1
|
Xue Y, Lin Q, Sun X, Li D, Fu Y, Li Z, Shi Y, Luo C, Gui X, Xu K. 3D Silsesquioxane Cage-Based Covalent Organic Frameworks Enabling Efficient Ion Transport in Quasi-Solid-State Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501988. [PMID: 40237118 DOI: 10.1002/smll.202501988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/27/2025] [Indexed: 04/17/2025]
Abstract
The resurgence of lithium metal batteries (LMBs) necessitates advancements in electrolyte engineering to regulate ion transport and manipulate interfacial characteristics. Noteworthy strategies encompass the development of high-efficiency lithium-ion conductors for quasi-solid-state composite electrolytes. In this context, two crystalline 3D COFs are presented that are thoughtfully designed by selecting decasilsesquioxane (T10) cage building blocks and linear linkers to open up efficient ion-conducting pathways. The cage silsesquioxane-knotted COFs (CSQ-COFs) feature densely interconnected pore channels and a multimodal pore size distribution, which gives them the potential to function as ionic conductors. In addition, the dissociation of electrolyte salts by the silsesquioxane framework, along with the strong adsorption of anions, synergistically enhances ion transport. The coin cell assembled with CSQ-COF displays an ionic conductivity of 0.727 mS cm-1 at 80 °C, an Ea of 0.12 eV, and tLi+ of 0.83. Therefore, Li symmetrical cell demonstrates excellent Li plating/stripping behaviors for 600 h under 0.5 mA cm-2. The Li/LiFePO4 cell containing the CSQ-COF solid-state electrolyte delivers an initial discharge capacity of ≈159.6 mAh g-1 at a rate of 0.5 C at room temperature with excellent capacity retention after 150 cycles. This work provides a novel insight on the development of 3D COF ionic conductors.
Collapse
Affiliation(s)
- Yuxin Xue
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
| | - Qiong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
| | - Xiangfeng Sun
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC (Nanxiong) Research Institute of Advanced Materials Co, Ltd., Nanxiong, 512000, China
| | - Dongxia Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
| | - Yulin Fu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
| | - Zhiqi Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
| | - Yuanhao Shi
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
| | - Chongxian Luo
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, China
- CASH GCC (Nanxiong) Research Institute of Advanced Materials Co, Ltd., Nanxiong, 512000, China
| | - Kai Xu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Szymkowiak J, Pędziński T, Dudziec B. Excited State Dynamics Govern Emission Properties of Unique Silsesquioxane-Salphen-Based Zinc Compounds. J Phys Chem Lett 2025; 16:2571-2580. [PMID: 40029996 PMCID: PMC11912527 DOI: 10.1021/acs.jpclett.4c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This study aims to develop a synthetic protocol for preparing salphen-based hybrid compounds with silsesquioxane T8 cages anchored at the molecule's periphery. Three types of coordination compounds featuring κ4-N2O2-donating atoms were obtained via a sequence of reactions. These compounds differ in the arene linker between the salphen and silsesquioxane fragments. An individual synthetic pathway was developed for the preparation of aldehydes, followed by a tailored strategy for the synthesis of the final complexes employing both solution-based and mechanochemical methods in the solid state. The latter represents a novel technique in silsesquioxane chemistry. The newly designed ligands were used for the coordination of Zn2+ ions to evaluate their ligation properties and to determine the photophysical properties of the resulting complexes in comparison to their bare ligand molecules. Using absorption and emission spectroscopy, combined with advanced time-resolved spectroscopic methods, we demonstrated that the photochemical efficiency of these compounds is influenced by their tendency to aggregate in solution, which positively affects their photophysical properties and enhances their potential for photodynamic therapy (PDT). Additionally, we explored the ability of these complexes to generate singlet oxygen (1O2) depending on the architecture of the designed ligands. The results indicate that the excited state dynamics plays a crucial role in determining the emission properties of the studied compounds, which may have significant implications for their applications in medicine and materials science.
Collapse
Affiliation(s)
- Joanna Szymkowiak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Tomasz Pędziński
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Beata Dudziec
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
3
|
Chakraborty A, Sarkar S, Munjal R, Majhi J, Bandyopadhyay A, Mukhopadhyay S. Catalyzing Knoevenagel Condensation and Radioiodine Sequestration with Tuned Porous Organic Polymers to Decipher the Role of Surface Area, Pore Volume, and Heteroatom. Chem Asian J 2024; 19:e202400969. [PMID: 39295253 DOI: 10.1002/asia.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 09/21/2024]
Abstract
The impact of surface area, pore volume, and heteroatom type on the performance of porous organic polymers (POPs) in various applications remains unclear. To investigate this, three isoreticular POPs were employed having one common building block, resulting in varying surface areas, pore volumes, and heteroatom compositions. This study aimed to establish a correlation between the structural features of POPs (surface area, pore volume, and heteroatom type) with their adsorption capacity, and catalytic efficiency. To explore this relationship, the Knoevenagel condensation reaction was used as a model system, testing various substituted aldehydes to further validate our findings. Additionally, the capture of radioactive iodine vapor at 75 °C was simulated to examine the correlation with adsorption capacity, comparing the gravimetric iodine uptake capacity of each POP to gain insights into this relationship.
Collapse
Affiliation(s)
- Argha Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| | - Ritika Munjal
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| | - Jagannath Majhi
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur Campus, Roorkee, 247001, India
| | - Anasuya Bandyopadhyay
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur Campus, Roorkee, 247001, India
| | - Suman Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| |
Collapse
|
4
|
Eftekhari-Sis B, Amirpour N, Naderahmadian A, Zirak M, Janeta M, Mahmoudi G. Amphiphilic Azo-Functionalized Polyhedral Oligomeric Silsesquioxane; Synthesis and Photo-Switched Efficient Phase Transfer via Host-Guest Encapsulation. Chempluschem 2024; 89:e202300628. [PMID: 38153180 DOI: 10.1002/cplu.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
A new amphiphilic azo-functionalized polyhedral oligomeric silsesquioxane (POSS) derivative was synthesized by functionalizing octa(3-aminopropyl)silsesquioxane (OAS-POSS) with 4-((4-(dodecyloxy)phenyl)diazenyl)benzoic acid, affording a hydrophilic amino POSS head and hydrophobic dodecyl tail with a diphenyl-azo connector. Prepared amphiphilic azo-functionalized POSS (azo-POSS) exhibited high ability for encapsulation and transferring cationic dyes into the organic phase by vigorously mixing with aqueous solutions of each dye. The photo-controlled encapsulating properties of the synthesized phase transfer reagent was studied using cationic dyes, such as methylene blue (MB), crystal violet (CV) and thymol blue in acidic conditions. Results showed more than 95 % encapsulation of MB. However, no considerable encapsulation was shown in the case of anionic dyes such as eriochrome black T (EBT) and thymol blue in alkaline solutions. By trans/cis isomerization of the azo moiety of the phase transfer reagent by UV irradiation (365 nm), the amount of dye encapsulation was decreased, which could be attributed to the formation of cis isomer that led to the folding of the dodecyl alkyl tail on the POSS moiety, and therefore prevent to lay the 3-aminopropyl moieties of POSS head to the water/DCM interface to adsorb and encapsulate MB molecules.
Collapse
Affiliation(s)
- Bagher Eftekhari-Sis
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| | - Nasim Amirpour
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| | - Aylar Naderahmadian
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Mateusz Janeta
- Faculty of Chemistry, University of Wrocław F., Joliot-Curie 14, 50-383, Wrocław
| | - Ghodrat Mahmoudi
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| |
Collapse
|
5
|
Shetty S, Baig N, Wahed SA, Hassan A, Das N, Alameddine B. Iodine and Nickel Ions Adsorption by Conjugated Copolymers Bearing Repeating Units of Dicyclopentapyrenyl and Various Thiophene Derivatives. Polymers (Basel) 2023; 15:4153. [PMID: 37896396 PMCID: PMC10611155 DOI: 10.3390/polym15204153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The synthesis of three conjugated copolymers TPP1-3 was carried out using a palladium-catalyzed [3+2] cycloaddition polymerization of 1,6-dibromopyrene with various dialkynyl thiophene derivatives 3a-c. The target copolymers were obtained in excellent yields and high purity, as confirmed by instrumental analyses. TPP1-3 were found to divulge a conspicuous iodine adsorption capacity up to 3900 mg g-1, whereas the adsorption mechanism studies revealed a pseudo-second-order kinetic model. Furthermore, recyclability tests of TPP3, the copolymer which revealed the maximum iodine uptake, disclosed its efficient regeneration even after numerous adsorption-desorption cycles. Interestingly, the target copolymers proved promising nickel ions capture efficiencies from water with a maximum equilibrium adsorption capacity (qe) of 48.5 mg g-1.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
6
|
Baig N, Shetty S, Habib SS, Husain AA, Al-Mousawi S, Alameddine B. Synthesis of Iron(II) Clathrochelate-Based Poly(vinylene sulfide) with Tetraphenylbenzene Bridging Units and Their Selective Oxidation into Their Corresponding Poly(vinylene sulfone) Copolymers: Promising Materials for Iodine Capture. Polymers (Basel) 2022; 14:polym14183727. [PMID: 36145872 PMCID: PMC9504420 DOI: 10.3390/polym14183727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
The development of a simple and efficient synthetic methodology to engineer functional polymer materials for gas adsorption is necessary due to its relevance for various applications. Herein, we report the synthesis of metalorganic poly(vinylene sulfide) copolymers CTP1-3 with iron(II) clathrochelate of various side groups connected by tetraphenylbenzene units. CTP1-3 were subsequently oxidized into their respective poly(vinylene sulfone) copolymers CTP4-6 under green reaction conditions. The target copolymers CTP1-6 were characterized using various instrumental analysis techniques. Examination of the iodine adsorption properties of the copolymers revealed high iodine uptake properties, reaching 2360 mg g−1 for CTP2, and whose reusability tests proved its efficient regeneration, thus proving the importance of iron(II) clathrochelate polymers in iodine capture.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Sameh S. Habib
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Ali A. Husain
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Saleh Al-Mousawi
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| |
Collapse
|
7
|
Wang Z, Huang Y, Li H, Li X. Neutral and Cationic Phenothiazine‐Based Porous Organic Polymers via a Simple and Cost‐Effective Method for Iodine Capture. ChemistrySelect 2022. [DOI: 10.1002/slct.202202468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhitao Wang
- School of Chemistry Tonghua Normal University Tonghua 134002 China
- School of Chemistry Jilin University Changchun 130012 China
| | - Yanju Huang
- School of Chemistry Tonghua Normal University Tonghua 134002 China
| | - Hui Li
- School of Chemistry Jilin University Changchun 130012 China
| | - Xiu‐Mei Li
- School of Chemistry Tonghua Normal University Tonghua 134002 China
| |
Collapse
|
8
|
Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Maksoud WA, Zhao L, Cavallo L, Pinnau I, Han Y. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nat Commun 2022; 13:2878. [PMID: 35610232 PMCID: PMC9130143 DOI: 10.1038/s41467-022-30663-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/11/2022] [Indexed: 01/23/2023] Open
Abstract
Radioactive molecular iodine (I2) and organic iodides, mainly methyl iodide (CH3I), coexist in the off-gas stream of nuclear power plants at low concentrations, whereas few adsorbents can effectively adsorb low-concentration I2 and CH3I simultaneously. Here we demonstrate that the I2 adsorption can occur on various adsorptive sites and be promoted through intermolecular interactions. The CH3I adsorption capacity is positively correlated with the content of strong binding sites but is unrelated to the textural properties of the adsorbent. These insights allow us to design a covalent organic framework to simultaneously capture I2 and CH3I at low concentrations. The developed material, COF-TAPT, combines high crystallinity, a large surface area, and abundant nucleophilic groups and exhibits a record-high static CH3I adsorption capacity (1.53 g·g−1 at 25 °C). In the dynamic mixed-gas adsorption with 150 ppm of I2 and 50 ppm of CH3I, COF-TAPT presents an excellent total iodine capture capacity (1.51 g·g−1), surpassing various benchmark adsorbents. This work deepens the understanding of I2/CH3I adsorption mechanisms, providing guidance for the development of novel adsorbents for related applications. Radioactive molecular iodine (I2) and methyl iodide (CH3I) coexist in the off-gas stream of nuclear power plants at low concentrations and only few adsorbents can effectively adsorb low-concentration I2 and CH3I simultaneously. Here, the authors demonstrate simultaneous capture of I2 and CH3I at low concentrations by exploiting different adsorptive sites in a covalent organic framework.
Collapse
Affiliation(s)
- Yaqiang Xie
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tingting Pan
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qiong Lei
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xinglong Dong
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Youyou Yuan
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Walid Al Maksoud
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. .,KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
Saka C, Yardim Y, Şahin Ö, Baytar O. Iodine adsorption and electrochemical double-layer capacitor characteristics of activated carbon prepared from low-cost biomass. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:74-81. [PMID: 35385347 DOI: 10.1080/15226514.2022.2057420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficient adsorption application and electric double-layer capacitor material with low-cost biomass-based activated carbon materials have been quite common recently. In this study, chestnut shell-based activated carbons were produced by chemical activation. ZnCl2, H3PO4, and KOH agents were used for chemical activation. The obtained activated carbon, iodine adsorption from aqueous solutions, and its use as an electro capacitor were investigated. The scanning electron microscope, nitrogen adsorption/desorption, and Fourier transform infrared spectroscopy were used for characterization. The values of surface area and iodine adsorption capacity of the chestnut shell-based activated carbon are 1544 m2 g-1 and 1525 mg g-1. As a result, a specific capacitance of 97 Fg-1 with chestnut shell-based activated carbon was obtained in a 1 M KCl electrolyte for the electrochemical double-layer capacitor. This study shows that activated carbon based on the chestnut shell can be used both as an electrochemical energy storage material and as an adsorbent in iodine adsorption.
Collapse
Affiliation(s)
- Cafer Saka
- Faculty of Health Sciences, Siirt University, Siirt, Turkey
| | - Yavuz Yardim
- Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ömer Şahin
- Faculty of Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Faculty of Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
10
|
Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11078-11091. [PMID: 35196008 PMCID: PMC9007418 DOI: 10.1021/acsami.1c21655] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/17/2022] [Indexed: 05/10/2023]
Abstract
Nanomedicines, while having been approved for cancer therapy, present many challenges such as low stability, rapid clearance, and nonspecificity leading to off-target toxicity. Cubosomes are porous lyotropic liquid crystalline nanoparticles that have shown great premise as drug delivery vehicles; however, their behavior in vivo is largely underexplored, hindering clinical translation. Here, we have engineered cubosomes based on the space group Im3m that are loaded with copper acetylacetonate as a model drug, and their surfaces are functionalized for the first time with Affimer proteins via copper-free click chemistry to actively target overexpressed carcinoembryonic antigens on LS174T colorectal cancer cells. Unlike nontargeted cubosomes, Affimer tagged cubosomes showed preferential accumulation in cancer cells compared to normal cells not only in vitro (2D monolayer cell culture and 3D spheroid models) but also in vivo in colorectal cancer mouse xenografts, while exhibiting low nonspecific absorption and toxicity in other vital organs. Cancerous spheroids had maximum cell death compared to noncancerous cells upon targeted delivery. Xenografts subjected to targeted drug-loaded cubosomes showed a 5-7-fold higher drug accumulation in the tumor tissue compared to the liver, kidneys, and other vital organs, a significant decrease in tumor growth, and an increased survival rate compared to the nontargeted group. This work encompasses the first thorough preclinical investigation of Affimer targeted cubosomes as a cancer therapeutic.
Collapse
Affiliation(s)
- Arindam Pramanik
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Zexi Xu
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Shazana H. Shamsuddin
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department
of Pathology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Yazan S. Khaled
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Nicola Ingram
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - Thomas Maisey
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Darren Tomlinson
- Biomedical
Health Research Centre, BioScreening Technology Group, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - P. Louise Coletta
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - David Jayne
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - Thomas A. Hughes
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Arwen I. I. Tyler
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Paul A. Millner
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
11
|
Fang XC, Geng TM, Wang FQ, Xu WH. The synthesis of conjugated microporous polymers via Friedel–Crafts reaction of 2,4,6-trichloro-1,3,5-triazine with thienyl derivatives for fluorescence sensing to 2,4-dinitrophenol and capturing iodine. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Yan X, Yang Y, Li G, Zhang J, He Y, Wang R, Lin Z, Cai Z. Thiophene-based covalent organic frameworks for highly efficient iodine capture. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Zhou B, Chen Z, Feng S, Wang D, Liu H. Engineering Functionality in Organic Porous Networks by Multicomponent Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bingyan Zhou
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zixu Chen
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengyu Feng
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
- Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies & State Key Laboratory of Fluorinated Functional Membrane Materials, Zibo 256401, P. R. China
| | - Dengxu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
- Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies & State Key Laboratory of Fluorinated Functional Membrane Materials, Zibo 256401, P. R. China
| | - Hongzhi Liu
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
14
|
|
15
|
|
16
|
Wessely ID, Schade AM, Dey S, Bhunia A, Nuhnen A, Janiak C, Bräse S. Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO 2 Gas Sorption Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3214. [PMID: 34200941 PMCID: PMC8230500 DOI: 10.3390/ma14123214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
Herein, we report the first synthesis of covalent triazine-based frameworks (CTFs) based on a hexanitrile monomer, namely the novel pseudo-octahedral hexanitrile 1,4-bis(tris(4'-cyano-phenyl)methyl)benzene 1 using both ionothermal reaction conditions with ZnCl2 at 400 °C and the milder reaction conditions with the strong Brønsted acid trifluoromethanesulfonic acid (TFMS) at room temperature. Additionally, the hexanitrile was combined with different di-, tri-, and tetranitriles as a second linker based on recent work of mixed-linker CTFs, which showed enhanced carbon dioxide captures. The obtained framework structures were characterized via infrared (IR) spectroscopy, elemental analysis, scanning electron microscopy (SEM), and gas sorption measurements. Nitrogen adsorption measurements were performed at 77 K to determine the Brunauer-Emmett-Teller (BET) surface areas range from 493 m2/g to 1728 m2/g (p/p0 = 0.01-0.05). As expected, the framework CTF-hex6 synthesized from 1 with ZnCl2 possesses the highest surface area for nitrogen adsorption. On the other hand, the mixed framework structure CTF-hex4 formed from the hexanitrile 1 and 1,3,5 tricyanobenzene (4) shows the highest uptake of carbon dioxide and methane of 76.4 cm3/g and 26.6 cm3/g, respectively, at 273 K.
Collapse
Affiliation(s)
- Isabelle D. Wessely
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; (I.D.W.); (A.M.S.)
| | - Alexandra M. Schade
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; (I.D.W.); (A.M.S.)
- Herbstreith & Fox GmbH & Co. KG Pektin-Fabriken, D-75305 Neuenbürg, Germany
| | - Subarna Dey
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany; (S.D.); (A.N.); (C.J.)
| | - Asamanjoy Bhunia
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Jadavpur, Kolkata 700032, India;
| | - Alexander Nuhnen
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany; (S.D.); (A.N.); (C.J.)
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany; (S.D.); (A.N.); (C.J.)
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; (I.D.W.); (A.M.S.)
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
James AM, Reynolds J, Reed DG, Styring P, Dawson R. A Pressure Swing Approach to Selective CO 2 Sequestration Using Functionalized Hypercrosslinked Polymers. MATERIALS 2021; 14:ma14071605. [PMID: 33806093 PMCID: PMC8036798 DOI: 10.3390/ma14071605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions.
Collapse
Affiliation(s)
- Alex M. James
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Jake Reynolds
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Daniel G. Reed
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Peter Styring
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Robert Dawson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
- Correspondence: ; Tel.: +44-114-222-9357
| |
Collapse
|
18
|
Chen Y, Fang Y, Yu J, Gao W, Zhao H, Zhang X. A silsesquioxane-porphyrin-based porous organic polymer as a highly efficient and recyclable absorbent for wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124769. [PMID: 33316666 DOI: 10.1016/j.jhazmat.2020.124769] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Effective capture of pollutants from wastewater is crucial for protecting the environment and human health. An azo-based porous organic polymer (AzoPPOP) containing porphyrin and inorganics cage polyhedral oligomeric silsesquioxane units was synthesized via a catalyst-free coupling reaction. Results showed that AzoPPOP possess a high surface area, a hierarchically porous structure, good thermal stability, abundant adsorption sites, and an electronegative nature. Based on these properties, AzoPPOP had an extremely high adsorption capacity (1357.58 mg g-1) for RhB, a fast adsorption rate, and good selectivity. Study of the mechanism revealed that in addition to electrostatic interactions, the high specific surface area, existence of -NH2, and the strong π-π interaction between AzoPPOP and RhB also play important roles for the adsorption of RhB. AzoPPOP also displayed excellent adsorption properties for heavy metal ions (230.45, 192.24 and 162.11 mg g-1 for Ag+, Hg2+, and Pb2+, respectively). More importantly, simulation of the purification experiment of waste water and the recycling regeneration experiment revealed that AzoPPOP has good high-level recyclability and could remove multi-pollutants in one pass through a simple adsorption column.
Collapse
Affiliation(s)
- Yanli Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yishan Fang
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Jingkun Yu
- Jinan Shanda Experimental High School, Jinan, Shandong 250353, China
| | - Wenqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
19
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021; 60:8967-8975. [DOI: 10.1002/anie.202015162] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
20
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015162] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
21
|
Triptycene based and nitrogen rich hyper cross linked polymers (TNHCPs) as efficient CO2 and iodine adsorbent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Shao L, Chen X, Lyu J, Zhao M, Li Q, Ji S, Sun Q, Tang D, Geng H, Guo M. Enrichment and Quantitative Determination of Free 3,5- Diiodothyronine, 3',5'-Diiodothyronine, and 3,5-Diiodothyronamine in Human Serum of Thyroid Cancer by Covalent Organic Hyper Cross-linked Poly-ionic Liquid. J Chromatogr A 2021; 1637:461821. [PMID: 33360433 DOI: 10.1016/j.chroma.2020.461821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023]
Abstract
The incidence of thyroid cancer is increasing worldwide. So far, still no non-invasive clinical test biomarkers were developed for the diagnosis of thyroid cancer. The diiodothyronines (T2s) are precursors and metabolites of thyroid hormone (T4). Some reports predict that T2s may be associated with several thyroid diseases, especially the thyroid cancer. Detecting free T2s in human serum may help the diagnosis of thyroid cancer. However, few works have reported the detection of T2s due to their trace amounts. Here we developed a novel hyper organic cross-linked poly ionic liquid (PIL) material for the enrichment of three main compounds in T2s family, including 3,5- diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), and 3,5-diiodothyronamine (3,5-T2AM). This PIL material provided specific enrichment superiority for three T2s. After enrichment, the signal intensity of 3,5-T2, 3',5'-T2, and 3,5-T2AM increased 14, 132 and 1.6 folds, respectively, with LOQ of 76, 87, and 107 fM, respectively. Finally, we successfully applied PIL material coupled with HPLC-ESI-MS/MS in enrichment and quantitative determination of free 3,5-T2, 3',5'-T2, and 3,5-T2AM in human serum of 45 thyroid cancer patients and 15 healthy people. We also used free thyroid hormone (FT4) as the calibration reference to eliminate individual differences. We found that the levels of 3,5-T2 (P < 0.001), and 3',5'-T2 (P = 0.001) in patients with thyroid cancer were significantly higher than those in healthy people. Additionally, we further investigated the power of different T2 thyroid hormones divided FT4 to classify thyroid cancer patients and healthy people. And 3,5-T2/FT4 had the highest classification performance for discriminating thyroid cancer patients from healthy people at certain threshold, indicating that 3,5-T2/FT4 in human serum can act as potential biomarkers for "non-invasive" clinical diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Lili Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xi Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinxiu Lyu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qing Li
- Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qiang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Houfa Geng
- Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
23
|
Xu XQ, Cao LH, Yang Y, Bai XT, Zhao F, He ZH, Yin Z, Ma YM. Cationic Nonporous Macrocyclic Organic Compounds for Multimedia Iodine Capture. Chem Asian J 2021; 16:142-146. [PMID: 33305903 DOI: 10.1002/asia.202001298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Over the past two decades, progress in chemistry has generated various types of porous materials for removing iodine (129 I or 131 I) that can be formed during nuclear energy generation or nuclear waste storage. However, most studies for iodine capture are based on the weak host-guest interactions of the porous materials. Here, we present two cationic nonporous macrocyclic organic compounds, namely, MOC-1 and MOC-2, in which 6I- and 8I- were as counter anions, for highly efficient iodine capture. MOC-1 and MOC-2 were formed by reacting 1,1'-diamino-4,4'-bipyridylium di-iodide with 1,2-diformylbenzene or 1,3-diformylbenzene, respectively. The presence of a large number of I- anions results in high I2 affinity with uptake capacities up to 2.15 g ⋅ g-1 for MOC-1 and 2.25 g ⋅ g-1 for MOC-2.
Collapse
Affiliation(s)
- Xiao-Qian Xu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Li-Hui Cao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiang-Tian Bai
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Fang Zhao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Zhen-Hong He
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Zheng Yin
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yang-Min Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
24
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
25
|
Piec K, Wątły J, Jerzykiewicz M, Kłak J, Plichta A, John Ł. Mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride as a multi-donor N,O-type ligand in copper(ii) coordination chemistry: synthesis and structural properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj05425a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper, we report on the synthesis of novel copper(ii) complexes containing a multi-donor N,O-type ligand based on mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride.
Collapse
Affiliation(s)
- Kamila Piec
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Joanna Wątły
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Julia Kłak
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Andrzej Plichta
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
26
|
Gomes MAG, Pessanha QS, Toledo R, Lube LM, Fernandes C, Horn A. Synthesis and characterization of new polyoctahedral silsesquioxanes containing zinc coordination compounds on the surface. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Sun Y, Song S, Xiao D, Gan L, Wang Y. Easily Constructed Imine-Bonded COFs for Iodine Capture at Ambient Temperature. ACS OMEGA 2020; 5:24262-24271. [PMID: 33015443 PMCID: PMC7528167 DOI: 10.1021/acsomega.0c02382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Volatile radionuclides generated during the nuclear fission process, such as iodine, pose risks to public safety and cause the threat of environmental pollution. Covalent organic framework (COF) materials have a controlled pore structure and a large specific surface area and thus demonstrate great opportunities in the field of radioactive iodine adsorption. However, the harsh synthetic conditions and the weak binding capability toward iodine have significantly restricted the applications of COFs in iodine adsorption. Here, we demonstrate a facile way to prepare a series of stable C-N-linked COFs with high efficiency to capture radioactive iodine species. Large-scale synthesis can be conducted by the aldol condensation reaction at room temperature. The resulting COFs have a large surface area and a strong resistance to acid, base, and water. Moreover, all types of COFs show high iodine adsorption, up to 2.6 g/g (260% in mass), owing to the large surface area and the functional groups in COFs. They not only absorb conventional I2 molecular but also ionic state (I3 - and I+) iodine species. Theoretical calculations are further performed to understand the relationship between different iodine species and the functional groups of all COFs, offering the mechanisms underlying the potent adsorption abilities of COFs.
Collapse
Affiliation(s)
- Yonghe Sun
- School
of Chemical Engineering, Changchun University
of Technology, Changchun, Jilin 130012, China
| | - Sanan Song
- College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Dehai Xiao
- Changchun
Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun, Jilin 130022, China
| | - Linfeng Gan
- Changchun
Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun, Jilin 130022, China
| | - Yuanrui Wang
- School
of Chemical Engineering, Changchun University
of Technology, Changchun, Jilin 130012, China
| |
Collapse
|
28
|
Janeta M, Lis T, Szafert S. Zinc Imine Polyhedral Oligomeric Silsesquioxane as a Quattro-Site Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Low-Pressure CO 2. Chemistry 2020; 26:13686-13697. [PMID: 33463802 DOI: 10.1002/chem.202002996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Indexed: 01/13/2023]
Abstract
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.
Collapse
Affiliation(s)
- Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
29
|
Li Z, Li H, Wang D, Suwansoontorn A, Du G, Liu Z, Hasan MM, Nagao Y. A simple and cost-effective synthesis of ionic porous organic polymers with excellent porosity for high iodine capture. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122796] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Li H, Li Y, Li B, Liu D, Zhou Y. Highly selective anchoring silver nanoclusters on MOF/SOF heterostructured framework for efficient adsorption of radioactive iodine from aqueous solution. CHEMOSPHERE 2020; 252:126448. [PMID: 32203781 DOI: 10.1016/j.chemosphere.2020.126448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
A series of Ag-modified MOF/SOF heterostructured framework adsorbents (Ag-MSHC) with strong binding of iodine were prepared by anchoring silver nanoclusters on MOF/SOF heterostructured framework (MSHC). Morphological transformation process of six novel Ag-MSHC adsorbents can be realized by tailoring the molar ratio of Fe3+, TMA (1,3,5-Tricarboxybenzen) and MA (melamine), finally resulting in a combination of MOFs (metal-organic frameworks) and SOFs (supramolecular organic framework). Among six adsorbents, Ag-MSHC-6 exhibited an extremely strong affinity towards I-, whereas the maximum adsorption capacity of I- reaches 771.6 mg/g. An increased tendency of I- sorption occurred from Ag-MSHC-1 to Ag-MSCH-6 when the molar ratio of Fe3+ gradually decreased because the content of Fe3+ in topological structure of Ag-MSHC can hinder the incorporation of silver nanoclusters into Ag-MSHC and further influences the irreversible interactions between Ag2O and I-. Besides, FT-IR, XPS, TGA and SEM were used to discuss the microstructures and chemical composition of MSHC and Ag-MSHC, and we also performed batch adsorption experiments to demonstrate the iodine sorption performance and mechanism by Ag-MSHC. Taking advantage of this combination of MOFs and SOFs, high degree of doping of silver nanoclusters as well as its strong binding ability of iodine, Ag-MSHC can be considered as a superior adsorbent for radioactive iodine extraction.
Collapse
Affiliation(s)
- Hualun Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ye Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Bolin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dongbin Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuzhi Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
31
|
Chen H, Fan L, Zhang X, Ma L. Nanocage-Based In III{Tb III} 2-Organic Framework Featuring Lotus-Shaped Channels for Highly Efficient CO 2 Fixation and I 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27803-27811. [PMID: 32462875 DOI: 10.1021/acsami.0c07061] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exquisite combination of independent 3p [In(CO2)4] units and 4f [Tb2(CO2)8] clusters in the presence of the designed hexatopic 2,4,6-tri(2,4-dicarboxyphenyl)pyridine ligand engenders one peculiar nanocaged In(III){Tb(III)}2-organic framework: ({(Me2NH2)[InTb2(HTDP)2]·3DMF·3H2O}n, designated as NUC-5), which features dual types of lotus-shaped channels along the [100] and [110] axes with related node windows of 5.3 × 6.8 and 12.1 × 9.2 Å2, respectively. To the best of our knowledge, except several coexisted 3p-4f In/Ln clusters of {In3Ln}- and {In3Ln2}-based metal-organic frameworks (MOFs), NUC-5 is one novel type of In/Ln heterometallic framework. In addition, its topology was an unprecedented 3D TAYZIC net with a Schläfli symbol of {4.462}{4.565}2{4.66.88}. Moreover, activated NUC-5 is proved to be one efficient adsorbent for CO2 and one recycled cycloaddition catalyst for the transformation of epoxides into related carbonates with high yields under mild conditions. Furthermore, the excellent reversible sorption performance for I2 in the volatilization phase or in cyclohexane solution with a maximum adsorption capacity of 609.1 mg/g (3.75 iodine molecules per unit cell) makes NUC-5 a promising adsorbent for radioactive products of 129I and 131I in the field of nuclear industry. This study provides one synthetic strategy that the original nature of MOFs could be enhanced by introducing some specific function-prompted inorganic subunits with the aid of predesigned supporting ligands.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
32
|
Geng T, Ma L, Chen G, Zhang C, Zhang W, Niu Q. Fluorescent conjugated microporous polymers containing pyrazine moieties for adsorbing and fluorescent sensing of iodine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20235-20245. [PMID: 32239401 DOI: 10.1007/s11356-019-06534-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/12/2019] [Indexed: 06/11/2023]
Abstract
Two kinds of fluorescent conjugated microporous polymers containing pyrazine moieties were prepared by the polymerization reaction of 2,5-di-triphenylamine-yl-pyrazine (DTPAPz) and N,N,N',N'-tetrapheny-2,5-(diazyl) pyrazine (TDPz) with 2,4,6-trichloro-1,3,5-triazine (TCT) through Friedel-Crafts reaction using the methanesulfonic acid as a catalysts. Both CMPs have high thermal stability and decomposition temperature reaches above 596 and 248 °C under nitrogen atmosphere, respectively. By right of porous morphology and electron-donating nitrogen, as well as electron-rich π-conjugated structures, the adsorption performance for iodine vapor on the CMPs is very excellent, which can reach 441% and 312%. In addition, fluorescence studies showed that the two CMPs exhibited high fluorescence sensitivity to electron-deficient iodine, o-nitrophenol (o-NP), and picric acid (PA) via fluorescence quenching.
Collapse
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China.
| | - Lanzhen Ma
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Guofeng Chen
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Weiyong Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Qingyuan Niu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
33
|
Abstract
Cage-like silsesquioxanes are considered to be ideal and versatile building blocks of hybrid materials due to their unique structures and excellent performance. This Perspective highlights recent advances in the field of cage-like silsesquioxane-based hybrid materials, ranging from monomer functionalization and materials preparation to application. The existing issues are reviewed and the challenges and prospects in this field are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Yajing Du
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | | |
Collapse
|
34
|
Abstract
Porous aromatic frameworks (PAFs) represent an important category of porous solids. PAFs possess rigid frameworks and exceptionally high surface areas, and, uniquely, they are constructed from carbon-carbon-bond-linked aromatic-based building units. Various functionalities can either originate from the intrinsic chemistry of their building units or are achieved by postmodification of the aromatic motifs using established reactions. Specially, the strong carbon-carbon bonding renders PAFs stable under harsh chemical treatments. Therefore, PAFs exhibit specificity in their chemistry and functionalities compared with conventional porous materials such as zeolites and metal organic frameworks. The unique features of PAFs render them being tolerant of severe environments and readily functionalized by harsh chemical treatments. The research field of PAFs has experienced rapid expansion over the past decade, and it is necessary to provide a comprehensive guide to the essential development of the field at this stage. Regarding research into PAFs, the synthesis, functionalization, and applications are the three most important topics. In this thematic review, the three topics are comprehensively explained and aptly exemplified to shed light on developments in the field. Current questions and a perspective outlook will be summarized.
Collapse
Affiliation(s)
- Yuyang Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
35
|
Borjihan Q, Zhang Z, Zi X, Huang M, Chen Y, Zhang Y, Dong A. Pyrrolidone-based polymers capable of reversible iodine capture for reuse in antibacterial applications. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121305. [PMID: 31606708 DOI: 10.1016/j.jhazmat.2019.121305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Numerous emerging and re-emerging advanced materials have been successful in capturing iodine pollutants that pose an unprecedented global challenge to public health. However, little attention has been paid to the reutilization of the captured iodine. Herein, we report on a pyrrolidone-based polymer capable of reversible iodine capture for reutilization in antibacterial applications. The pyrrolidone-based polymer poly(N-vinyl-2-pyrrolidone-co-vinyl acetate), denoted as P(VAc-NVP), was synthesized facilely via a one-step radical copolymerization strategy, and the synthesis was regulated by step-by-step optimization, specifically by tuning the feed ratio of NVP to VAc. The as-synthesized P(VAc-NVP) copolymer functioned as an adsorbent for iodine in various solutions, including water/ethanol, cyclohexane, and petroleum ether, in addition to having the special capability of releasing iodine in the presence of starch or bacteria. This opens up a new horizon for its functional practical use as a flexible adsorbent to capture iodine for safe disposal. Interestingly, the P(VAc-NVP) copolymer, after adsorbing iodine, showed antibacterial ability against pathogenic bacteria, including Staphylococcus aureus and Escherichia coli, when a series of simulated and practical antibacterial assays were conducted. It is believed that this proposed strategy based on the synergism of iodine capture and antibacterial use should have great potential for environmental remediation and public healthcare.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xinyuan Zi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Mengxue Huang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yiqi Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
36
|
|
37
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
38
|
Geng TM, Zhang C, Hu C, Liu M, Fei YT, Xia HY. Synthesis of 1,6-disubstituted pyrene-based conjugated microporous polymers for reversible adsorption and fluorescence sensing of iodine. NEW J CHEM 2020. [DOI: 10.1039/c9nj05509f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four 1,6-disubstituted pyrene-based fluorescent conjugated microporous polymers were synthesized by Sonogashira–Hagihara reaction, trimerization reaction of –CN, and Friedel–Crafts reaction, respectively, which can efficient capture and sense I2.
Collapse
Affiliation(s)
- Tong-Mou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Ya-Ting Fei
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Hong-Yu Xia
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| |
Collapse
|
39
|
Li X, Chen G, Xu H, Jia Q. Task-specific synthesis of cost-effective electron-rich thiophene-based hypercrosslinked polymer with perylene for efficient iodine capture. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Liu J, Qi N, Zhou B, Chen Z. Exceptionally High CO 2 Capture in an Amorphous Polymer with Ultramicropores Studied by Positron Annihilation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30747-30755. [PMID: 31362490 DOI: 10.1021/acsami.9b07015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of amorphous melamine-based polymer networks synthesized by Schiff base chemistry (SNW) were successfully prepared by varying the strut length. The pore structure was analyzed by gas adsorption and positron annihilation methods. Positron lifetime measurements indicate the existence of ultramicropores and also larger mesopores in the SNW materials. The sizes of micropores and mesopores are almost the same in these samples, which are about 0.7 and 16.5 nm, respectively. The relative number of micropores increases in the order of SNW-1 < SNW-2 < SNW-3, while the number of mesopores increases in the reverse order. N2 adsorption/desorption measurements also reveal micropores and mesopores in these materials. However, it gives an underestimation of the micropore volume. Benefiting from the abundant nitrogen content and high microporosity, the SNW materials exhibit exceptionally high CO2 capture ability, which reaches a maximum value of 18.3 wt % in SNW-3 at 273 K and 1 bar, followed by SNW-2 and SNW-1. This order is exactly the same as the order of micropore volume revealed by positron annihilation measurement, suggesting that micropores play a crucial role in the CO2 uptake. Our results show that positron can provide more precise information about the structure of micropores and thus can offer an accurate prediction for the adsorption capacity of complex porous materials.
Collapse
Affiliation(s)
- Junjie Liu
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Ning Qi
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Bo Zhou
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Zhiquan Chen
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
41
|
Yu Y, Ren L, Liu M, Huang S, Xiao X, Liu R, Wang L, Xu W. Polyphenylene Sulfide Ultrafine Fibrous Membrane Modified by Nanoscale ZIF-8 for Highly Effective Adsorption, Interception, and Recycling of Iodine Vapor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31291-31301. [PMID: 31381287 DOI: 10.1021/acsami.9b09345] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, two novel composite membranes containing nanoscale ZIF-8 and polyphenylene sulfide (PPS) nonwoven fabric were prepared via hydrothermal (PPS-ZIF-8) and biomimetic mineralization (PPS-ZIF-8-BSA; BSA, bovine serum albumin) approaches. The biomimetic mineralization approach in particular was extremely rapid and mild, and crystalline ZIF-8 was coated on the PPS substrate in only a few seconds at room temperature. The maximum iodine adsorption capacities of the PPS-ZIF-8 and PPS-ZIF-8-BSA membranes were 2.51 and 2.07 g/g, respectively. The composite fibrous membranes were able to capture trace iodine vapor under differential pressures ranging from 0 to 1000 Pa without almost any iodine vapor leakage. The composite membranes can be applied in harsh environments because of the excellent stability of ZIF-8 and the PPS high-performance fibers. This study provides a promising strategy to fabricate novel adsorption materials for the collection of radioactive iodine during nuclear waste disposal.
Collapse
Affiliation(s)
- Yan Yu
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| | - Lipei Ren
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| | - Man Liu
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| | - Shiqi Huang
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| | - Xingfang Xiao
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| | - Ruina Liu
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| | - Luoxin Wang
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| | - Weilin Xu
- College of Materials Science and Engineering, Key Laboratory of Textile Fiber and Products (Ministry of Education), State Key Laboratory of New Textile Materials and Advanced Processing Technologies , Wuhan Textile University , Wuhan 430073 , P.R. China
| |
Collapse
|
42
|
Geng T, Chen G, Ma L, Zhang C, Zhang W, Xu H. The spirobifluorene-based fluorescent conjugated microporous polymers for reversible adsorbing iodine, fluorescent sensing iodine and nitroaromatic compounds. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Muhammad R, Mohanty P. Iodine sequestration using cyclophosphazene based inorganic-organic hybrid nanoporous materials: Role of surface functionality and pore size distribution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Liao C, Liu B, Chi Q, Zhang Z. Nitrogen-Doped Carbon Materials for the Metal-Free Reduction of Nitro Compounds. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44421-44429. [PMID: 30520291 DOI: 10.1021/acsami.8b15300] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, nitrogen-doped carbon materials (labeled as NC-T) were easily prepared by thermal treatment of the melamine-chitosan composite. NC-T catalysts demonstrated good activity toward the reduction of nitro compounds by using hydrazine hydrate (N2H4·H2O) as the reductant. The activity of NC-T enhanced with the rise of the pyrolysis temperature because of the enhanced ratio of graphitic-type nitrogen, which might be the active sites for the reduction of nitro compounds. NC-950 showed high activity for the selective reduction of nitro compounds in hexane to produce amines at yields from 87.5 to 100% at 90 °C using 2 equiv of N2H4·H2O. The NC-950 catalyst demonstrated comparable or even higher catalytic activity in comparison with the reported metal catalysts. The hydrogenation of nitro compounds with N2H4·H2O proceeded via the direct way involving hydroxylamine as the reaction intermediate.
Collapse
Affiliation(s)
- Chanjuan Liao
- College of Resources and Environment , Hunan Agricultural University , Changsha 410128 , Hunan , P. R. China
| | - Bing Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education , South-Central University for Nationalities , Wuhan 430074 , P. R. China
| | - Quan Chi
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education , South-Central University for Nationalities , Wuhan 430074 , P. R. China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education , South-Central University for Nationalities , Wuhan 430074 , P. R. China
| |
Collapse
|
45
|
Sun H, Mu P, Xie H, Zhu Z, Liang W, Zhou Z, Li A. Efficient Capture and Reversible Storage of Radioactive Iodine by Porous Graphene with High Uptake. ChemistrySelect 2018. [DOI: 10.1002/slct.201802121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanxue Sun
- Department of Chemical Engineering; College of Petrochemical Engineering; Lanzhou University of Technology; Langongping Road 287 Lanzhou P.R. China
| | - Peng Mu
- Department of Chemical Engineering; College of Petrochemical Engineering; Lanzhou University of Technology; Langongping Road 287 Lanzhou P.R. China
| | - Huimin Xie
- Department of Chemical Engineering; College of Petrochemical Engineering; Lanzhou University of Technology; Langongping Road 287 Lanzhou P.R. China
| | - Zhaoqi Zhu
- Department of Chemical Engineering; College of Petrochemical Engineering; Lanzhou University of Technology; Langongping Road 287 Lanzhou P.R. China
| | - Weidong Liang
- Department of Chemical Engineering; College of Petrochemical Engineering; Lanzhou University of Technology; Langongping Road 287 Lanzhou P.R. China
| | - Zhifang Zhou
- Department of Chemical Engineering; College of Petrochemical Engineering; Lanzhou University of Technology; Langongping Road 287 Lanzhou P.R. China
| | - An Li
- Department of Chemical Engineering; College of Petrochemical Engineering; Lanzhou University of Technology; Langongping Road 287 Lanzhou P.R. China
| |
Collapse
|