1
|
Achilleos K, Katsari A, Nikoloudakis E, Chatzipetri F, Tsikritzis D, Ladomenou K, Charalambidis G, Stratakis E, Coutsolelos AG. Water-soluble photocatalysts based on porphyrin-carbon dot conjugates produce H 2 under visible light irradiation. Dalton Trans 2024; 54:328-336. [PMID: 39541231 DOI: 10.1039/d4dt02101k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report visible-light-induced hydrogen generation from aqueous protons utilizing a novel hybrid photocatalytic nanomaterial comprising porphyrin-carbon dot conjugates. Amide coupling between metallated tetra-carboxyphenyl porphyrins (MTCPPs) and nitrogen doped carbon dots (NCDots) was performed to afford M-TCPP-NCDots hybrids, which were applied in hydrogen evolution photocatalysis under visible irradiation. H2 was obtained in the presence of appropriate sacrificial electron donors and with no additional metallic co-catalysts. It is noteworthy that the covalent attachment as well as the zinc-metallation of the porphyrin moiety were proved vital for the efficiency of the present system. The present study constitutes an innovative approach for artificial photosynthesis avoiding the use of costly materials such as noble metals.
Collapse
Affiliation(s)
- Katerina Achilleos
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013 Heraklion, Crete, Greece.
| | - Anna Katsari
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013 Heraklion, Crete, Greece.
| | - Emmanouil Nikoloudakis
- Foundation for Research and Technology (FORTH), Institute of Electronic Structure and Laser (IESL), 70013, Heraklion, Greece.
| | - Foteini Chatzipetri
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013 Heraklion, Crete, Greece.
| | - Dimitris Tsikritzis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU) Heraklion, Crete 71410, Greece
| | - Kalliopi Ladomenou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala, Greece.
| | - Georgios Charalambidis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece.
| | - Emmanuel Stratakis
- Foundation for Research and Technology (FORTH), Institute of Electronic Structure and Laser (IESL), 70013, Heraklion, Greece.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, P. R. China
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013 Heraklion, Crete, Greece.
- Foundation for Research and Technology (FORTH), Institute of Electronic Structure and Laser (IESL), 70013, Heraklion, Greece.
| |
Collapse
|
2
|
Soultati A, Verouti M, Polydorou E, Armadorou KK, Georgiopoulou Z, Palilis LC, Karatasios I, Kilikoglou V, Chroneos A, Coutsolelos AG, Argitis P, Vasilopoulou M. Efficient and Stable Air-Processed Ternary Organic Solar Cells Incorporating Gallium-Porphyrin as an Electron Cascade Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2800. [PMID: 37887950 PMCID: PMC10609146 DOI: 10.3390/nano13202800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Two gallium porphyrins, a tetraphenyl GaCl porphyrin, termed as (TPP)GaCl, and an octaethylporphyrin GaCl porphyrin, termed as (OEP)GaCl, were synthesized to use as an electron cascade in ternary organic bulk heterojunction films. A perfect matching of both gallium porphyrins' energy levels with that of poly(3-hexylthiophene-2,5-diyl) (P3HT) or poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) polymer donor and the 6,6-phenyl C71 butyric acid methyl ester (PCBM) fullerene acceptor, forming an efficient cascade system that could facilitate electron transfer between donor and acceptor, was demonstrated. Therefore, ternary organic solar cells (OSCs) using the two porphyrins in various concentrations were fabricated where a performance enhancement was obtained. In particular, (TPP)GaCl-based ternary OSCs of low concentration (1:0.05 vv%) exhibited a ~17% increase in the power conversion efficiency (PCE) compared with the binary device due to improved exciton dissociation, electron transport and reduced recombination. On the other hand, ternary OSCs with a high concentration of (TPP)GaCl (1:0.1 vv%) and (OEP)GaCl (1:0.05 and 1:0.1 vv%) showed the poorest efficiencies due to very rough nanomorphology and suppressed crystallinity of ternary films when the GaCl porphyrin was introduced to the blend, as revealed from X-ray diffraction (XRD) and atomic force microscopy (AFM). The best performing devices also exhibited improved photostability when exposed to sunlight illumination for a period of 8 h than the binary OSCs, attributed to the suppressed photodegradation of the ternary (TPP)GaCl 1:0.05-based photoactive film.
Collapse
Affiliation(s)
- Anastasia Soultati
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Maria Verouti
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Department of Physics, University of Patras, 26504 Rio Patra, Greece
| | - Ermioni Polydorou
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Konstantina-Kalliopi Armadorou
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Zoi Georgiopoulou
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Solid State Physics Section, Physics Department, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | | | - Ioannis Karatasios
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Vassilis Kilikoglou
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Alexander Chroneos
- Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece
- Department of Materials, Imperial College, London SW7 2AZ, UK
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, P.O. Box 2208, 71003 Heraklion, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
3
|
A Modified Triple-Diode Model Parameters Identification for Perovskite Solar Cells via Nature-Inspired Search Optimization Algorithms. SUSTAINABILITY 2021. [DOI: 10.3390/su132312969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, perovskite solar cells (PSCs) have been widely investigated as an efficient alternative for silicon solar cells. In this work, a proposed modified triple-diode model (MTDM) for PSCs modeling and simulation was used. The Bald Eagle Search (BES) algorithm, which is a novel nature-inspired search optimizer, was suggested for solving the model and estimating the PSCs device parameters because of the complex nature of determining the model parameters. Two PSC architectures, namely control and modified devices, were experimentally fabricated, characterized and tested in the lab. The I–V datasets of the fabricated devices were recorded at standard conditions. The decision variables in the proposed optimization process are the nine and ten unknown parameters of triple-diode model (TDM) and MTDM, respectively. The direct comparison with a number of modern optimization techniques including grey wolf (GWO), particle swarm (PSO) and moth flame (MFO) optimizers, as well as sine cosine (SCA) and slap swarm (SSA) algorithms, confirmed the superiority of the proposed BES approach, where the Root Mean Square Error (RMSE) objective function between the experimental data and estimated characteristics achieves the least value.
Collapse
|
4
|
Salomón FF, Vega NC, Jurado JP, Morán Vieyra FE, Tirado M, Comedi D, Campoy-Quiles M, Cattaneo M, Katz NE. Heteroleptic Ruthenium(II) Complexes with 2,2'-Bipyridines Having Carbonitriles as Anchoring Groups for ZnO Surfaces: Syntheses, Physicochemical Properties, and Applications in Organic Solar Cells. Inorg Chem 2021; 60:5660-5672. [PMID: 33821633 DOI: 10.1021/acs.inorgchem.0c03691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heteroleptic ruthenium (II) complexes were used for sensitizing ZnO surfaces in organic solar cells (OSCs) as mediators with photoactive layers. The complexes [Ru(4,4'-X2-bpy)(Mebpy-CN)2]2+ (with X = -CH3, -OCH3 and -N(CH3)2; bpy = 2,2'-bipyridine; Mebpy-CN = 4-methyl-2,2'-bipyridine-4'-carbonitrile) were synthesized and studied by analytical and spectroscopical techniques. Spectroscopic, photophysical, and electrochemical properties were tuned by changing the electron-donating ability of the -X substituents at the 4,4'-positions of the bpy ring and rationalized by quantum mechanical calculations. These complexes were attached through nitrile groups to ZnO as interfacial layer in an OSC device with a PBDB-T:ITIC photoactive layer. This modified inorganic electron transport layer generates enhancement in photoconversion of the solar cells, reaching up to a 23% increase with respect to the unsensitized OSCs. The introduction of these dyes suppresses some degradative reactions of the nonfullerene acceptor due to the photocatalytic activity of zinc oxide, which was maintained stable for about 11 months. Improving OSC efficiencies and stabilities can thus be achieved by a judicious combination of new inorganic and organic materials.
Collapse
Affiliation(s)
- Fernando F Salomón
- INQUINOA (CONICET-UNT), Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán, Argentina
| | - Nadia C Vega
- INFINOA (CONICET-UNT), NANOPROJECT, Depto. de Física, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán, Argentina
| | - José Piers Jurado
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, España
| | - Faustino E Morán Vieyra
- INBIONATEC (CONICET-UNSE), Laboratorio de Cinética y Fotoquímica, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - Mónica Tirado
- INFINOA (CONICET-UNT), NANOPROJECT, Depto. de Física, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán, Argentina
| | - David Comedi
- INFINOA (CONICET-UNT), NANOPROJECT, Depto. de Física, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán, Argentina
| | - Mariano Campoy-Quiles
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, España
| | - Mauricio Cattaneo
- INQUINOA (CONICET-UNT), Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán, Argentina
| | - Néstor E Katz
- INQUINOA (CONICET-UNT), Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán, Argentina
| |
Collapse
|
5
|
Feng X, Liu Z, Qin L, Kang SZ, Li X. Photocatalytic activity and the electron transport mechanism of titanium dioxide microsphere/porphyrin implanted with small size copper. Phys Chem Chem Phys 2020; 22:13528-13535. [PMID: 32510088 DOI: 10.1039/d0cp01953d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To obtain efficient photocatalysts by coupling architectures, developing novel materials and elucidating the charge transport mechanism at the semiconductor interface are vital. Herein, a special nanocomposite (TiO2 microsphere/CuNPs/THPP) for photocatalytic hydrogen production was facilely fabricated with copper nanoparticles (CuNPs) as the interfacial linker of the TiO2 microspheres and meso-tetra(p-hydroxypheny)porphyrin (THPP). The assembly mode of the nanocomposite was studied in detail. It was found that the CuNPs implanted at the interface of the TiO2 microspheres and THPP can dramatically strengthen the interaction between the TiO2 microspheres and THPP, and improve the separation and transfer of photo-produced charges. Therefore, the nanocomposite displayed excellent performance for photocatalytic hydrogen production. Moreover, by recycling hydrogen production, it is demonstrated that the nanocomposite was a highly efficient and long-term stable photocatalyst. By investigating the energy band location and the charge transfer, the photocatalytic mechanism over the special nanocomposite was explored and proposed to explain the better activity of the TiO2 microsphere/CuNPs/THPP photocatalytic system. It will be helpful to provide deep insights into the construction of efficient photocatalytic systems.
Collapse
Affiliation(s)
- Xuyuan Feng
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Zhiyuan Liu
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
6
|
Duan L, Uddin A. Progress in Stability of Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903259. [PMID: 32537401 PMCID: PMC7284215 DOI: 10.1002/advs.201903259] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/07/2020] [Accepted: 03/25/2020] [Indexed: 05/06/2023]
Abstract
The organic solar cell (OSC) is a promising emerging low-cost thin film photovoltaics technology. The power conversion efficiency (PCE) of OSCs has overpassed 16% for single junction and 17% for organic-organic tandem solar cells with the development of low bandgap organic materials synthesis and device processing technology. The main barrier of commercial use of OSCs is the poor stability of devices. Herein, the factors limiting the stability of OSCs are summarized. The limiting stability factors are oxygen, water, irradiation, heating, metastable morphology, diffusion of electrodes and buffer layers materials, and mechanical stress. The recent progress in strategies to increase the stability of OSCs is surveyed, such as material design, device engineering of active layers, employing inverted geometry, optimizing buffer layers, using stable electrodes and encapsulation materials. The International Summit on Organic Photovoltaic Stability guidelines are also discussed. The potential research strategies to achieve the required device stability and efficiency are highlighted, rendering possible pathways to facilitate the viable commercialization of OSCs.
Collapse
Affiliation(s)
- Leiping Duan
- School of Photovoltaic and Renewable Energy EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Ashraf Uddin
- School of Photovoltaic and Renewable Energy EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
7
|
Soultati A, Verykios A, Panagiotakis S, Armadorou KK, Haider MI, Kaltzoglou A, Drivas C, Fakharuddin A, Bao X, Yang C, Yusoff ARBM, Evangelou EK, Petsalakis I, Kennou S, Falaras P, Yannakopoulou K, Pistolis G, Argitis P, Vasilopoulou M. Suppressing the Photocatalytic Activity of Zinc Oxide Electron-Transport Layer in Nonfullerene Organic Solar Cells with a Pyrene-Bodipy Interlayer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21961-21973. [PMID: 32364365 DOI: 10.1021/acsami.0c03147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor-acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide. In particular, the pyrene-bodipy-based interlayer inhibits the direct contact between the nonfullerene acceptor and zinc oxide hence preventing the decomposition of the former by zinc oxide under illumination with UV light. As a result, the device photostability was significantly improved. The π-π interaction between the nonfullerene acceptor and the bodipy part of the interlayer facilitates charge transfer from the nonfullerene acceptor toward pyrene, which is followed by intramolecular charge transfer to bodipy part and then to zinc oxide. The bodipy-pyrene modified zinc oxide also increased the degree of crystallization of the photoactive blend and the face-on stacking of the polymer donor molecules within the blend hence contributing to both enhanced charge transport and increased absorption of the incident light. Furthermore, it decreased the surface work function as well as surface energy of the zinc oxide film all impacting in improved power conversion efficiency values of the fabricated cells with champion devices reaching values up to 9.86 and 11.80% for the fullerene and nonfullerene-based devices, respectively.
Collapse
Affiliation(s)
- Anastasia Soultati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Apostolis Verykios
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
- Department of Physics, University of Patras, Patras 26504, Greece
| | - Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Konstantina-Kalliopi Armadorou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
- Department of Chemistry, National and Kapodestrian University of Athens, Zografos 15771, Greece
| | - Muhammad Irfan Haider
- Department of Physics, University of Konstanz, Konstanz 78457, Germany
- Department of Chemistry, University of Wah, Wah 47040, Pakistan
| | - Andreas Kaltzoglou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Charalampos Drivas
- Department of Chemical Engineering University of Patras, Patras 26504, Greece
| | - Azhar Fakharuddin
- Department of Physics, University of Konstanz, Konstanz 78457, Germany
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Abd Rashid Bin Mohd Yusoff
- Department of Physics, Vivian Tower, Singleton Park, Swansea University, Swansea SA2 8PP , United Kingdom
| | | | - Ioannis Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou Avenue 48, Athens 11635, Greece
| | - Stella Kennou
- Department of Chemical Engineering University of Patras, Patras 26504, Greece
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - George Pistolis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| |
Collapse
|
8
|
Gkini K, Verykios A, Balis N, Kaltzoglou A, Papadakis M, Adamis KS, Armadorou KK, Soultati A, Drivas C, Gardelis S, Petsalakis ID, Palilis LC, Fakharuddin A, Haider MI, Bao X, Kennou S, Argitis P, Schmidt-Mende L, Coutsolelos AG, Falaras P, Vasilopoulou M. Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy-Porphyrin Dyad. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1120-1131. [PMID: 31829007 DOI: 10.1021/acsami.9b17580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photovoltaic devices based on organic semiconductors and organo-metal halide perovskites have not yet reached the theoretically predicted power conversion efficiencies while they still exhibit poor environmental stability. Interfacial engineering using suitable materials has been recognized as an attractive approach to tackle the above issues. We introduce here a zinc porphyrin-triazine-bodipy donor-π bridge-acceptor dye as a universal electron transfer mediator in both organic and perovskite solar cells. Thanks to its "push-pull" character, this dye enhances electron transfer from the absorber layer toward the electron-selective contact, thus improving the device's photocurrent and efficiency. The direct result is more than 10% average power conversion efficiency enhancement in both fullerene-based (from 8.65 to 9.80%) and non-fullerene-based (from 7.71 to 8.73%) organic solar cells as well as in perovskite ones (from 14.56 to 15.67%), proving the universality of our approach. Concurrently, by forming a hydrophobic network on the surface of metal oxide substrates, it improves the nanomorphology of the photoactive overlayer and contributes to efficiency stabilization. The fabricated devices of both kinds preserved more than 85% of their efficiency upon exposure to ambient conditions for more than 600 h without any encapsulation.
Collapse
Affiliation(s)
- Konstantina Gkini
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | - Apostolis Verykios
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | - Nikolaos Balis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | - Andreas Kaltzoglou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | - Michael Papadakis
- Department of Chemistry , University of Crete, Laboratory of Bioinorganic Chemistry , Voutes Campus , 70013 Heraklion , Crete , Greece
| | - Konstantinos S Adamis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
- Department of Chemistry , University of Crete, Laboratory of Bioinorganic Chemistry , Voutes Campus , 70013 Heraklion , Crete , Greece
| | - Konstantina-Kalliopi Armadorou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | | | - Spyros Gardelis
- Solid State Physics Section, Physics Department , National and Kapodistrian University of Athens , Panepistimioupolis , 15784 Zografos , Athens , Greece
| | - Ioannis D Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Vas. Constantinou Avenue 48 , 11635 Athens , Greece
| | | | - Azhar Fakharuddin
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| | - Muhammad Irfan Haider
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
- Department of Chemistry , Quaid-i-Azam University , 45320 Islamabad , Pakistan
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , 266101 Qingdao , China
| | | | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | | | - Athanassios G Coutsolelos
- Department of Chemistry , University of Crete, Laboratory of Bioinorganic Chemistry , Voutes Campus , 70013 Heraklion , Crete , Greece
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos , Agia Paraskevi , 15341 Athens , Greece
| |
Collapse
|
9
|
Verykios A, Papadakis M, Soultati A, Skoulikidou MC, Papaioannou G, Gardelis S, Petsalakis ID, Theodorakopoulos G, Petropoulos V, Palilis LC, Fakis M, Vainos NA, Alexandropoulos D, Davazoglou D, Pistolis G, Argitis P, Coutsolelos AG, Vasilopoulou M. Functionalized Zinc Porphyrins with Various Peripheral Groups for Interfacial Electron Injection Barrier Control in Organic Light Emitting Diodes. ACS OMEGA 2018; 3:10008-10018. [PMID: 31459129 PMCID: PMC6644834 DOI: 10.1021/acsomega.8b01503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/13/2018] [Indexed: 06/10/2023]
Abstract
Here, we use a simple and effective method to accomplish energy level alignment and thus electron injection barrier control in organic light emitting diodes (OLEDs) with a conventional architecture based on a green emissive copolymer. In particular, a series of functionalized zinc porphyrin compounds bearing π-delocalized triazine electron withdrawing spacers for efficient intramolecular electron transfer and different terminal groups such as glycine moieties in their peripheral substitutes are employed as thin interlayers at the emissive layer/Al (cathode) interface to realize efficient electron injection/transport. The effects of spatial (i.e., assembly) configuration, molecular dipole moment and type of peripheral group termination on the optical properties and energy level tuning are investigated by steady-state and time-resolved photoluminescence spectroscopy in F8BT/porphyrin films, by photovoltage measurements in OLED devices and by surface work function measurements in Al electrodes modified with the functionalized zinc porphyrins. The performance of OLEDs is significantly improved upon using the functionalized porphyrin interlayers with the recorded luminance of the devices to reach values 1 order of magnitude higher than that of the reference diode without any electron injection/transport interlayer.
Collapse
Affiliation(s)
- Apostolis Verykios
- Institute of Nanoscience
and Nanotechnology, National Center for
Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece
- Department
of Physics and Department of Materials Science, University
of Patras, 26504 Patras, Greece
| | - Michael Papadakis
- Department of Chemistry, Laboratory of Bioinorganic Chemistry, University of Crete, Voutes Campus, Heraklion 70013 Crete, Greece
| | - Anastasia Soultati
- Institute of Nanoscience
and Nanotechnology, National Center for
Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece
| | - Maria-Christina Skoulikidou
- Institute of Nanoscience
and Nanotechnology, National Center for
Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece
- Solid State Physics Section, Physics Department, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Zografos, Athens, Greece
| | - George Papaioannou
- Solid State Physics Section, Physics Department, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Zografos, Athens, Greece
| | - Spyros Gardelis
- Solid State Physics Section, Physics Department, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Zografos, Athens, Greece
| | - Ioannis D. Petsalakis
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou Avenue 48, 11635 Athens, Greece
| | - Giannoula Theodorakopoulos
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou Avenue 48, 11635 Athens, Greece
| | - Vasilis Petropoulos
- Department
of Physics and Department of Materials Science, University
of Patras, 26504 Patras, Greece
| | - Leonidas C. Palilis
- Department
of Physics and Department of Materials Science, University
of Patras, 26504 Patras, Greece
| | - Mihalis Fakis
- Department
of Physics and Department of Materials Science, University
of Patras, 26504 Patras, Greece
| | - Nikolaos A. Vainos
- Department
of Physics and Department of Materials Science, University
of Patras, 26504 Patras, Greece
| | - Dimitris Alexandropoulos
- Department
of Physics and Department of Materials Science, University
of Patras, 26504 Patras, Greece
| | - Dimitris Davazoglou
- Institute of Nanoscience
and Nanotechnology, National Center for
Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece
| | - George Pistolis
- Institute of Nanoscience
and Nanotechnology, National Center for
Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience
and Nanotechnology, National Center for
Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece
| | - Athanassios G. Coutsolelos
- Department of Chemistry, Laboratory of Bioinorganic Chemistry, University of Crete, Voutes Campus, Heraklion 70013 Crete, Greece
| | - Maria Vasilopoulou
- Institute of Nanoscience
and Nanotechnology, National Center for
Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece
| |
Collapse
|