen-doped hollow carbon nanospheres for ultra-sensitive detection and real-time tracking of double markers. Anal Chim Acta 2023; 1267:341333. [PMID: 37257968 DOI: 10.1016/j.aca.2023.341333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Acute myocardial infarction (AMI) is acute necrosis of a portion of the myocardium caused by myocardial ischemia, which seriously threatens people's health and life safety. Its early diagnosis is a difficult problem in clinical medicine. Research has found that the abnormal expression of microRNA-199a (miR-199a) and microRNA-499 (miR-499) was closely related to AMI disease. In this work, we took advantage of the structural advantages of nitrogen-doped hollow carbon nanospheres (N-HCNSs) to design an ultra-sensitive, portable real-time monitoring visual self-powered biosensor system, which based on dual-target miRNAs triggered catalytic hairpin assembly (CHA) for sensitive detection of miR-199a and miR-499. In addition, the capacitor and the smartphone are introduced into the system to realize the secondary improvement of system sensitivity and portable real-time visual monitoring. Under optimized conditions, in the linear range of 0.1-100000 aM, the detection limits of miR-199a and miR-499 are 0.031 and 0.027 aM, respectively. At the same time, the ultra-sensitive detection of miRNAs is realized in the serum sample, and the recovery rate of miR-199a and miR-499 are 98.0-106.0% (RSD: 0.6-8.1%) and 94.0-109.7% (RSD: 1.8-7.7%), respectively. The method is simple, sensitive and can be used for real-time tracking and portable monitoring of related diseases.
Collapse
Affiliation(s)
- Yong-Ping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China; School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China.
| | - Ke-Jing Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, PR China.
| | - Bo-Ya Wang
- School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China
| | - Qianyue Xu
- School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China
| | - Honglei Shuai
- School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China
| | - Guoqiang Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
27
|
Norouzi S, Soltani S, Alipour E. Recent advancements in biosensor designs toward the detection of intestine cancer miRNA biomarkers. Int J Biol Macromol 2023:125509. [PMID: 37364808 DOI: 10.1016/j.ijbiomac.2023.125509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer diagnosis and treatment have been of broad interest among scientists in the last decades due to the high death rate, widespread occurrence, and recurrence after treatment. The survival rate of cancer patients depends greatly on early detection and appropriate treatments. Therefore developing new technologies applicable to sensitive and specific methods of cancer detection is an inevitable task for cancer researchers. Abnormal miRNA expression is contributed to severe diseases such as cancers and since their expression level and type differ strictly during carcinogenesis and later metastasis and treatments, the improved detection accuracy of these miRNAs would undoubtedly lead to early diagnosis, prognosis, and targeted therapy. Biosensors are accurate and straightforward analytical devices that have had practical applications especially in the last decade. Their domain is still growing through a combination of attractive nanomaterials and amplification methods, leading to innovative biosensing platforms for the efficient detection of miRNAs as diagnostic and prognostic biomarkers. In this review, we will provide the recent developments in biosensors to detect intestine cancer miRNA biomarkers and also discuss the challenges and outcomings of this field.
Collapse
Affiliation(s)
| | - Somaieh Soltani
- Pharmacy faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
28
|
Wang MY, Jing WJ, Wang LJ, Jia LP, Ma RN, Zhang W, Shang L, Li XJ, Xue QW, Wang HS. Electrochemiluminescence detection of miRNA-21 based on dual signal amplification strategies: Duplex-specific nuclease -mediated target recycle and nicking endonuclease-driven 3D DNA nanomachine. Biosens Bioelectron 2023; 226:115116. [PMID: 36753989 DOI: 10.1016/j.bios.2023.115116] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
DNA nanomachines have shown potential application in the construction of various biosensors. Here, an electrochemiluminescence biosensor for the sensitive detection of miRNA-21 were reported based on three-dimensional (3D) DNA nanomachine and duplex-specific nuclease (DSN)-mediated target recycle amplification strategy. First, the bipedal DNA walkers were obtained by DSN-mediated digestion reaction initiated by target miRNA-21.3D DNA tracks were prepared by modifying Fe3O4 magnetic beads (MBs) with ferrocene-labeled DNA (Fc-DNA). The produced DNA walkers autonomously moved along 3D DNA tracks powered by nicking endonuclease. During the movement, ferrocene-labeled DNA was cleaved, resulting in large amounts of Fc-labeled DNA fragments away from the MBs surface. Finally, the liberated Fc-labeled DNA fragments were dropped on the C-g-C3N4 modified electrode surface, leading to the quenching of C-g-C3N4 electrochemiluminescence (ECL). Benefiting from the dual amplification strategy of 3D DNA nanomachine and DSN-mediated target recycling, the developed ECL biosensor exhibited an excellent performance for miRNA-21 detection with a wide linear range of 10 fM to 10 nM and a low detection limit of 1.0 fM. This work offers a new thought for the application of DNA walkers in the construction of various biosensors.
Collapse
Affiliation(s)
- Ming-Yue Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Wen-Jie Jing
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Li-Juan Wang
- No. 3 Middle School of Liaocheng, Liaocheng, Shandong Province, 252000, China
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Qing-Wang Xue
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
29
|
Lin Y, Wu J, Wu Y, Ma R, Zhou Y, Shi J, Li M, Tan X, Huang K. An all-graphdiyne electrochemiluminescence biosensor for the ultrasensitive detection of microRNA-21 based on target recycling with DNA cascade reaction for signal amplification. Analyst 2023; 148:1330-1336. [PMID: 36857694 DOI: 10.1039/d3an00146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Graphdiyne oxide quantum dots (GDYO QDs), as derivatives of graphdiyne (GDY), have excellent electroconductibility and luminous properties and can be applied as a new ECL emitter. Herein, an electrochemiluminescence (ECL) biosensor for miRNA-21 ultrasensitive determination is constructed based on AuNPs/GDY, GDYO QD and oligonucleotide signal amplification strategy that integrates DNA walker and hybridization chain reaction (HCR) amplification. As electrode substrate material, AuNPs/GDY can not only bond with the aptamer CP but can also enhance the conductivity of the interface. When miRNA-21 exists, the DNA walker process is initiated, and the signaling probes are introduced on the electrode surface, producing abundant double-stranded H1/H2; then, H3/H4 undergoes complementary base pairing with H1/H2 through HCR. With the increase in miRNA-21, the 3D DNA nanomachine is actively manipulated, resulting in a gradual increase in ECL signal. This ECL biosensor demonstrates outstanding performance in the determination of miRNA-21 in the linear range from 0.1 fM to 1 nM. This study offers a new sensitive idea for the clinical analysis of cancer biomarkers.
Collapse
Affiliation(s)
- Yu Lin
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China. .,Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jiawen Wu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Yeyu Wu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Rongxian Ma
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Yuyi Zhou
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Jinyue Shi
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Mingxiang Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| | - Kejing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530006, China.
| |
Collapse
|
30
|
Li Z, Wu R, Chen K, Gu W, Zhang YHP, Zhu Z. Enzymatic biofuel cell-powered iontophoretic facial mask for enhanced transdermal drug delivery. Biosens Bioelectron 2023; 223:115019. [PMID: 36563525 DOI: 10.1016/j.bios.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Recent advances in enzymatic biofuel cells (EBFCs) have resulted in great progress in health monitoring and supplying power to medical applications, such as drug delivery. On the other hand, to enhance the electric field-assisted transdermal permeation for facial mask application, an external power source is usually required. Herein, we attempted to combine an EBFC with a facial mask so that the microcurrent generated can boost the transdermal permeability of target molecules in the facial mask essence. When screen-printed onto a polypropylene-based non-woven fabric, the three-layered flexible EBFC could produce a voltage of ∼0.4 V and a maximum power density of 23.3 μW cm-2, leading to an approximately 2-3-fold increase in permeated nicotinamide, arbutin, and aspirin levels within 15 min compared to non-iontophoretic transdermal drug delivery. Both cell viability and animal experiments further demonstrated that the EBFC-powered iontophoresis worked well in living animals with good biocompatibility. These results suggest that the EBFC-powered iontophoretic facial mask can effectively improve the permeation of drugs and holds a promise for the possible cosmetic application.
Collapse
Affiliation(s)
- Zehua Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ke Chen
- Tianjin University of Science and Technology, No.9 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 100049, China
| | - Wei Gu
- Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Yi-Heng Pj Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
31
|
Tang J, Qin J, Li J, Liu L, Zeng H. Cu 2+@NMOFs-to-bimetallic CuFe PBA transformation: An instant catalyst with oxidase-mimicking activity for highly sensitive impedimetric biosensor. Biosens Bioelectron 2023; 222:114961. [PMID: 36470060 DOI: 10.1016/j.bios.2022.114961] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
In this work, a facile impedance biosensor was constructed for sensitive assaying of miRNA-10b based on the Cu2+ modified NH2-metal organic frameworks (NMOF@Cu2+) coupling with a three-dimensional (3D) DNA walker signal amplification strategy. Specifically, abundant Cu2+ can adhere to the MOF via the coordination reaction between NH2 and Cu2+, which can be applied as a skeleton to produce CuFe Prussian blue analogue@NMOF (CuFe PBA@NMOF) just in time. Meanwhile, the carboxyl group, which is rich in the organic ligands of the NMOF, can be used to assemble DNA strands (complementary strand, CS) (CS-NMOF@Cu2+) for biorecognition reaction. With the introduction of the target, a 3D DNA walker was triggered to shear out large amounts of assistant strands (AS), which were then anchored on the surface of GCE. Afterward, CS-NMOF@Cu2+ can be assembled on the GCE by hybridization with AS. Eventually, abundant CuFe PBA@NMOF were generated in situ on the electrode with the help of K₃[Fe(CN)6], which can catalyze the 4-chloro-1-naphthol (4-CN) precipitation without H2O2, thereby increasing the resistance of the platform. Under the optimal conditions, the EIS biosensor presents reliable analytical performance in a wide linear range from 0.8 pM to 250 pM with a low detection limit of 0.5 pM.
Collapse
Affiliation(s)
- Juan Tang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Jiao Qin
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Jinjin Li
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Liping Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Haisen Zeng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| |
Collapse
|
32
|
Hou YY, Xie WZ, Huang KJ, Xu J. AuNPs/graphdiyne self-powered sensing platform for sensitive detection of microRNA with DNAzyme walker for signal amplification. Anal Chim Acta 2023; 1240:340754. [PMID: 36641150 DOI: 10.1016/j.aca.2022.340754] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
A novel self-powered biosensor is engineered by the integration of DNAzyme walker and AuNPs/graphdiyne biosensing interface, realizing sensitive detection of target microRNA. The cleverly constructed DNAzyme walker with outstanding signal transduction ability to obtain an amplified signal response. In addition, the AuNPs/graphdiyne significantly improves electron transport speed of biosensing interface for improving the sensitivity of biosensor. A dynamic linear range of 0.05 fM-10 pM with a low detection limit of 0.015 fM (S/N = 3) is obtained by utilizing the self-powered biosensor. Meanwhile, the developed self-powered biosensor is capable of assaying miRNA-21 in human serum samples with satisfactory recoveries. This strategy provides a valid method for the sensitive microRNA detection, and shows great potential in point-care detection of tumor biomarker.
Collapse
Affiliation(s)
- Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Wan-Zhen Xie
- Library of Guangxi Minzu University, Nanning, 530008, China
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
33
|
Gao YP, Huang KJ, Wang FT, Hou YY, Zhao LD, Wang BY, Xu J, Shuai H, Li G. The self-powered electrochemical biosensing platform with multi-amplification strategy for ultrasensitive detection of microRNA-155. Anal Chim Acta 2023; 1239:340702. [PMID: 36628768 DOI: 10.1016/j.aca.2022.340702] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
A self-powered biosensor (SPB) was constructed for the ultra-sensitive detection of microRNA-155 (miR-155) by combining a capacitor/enzymatic biofuel cell (EBFC), a strategy of rolling circle amplification (RCA) and a digital multimeter (DMM). The experimental results show that the sensitivity of the assembled EBFC-SPB can reach 15.85 μA/pM with the action of matching capacitor, which is 513% of that without capacitor (3.09 μA/pM). This achieves the first signal amplification. Furthermore, when the target miR-155 triggers RCA, electrons are continuous generated and flow to the biocathode through the external circuit to catalyze the reduction of oxygen and release [Ru(NH3)6]3+ electron acceptor. This achieves the second signal amplification. Finally, DMM is used to convert the signal into instantaneous current and amplify it for real-time reading. This achieves the third signal amplification. Therefore, the limit of detection (LOD) of the developed biosensor is as low as 0.17 fM (S/N = 3), and the linear range is between 0.5 fM and 10,000 fM, indicating that the EBFC-SPB has a broad application prospect for cancer marker of miR-155 with ultrasensitive detection.
Collapse
Affiliation(s)
- Yong-Ping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China; School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Ke-Jing Huang
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi Minzu University, Nanning, 530008, PR China.
| | - Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Lu-di Zhao
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Bo-Ya Wang
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Honglei Shuai
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Guoqiang Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
34
|
Wang L, Zhu W, Zhang J, Zhu JJ. Miniaturized Microfluidic Electrochemical Biosensors Powered by Enzymatic Biofuel Cell. BIOSENSORS 2023; 13:175. [PMID: 36831941 PMCID: PMC9953942 DOI: 10.3390/bios13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical biosensors, in which enzymatic biofuel cells simultaneously work as energy power and signal generators, have become a research hotspot. They display the merits of power self-support, a simplified structure, in vivo operational feasibility, online and timely monitoring, etc. Since the concept of enzymatic biofuel cell-powered biosensors (EBFC-SPBs) was first proposed, its applications in health monitoring have scored tremendous achievements. However, the creation and practical application of portable EBFC-SPBs are still impeded by the difficulty in their miniaturization. In recent years, the booming microfluidic technology has powerfully pushed forward the progress made in miniaturized and portable EBFC-SPBs. This brief review recalls and summarizes the achievements and progress made in miniaturized EBFC-SPBs. In addition, we also discuss the advantages and challenges that microfluidic and screen-printing technologies provide to wearable and disposable EBFC-SPBs.
Collapse
Affiliation(s)
- Linlin Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wenlei Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jianrong Zhang
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
35
|
Zhao X, He G, Deng W, Tan Y, Xie Q. Tailoring enzymatic loading capacity on 3D macroporous gold by catalytic hairpin assembly and hybridization chain reaction: Application for ultrasensitive self-powered microRNA detection. Biosens Bioelectron 2023; 219:114813. [PMID: 36270081 DOI: 10.1016/j.bios.2022.114813] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
It is important to develop effective strategies to construct enzymatic biofuel cell based self-powered biosensors. We report here the facile regulation of enzymatic loading capacity on the bioanode by utilizing a concatenated catalytic hairpin assembly (CHA)/hybridization chain reaction (HCR) and its application for self-powered microRNA-141 (miRNA-141) detection. To construct the bioanode, a concatenated CHA/HCR process triggered by miRNA-141 was conducted on the three-dimensional macroporous gold (3DMG) electrode to generate long double-stranded DNA nanowires for glucose oxidase immobilization. Quartz crystal microbalance study reveals that the enzymatic loading capacity on the bioanode increases at an increasing miRNA-141 concentration, leading to enhanced catalytic performance for glucose oxidation. The short-circuit currents of the assembled glucose/O2 biofuel cells increase at increasing miRNA-141 concentrations, enabling ultrasensitive detection of miRNA-141. The self-powered biosensor features a wide dynamic range for detecting miRNA-141 from 10-17 to 10-11 M, with an ultralow detection limit of 1.3 aM. This work provides a highly sensitive self-powered biosensing platform for miRNA detection.
Collapse
Affiliation(s)
- Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
36
|
Li M, Cheng J, Zheng H, Shi J, Shen Q. Label-free homogeneous electrochemical sensing strategy for microRNA detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Shi J, Xie WZ, Wang LR, Song YL, Lin Y, Wu Y, Luo H, Huang KJ, Tan X. All-carbon sandwich-type self-powered biosensor for ultrasensitive detection of femtomolar miRNA-141. Anal Chim Acta 2022; 1236:340589. [DOI: 10.1016/j.aca.2022.340589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
38
|
Recent progress in homogeneous electrochemical sensors and their designs and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Xiao Y, Wu N, Wang L, Chen L. A Novel Paper-Based Electrochemical Biosensor Based on N,O-Rich Covalent Organic Frameworks for Carbaryl Detection. BIOSENSORS 2022; 12:899. [PMID: 36291036 PMCID: PMC9599374 DOI: 10.3390/bios12100899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/28/2023]
Abstract
A new N,O-rich covalent organic framework (COFDHNDA-BTH) was synthesized by an amine-aldehyde condensation reaction between 2,6-dialdehyde-1,5-dihydroxynaphthalene (DHNDA) and 1,3,5-phenyltriformylhydrazine (BTH) for carbaryl detection. The free NH, OH, and C=O groups of COFDHNDA-BTH not only covalently couples with acetylcholinesterase (AChE) into the pores of COFDHNDA-BTH, but also greatly improves the catalytic activity of AChE in the constrained environment of COFDHNDA-BTH's pore. Under the catalysis of AChE, the acetylthiocholine (ATCl) was decomposed into positively charged thiocholine (TCl), which was captured on the COFDHNDA-BTH modified electrode. The positive charges of TCl can attract anionic probe [Fe(CN)6]3-/4- on the COFDHNDA-BTH-modified electrode to show a good oxidation peak at 0.25 V (versus a saturated calomel electrode). The carbaryl detection can inhibit the activity of AChE, resulting in the decrease in the oxidation peak. Therefore, a turn-off electrochemical carbaryl biosensor based on a flexible carbon paper electrode loaded with COFDHNDA-BTH and AChE was constructed using the oxidation peak of an anionic probe [Fe(CN)6]3-/4- as the detection signal. The detection limit was 0.16 μM (S/N = 3), and the linear range was 0.48~35.0 μM. The sensor has good selectivity, repeatability, and stability, and has a good application prospect in pesticide detection.
Collapse
Affiliation(s)
| | | | | | - Lili Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
40
|
Yan B, Cheng Z, Lai C, Qiao B, Yuan R, Zhang C, Pei H, Tu J, Wu Q. Boosting the Photocatalytic Ability of TiO 2 Nanosheet Arrays for MicroRNA-155 Photoelectrochemical Biosensing by Titanium Carbide MXene Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3557. [PMID: 36296747 PMCID: PMC9611374 DOI: 10.3390/nano12203557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The electrodes of two-dimensional (2D) titanium dioxide (TiO2) nanosheet arrays were successfully fabricated for microRNA-155 detection. The (001) highly active crystal face was exposed to catalyze signaling molecules ascorbic acid (AA). Zero-dimensional (0D) titanium carbide quantum dots (Ti3C2Tx QDs) were modified to the electrode as co-catalysts and reduced the recombination rate of the charge carriers. Spectroscopic methods were used to determine the band structure of TiO2 and Ti3C2Tx QDs, showing that a type Ⅱ heterojunction was built between TiO2 and Ti3C2Tx QDs. Benefiting the advantages of materials, the sensing platform achieved excellent detection performance with a wide liner range, from 0.1 pM to 10 nM, and a low limit of detection of 25 fM (S/N = 3).
Collapse
Affiliation(s)
- Bingdong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zike Cheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Caiyan Lai
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Bin Qiao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou 571199, China
| | - Run Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Chide Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hua Pei
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou 571199, China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiang Wu
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou 571199, China
| |
Collapse
|
41
|
Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203690. [PMID: 35981885 PMCID: PMC9561779 DOI: 10.1002/advs.202203690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Many healthcare and environmental monitoring devices use electrochemical techniques to detect and quantify analytes. With sensors progressively becoming smaller-particularly in point-of-care (POC) devices and wearable platforms-it creates the opportunity to operate them using less energy than their predecessors. In fact, they may require so little power that can be extracted from the analyzed fluids themselves, for example, blood or sweat in case of physiological sensors and sources like river water in the case of environmental monitoring. Self-powered electrochemical sensors (SPES) can generate a response by utilizing the available chemical species in the analyzed liquid sample. Though SPESs generate relatively low power, capable devices can be engineered by combining suitable reactions, miniaturized cell designs, and effective sensing approaches for deciphering analyte information. This review details various such sensing and engineering approaches adopted in different categories of SPES systems that solely use the power available in liquid sample for their operation. Specifically, the categories discussed in this review cover enzyme-based systems, battery-based systems, and ion-selective electrode-based systems. The review details the benefits and drawbacks with these approaches, as well as prospects of and challenges to accomplishing them.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| |
Collapse
|
42
|
Ge K, Hu Y, Li G. Fabrication of branched gold copper nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane for surface-enhanced Raman spectroscopy analysis of carcinogens. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128742. [PMID: 35338931 DOI: 10.1016/j.jhazmat.2022.128742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Carcinogens in food samples show great potential threat to human health due to their wide distribution and high carcinogenicity. In this work, branched AuCu nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane (mpg-C3N4/AuCu) was fabricated for SERS analysis of carcinogens including benzidine and zearalenone in food. The AuCu was in-situ grown on mpg-C3N4 to form mpg-C3N4/AuCu composites. The as-fabricated mpg-C3N4/AuCu membrane can effectively combined synergistic effect of localized surface plasmon resonance properties of branched AuCu nanoalloy and semiconductor characteristics of mpg-C3N4. The limit of detection for crystal violet is 1.0 ng/L with enhancement factor of 3.7 × 108. The mechanism of high SERS activity of mpg-C3N4/AuCu membrane was investigated by density functional theory simulations. The mpg-C3N4/AuCu membrane was used for direct determination of benzidine, and indirect determination of zearalenone with 3,3',5,5'-tetramethylbenzidine as markers in food. The limits of detection of SERS method were 0.14 and 0.03 μg/L for benzidine and zearalenone, respectively. It provides a new strategy for design and fabrication of high-quality SERS substrates for carcinogens analysis.
Collapse
Affiliation(s)
- Kun Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
43
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Li F, Wang M, Zhou J, Yang M, Wang T. Nanocomposites of boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymers as a novel desorption/ionization matrix for the capture and direct detection of cis-diol-flavonoid compounds coupled with MALDI-TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128055. [PMID: 35236020 DOI: 10.1016/j.jhazmat.2021.128055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Novel boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymer (Fe3O4@MWCNTs@ε-PL@BA) nanocomposites were fabricated and applied as the desorption/ionization matrix for the MALDI-TOF-MS determination of low molecular weight flavonoids. The prepared nanocomposite was systematically characterized by various techniques. Compared to the traditional organic matrix, the proposed Fe3O4@MWCNTs@ε-PL@BA matrix has excellent ionization efficiency and low-background noise interference due to the MWCNTs unique electron-phonon interaction and the high introduction density of boronic acid functional groups. Good sensitivity and ultra-high salt tolerance of the Fe3O4@MWCNTs@ε-PL@BA-assisted MALDI-TOF-MS were permitted for the determination and quantification of flavonoids in actual samples. Noticeably, the limits of detection (LODs) for the target flavonoids were in the range 17-33 nM. The relative standard deviations (RSDs) of spot-to-spot and sample-to-sample (n = 10) were ≤ 9.8% and ≤ 10.1%, respectively. Furthermore, the wide linear ranges (0.1 - 500 µg/mL) and satisfactory calibration plot coefficients (R2 > 0.99) of flavonoids were achieved by MALDI-TOF-MS with the Fe3O4@MWCNTs@ε-PL@BA matrix. Good recoveries (92-105.5%) were achieved for the target flavonoids in practical food samples. Hence, the prepared Fe3O4@MWCNTs@ε-PL@BA nanocomposites have applications in the selective and efficient capture of target flavonoids active biomolecules coupled with MALDI-TOF-MS determination in actual samples.
Collapse
Affiliation(s)
- FuKai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - MengRui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - TongTong Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| |
Collapse
|
45
|
Chu X, Shi Q. Versatile magnetic nanoparticles for spatially organized assemblies of enzyme cascades: a comprehensive investigation of catalytic performance. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinshuang Chu
- Department of Biochemical Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Qinghong Shi
- Department of Biochemical Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University Tianjin 300350 China
| |
Collapse
|
46
|
Zhao X, Deng W, Tan Y, Xie Q. A glucose/O 2 biofuel cell integrated with an exonuclease-powered DNA walker for self-powered sensing of microRNA. Chem Commun (Camb) 2022; 58:2922-2925. [PMID: 35142303 DOI: 10.1039/d1cc06732j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aid of an exonuclease-powered DNA walker, the amount of glucose oxidase immobilized on the bioanode can be facilely tailored by varying the concentration of microRNA-141, so a glucose/O2 biofuel cell is employed as a self-powered sensor for sensitive and selective detection of microRNA-141.
Collapse
Affiliation(s)
- Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
47
|
Wang Y, Yang M, Shi H, Ge S, Wang X, Yu J. Photoelectrochemical Detection of Exosomal miRNAs by Combining Target-Programmed Controllable Signal Quenching Engineering. Anal Chem 2022; 94:3082-3090. [PMID: 35133793 DOI: 10.1021/acs.analchem.1c04086] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs extracted from exosomes (exosomal miRNAs) have recently emerged as promising biomarkers for early prognosis and diagnosis. Thus, the development of an effective approach for exosomal miRNA monitoring has triggered extensive attention. Herein, a sensitive photoelectrochemical (PEC) biosensing platform is demonstrated for exosomal miRNA assay via the target miRNA-powered λ-exonuclease for the amplification strategy. The metal-organic framework (MOF)-decorated WO3 nanoflakes heterostructure is constructed and implemented as the photoelectrode. Also, a target exosomal miRNA-activatable programmed release nanocarrier was fabricated, which is responsible for signal control. Hemin that acted as the electron acceptor was prior entrapped into the programmed control release nanocarriers. Once the target exosomal miRNAs-21 was introduced, the as-prepared programmed release nanocarriers were initiated to trigger the release of hemin, which enabled the quenching of the photocurrent. Under the optimized conditions, the level of exosomal miRNAs-21 could be accurately tracked ranging from 1 fM to 0.1 μM with a low detection limit of 0.5 fM. The discoveries illustrate the possibility for the rapid and efficient diagnosis and prognosis prediction of diseases based on the detection of exosomal miRNAs-21 and would provide feasible approaches for the fabrication of an efficient platform for clinical applications.
Collapse
Affiliation(s)
- Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Mengchun Yang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Huihui Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
48
|
Zhang X, Zhi H, Wang F, Zhu M, Meng H, Wan P, Feng L. Target-Responsive Smart Nanomaterials via a Au-S Binding Encapsulation Strategy for Electrochemical/Colorimetric Dual-Mode Paper-Based Analytical Devices. Anal Chem 2022; 94:2569-2577. [PMID: 35080383 DOI: 10.1021/acs.analchem.1c04537] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Target-responsive nanomaterials attract growing interest in the application of drug delivery, bioimaging, and sensing due to the responsive releasing of guest molecules by the smart molecule gate. However, it remains a challenge to develop smart nanomaterials with simple assembly and low nonspecific leakage starting from encapsulation strategies, especially in the sensing field. Herein, Au nanoclusters (Au NCs) were first grown on porous carbon derived from ZIF-8 (PCZIF) to be employed as nanocarriers. By employing the Au NCs as linkers and aptamer (Apta) double-strand hybrids (target Apta and SH-complementary DNA) as capping units, we reported the novel target-responsive nanomaterials of Apta/Au NCs-PCZIF/hemin through Au-S binding encapsulation for sensing assays. The Au-S binding encapsulation strategy simplified the packaging procedure and reduced non-target responsive leakage. As a proof, ochratoxin A (OTA) as a model target participates in the double-strand hybrid competitive displacement reaction and triggered Apta conformation switches from a coil to a G-quadruplex structure accompanied by the dissociation of the gatekeeper. Simultaneously, the released hemin can initiate a self-assembly to form G-quadruplex/hemin DNAzyme. Interestingly, owing to DNAzyme providing electron transfer mediators and peroxidase-like activity, we proposed an electrochemical/colorimetric dual-mode paper-based analytical device (PAD) that provided self-verification to enhance reliability and accuracy, benefiting from independent signal conversion and transmission mechanism. As a consequence, the proposed dual-mode PAD could achieve sensitive electrochemical detection and visual prediction of OTA in the range of 1 pg/mL to 500 ng/mL and 50 pg/mL to 500 ng/mL, respectively. The electrochemical detection limit for OTA was as low as 0.347 pg/mL (S/N = 3). We believe that this work provides point-of-care testing (POCT) tools for a broad spectrum of applications.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingzhen Zhu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hu Meng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Peng Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, P.R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
49
|
Song S, Li N, Bai L, Gai P, Li F. Photo-Assisted Robust Anti-Interference Self-Powered Biosensing of MicroRNA Based on Pt-S Bonds and the Inorganic-Organic Hybridization Strategy. Anal Chem 2022; 94:1654-1660. [PMID: 35025211 DOI: 10.1021/acs.analchem.1c04135] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photo-assisted biofuel cell-based self-powered biosensors (PBFC-SPBs) possess the advantages of no need for external power supply, ease of sensing design, and simple instruments. In this work, a robust anti-interference PBFC-SPB for microRNA detection was constructed based on the Pt-S bond and the inorganic-organic hybridization strategy. The organic semiconductor [6,6]-phenyl-C61-butyric acid methylester@anthraquinone (PCBM@anthraquinone) served as an efficient light-harvesting material, and gold nanoparticle@Pt (AuNP@Pt) nanomaterials were immobilized on the surface via electrostatic adsorption for the binding of DNA. Notably, compared to Au-S bonds for DNA immobilization, the Pt-S bond exhibited better anti-interference ability. Ingeniously, cadmium sulfide quantum dots (CdS QDs) were close to the PCBM@anthraquinone substrate electrode to form sensitization structures, which was beneficial to enhance the photocurrent signal. Combining with the laccase-mimicking activity Cu2+/carbon nanotubes (Cu2+/CNTs) cathode, the PBFC-SPB for microRNA detection was achieved. Once the target existed, the identical sequence complementary microRNA would make DNA2/CdS dissociate and break away from the electrode, leading to a low signal. The linear detection range was 10 fM-100 pM, with the limit of determination of 2.4 fM (3S/N). The as-proposed strategy not only paves a new way for the design of photoelectrochemical biosensing but also opens a door for the construction of robust anti-interference bioassay for microRNA detection.
Collapse
Affiliation(s)
- Shichao Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Lipeng Bai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
50
|
Yang P, Chen H, Zhu Q, Chen Z, Yang Z, Yuan R, Li Y, Liang W. A target-initiated autocatalytic 3D DNA nanomachine for high-efficiency amplified detection of MicroRNA. Talanta 2022; 240:123219. [PMID: 35026639 DOI: 10.1016/j.talanta.2022.123219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Considering the challenges of generating simple and efficient DNA (deoxyribonucleic acid) nanomachines for sensitive bioassays and the great potential of target-induced self-cycling catalytic systems, herein, a novel autocatalytic three-dimensional (3D) DNA nanomachine was constructed based on cross-catalytic hairpin assembly on gold nanoparticles (AuNPs) to generate self-powered efficient cyclic amplification. Typically, the DNA hairpins H1, H2, H3 and H4 were immobilized onto AuNPs first. In the presence of target microRNA-203a, the 3D DNA nanomachines were triggered to activate a series of CHA (catalytic hairpin assembly) reactions. Based on the rational design of the system, the products of the CHA 1 reaction were the trigger of the CHA 2 reaction, which could trigger the CHA 1 reaction in turn, generating an efficient self-powered CHA amplification strategy without adding fuel DNA strands or protein enzymes externally and producing high-efficiency fluorescence signal amplification. More importantly, the proposed autocatalytic 3D DNA nanomachines outperformed conventional 3D DNA nanomachines combined with the single-directional cyclic amplification strategy to maximize the amplification efficiency. This strategy not only achieves high-efficiency analysis of microRNAs (microribonucleic acids) in vitro and intracellularly but also provides a new pathway for highly processive DNA nanomachines, offering a new avenue for bioanalysis and early clinical diagnosis.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Haoran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Quanjing Zhu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Zhaopeng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zezhou Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China.
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|