1
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Alagarsamy KN, Saleth LR, Sekaran S, Fusco L, Delogu LG, Pogorielov M, Yilmazer A, Dhingra S. MXenes as emerging materials to repair electroactive tissues and organs. Bioact Mater 2025; 48:583-608. [PMID: 40123746 PMCID: PMC11926619 DOI: 10.1016/j.bioactmat.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Nanomaterials with electroactive properties have taken a big leap for tissue repair and regeneration due to their unique physiochemical properties and biocompatibility. MXenes, an emerging class of electroactive materials have generated considerable interest for their biomedical applications from bench to bedside. Recently, the application of these two-dimensional wonder materials have been extensively investigated in the areas of biosensors, bioimaging and repair of electroactive organs, owing to their outstanding electromechanical properties, photothermal capabilities, hydrophilicity, and flexibility. The currently available data reports that there is significant potential to employ MXene nanomaterials for repair, regeneration and functioning of electroactive tissues and organs such as brain, spinal cord, heart, bone, skeletal muscle and skin. The current review is the first report that compiles the most recent advances in the application of MXenes in bioelectronics and the development of biomimetic scaffolds for repair, regeneration and functioning of electroactive tissues and organs including heart, nervous system, skin, bone and skeletal muscle. The content in this article focuses on unique features of MXenes, synthesis process, with emphasis on MXene-based electroactive tissue engineering constructs, biosensors and wearable biointerfaces. Additionally, a section on the future of MXenes is presented with a focus on the clinical applications of MXenes.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Laura Fusco
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Gemma Delogu
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy, 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga, LV-1004, Latvia
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| |
Collapse
|
3
|
Singh N, Sharma D, Thakur M, Dan A. Zinc oxide-loaded chitosan-graphene oxide hydrogel nanocomposite as a potential catalyst for photocatalytic dye degradation. Int J Biol Macromol 2025; 308:142424. [PMID: 40147666 DOI: 10.1016/j.ijbiomac.2025.142424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In this work, a novel in-situ approach was employed to incorporate the zinc oxide (ZnO) nanoparticles into the hybrid chitosan-graphene oxide (CSGO) hydrogel network, forming ZnO-embedded hydrogel nanocomposites (CSGOZnO). This endeavor offered a uniform dispersion of ZnO nanoparticles within the 3D polymeric hydrogel structure, as confirmed by FE-SEM and HR-TEM analyses. The XRD spectrum of CSGOZnO exhibited eleven characteristic crystal planes at 31.8, 34.5, 36.3, 47.6, 56.6, 62.9, 66.4, 68.0, 69.1, 72.6 and 77.0 (2θ), corresponding to enhanced crystallinity and structural integrity. The as-prepared hydrogel nanocomposite demonstrated outstanding potential to act as a catalyst for the photocatalytic degradation of cationic methylene blue (MB), anionic alizarin red (AR), and mixed dyes under visible-light. The dye degradation process followed the pseudo-second-order model, with rate constants of 5.0 × 10-3, 3.0 × 10-3, and 1.0 × 10-3 min-1 for MB, AR, and mixed dyes, respectively. The exceptional performance was attributed to the synergistic effects of the CSGO 3D gel network and the embedded ZnO nanoparticles, facilitating superior adsorption and photocatalytic degradation. To elucidate the degradation mechanism, a number of batch experiments were conducted in line with studying different parameters such as catalyst dosage, initial dye concentration, contact time and pH of the solution. Hence, the newly developed multifunctional CSGOZnO hydrogel nanocomposites, synthesized via an in-situ approach, demonstrate significant promise for photocatalytic degradation of organic dye molecules in contaminated water.
Collapse
Affiliation(s)
- Nirbhai Singh
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Department of Chemistry, Government Ranbir College, Sangrur, Punjab, India
| | - Deepika Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Meenakshi Thakur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Abhijit Dan
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal 741249, India.
| |
Collapse
|
4
|
Sun J, Song L, Zhou Y, Wu K, Li C, Han B, Chang J. Review: Advances in multifunctional hydrogels based on carbohydrate polymer and protein in the treatment of diabetic wounds. Int J Biol Macromol 2025; 309:142693. [PMID: 40169055 DOI: 10.1016/j.ijbiomac.2025.142693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/02/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Diabetic wounds healing is often severely slowed by hyperglycemia, elevated oxidative stress, bacterial infections, and persistent inflammation. This review focuses on the development of hydrogels derived from carbohydrate polymer and protein to facilitate diabetic wound healing. We discuss the primary sources of cellulose, chitosan, hyaluronic acid, sodium alginate, collagen, and gelatin along with their advantages in the preparation of hydrogels. Based on the microenvironment of diabetic wounds, i.e., hyperglycemia, increased oxidative stress, and persistent inflammation, the application of multifunctional hydrogels in promoting diabetic wounds, including stimulus responsiveness, injection self-healing, antibacterial, antioxidant, anti-inflammatory, and synergistic effects, is discussed. We address the main challenges and future perspectives of multifunctional hydrogels based on carbohydrate polymer and protein in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Leyang Song
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China.
| |
Collapse
|
5
|
Fattahi MR, Baghlani M, Eggener SE, Dehghani M, Khani MM, Kajbafzadeh A. MXene and prostate cancer: is there promising news? Nanomedicine (Lond) 2025; 20:1001-1014. [PMID: 40235346 PMCID: PMC12051545 DOI: 10.1080/17435889.2025.2487412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Prostate cancer is the most prevalent cancer among men worldwide, and there have been many advances in its diagnosis and treatment. However, critical obstacles remain, including overdiagnosis, high rates of negative biopsies, management of side effects, and the timely detection of relapse. Despite these improvements, surgery and radiotherapy are still associated with a significant risk of short- or long-term side effects. MXenes are a novel class of two-dimensional nanomaterials manufactured through electrochemical procedures that accept a wide-termination of hydrophilic molecules as surface modifications. The importance of MXene has increased owing to many aspects, such as its high-gain synthesis potential, chemical flexibility, and high biocompatibility. Hence, MXene is a convenient nanomaterial that can be modified and synthesized in different models, suggesting its ability to improve screening, diagnosis, and theranostic applications, such as thermal therapy. These features have been used to detect potential urothelial tumor markers as well as the direction and accumulation of cancer medications in the target tissue.
Collapse
Affiliation(s)
- Mohammad Reza Fattahi
- Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Baghlani
- School of Biotechnology, Department of Basic Sciences, Islamic Azad University, Ahvaz, Iran
| | | | | | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolmohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissues Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Pouso MR, Melo BL, Gonçalves JJ, Louro RO, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable and implantable hydrogels for localized delivery of drugs and nanomaterials for cancer chemotherapy: A review. Int J Pharm 2025; 677:125640. [PMID: 40287071 DOI: 10.1016/j.ijpharm.2025.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Multiple chemotherapeutic strategies have been developed to tackle the complexity of cancer. Still, the outcome of chemotherapeutic regimens remains impaired by the drugs' weak solubility, unspecific biodistribution and poor tumor accumulation after systemic administration. Such constraints triggered the development of nanomaterials to encapsulate and deliver anticancer drugs. In fact, the loading of drugs into nanoparticles can overcome most of the solubility concerns. However, the ability of systemically administered drug-loaded nanomaterials to reach the tumor site has been vastly overestimated, limiting their clinical translation. The drugs' and drug-loaded nanomaterials' systemic administration issues have propelled the development of hydrogels capable of performing their direct/local delivery into the tumor site. The use of these macroscale systems to mediate a tumor-confined delivery of the drugs/drugs-loaded nanomaterials grants an improved therapeutic efficacy and, simultaneously, a reduction of the side effects. The manufacture of these hydrogels requires the careful selection and tailoring of specific polymers/materials as well as the choice of appropriate physical and/or chemical crosslinking interactions. Depending on their administration route and assembling process, these matrices can be classified as injectable in situ forming hydrogels, injectable shear-thinning/self-healing hydrogels, and implantable hydrogels, each type bringing a plethora of advantages for the intended biomedical application. This review provides the reader with an insight into the application of injectable and implantable hydrogels for performing the tumor-confined delivery of drugs and drug-loaded nanomaterials.
Collapse
Affiliation(s)
- Manuel R Pouso
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Joaquim J Gonçalves
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - António G Mendonça
- RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal; University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
8
|
Dutta T, Alam P, Mishra SK. MXenes and MXene-based composites for biomedical applications. J Mater Chem B 2025; 13:4279-4312. [PMID: 40079066 DOI: 10.1039/d4tb02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves. However, several challenges, including biocompatibility, functional stability, and scalable synthesis methods, remain critical for advancing their clinical use. This review comprehensively overviews MXenes and MXene-based composites, their synthesis, properties, and broad biomedical applications. Furthermore, it highlights the latest progress, ongoing challenges, and future perspectives, aiming to inspire innovative approaches to harnessing these versatile materials for next-generation medical solutions.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. - 711103, India
| | - Parvej Alam
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels, Spain.
| | - Satyendra Kumar Mishra
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.
| |
Collapse
|
9
|
Zhou X, Ma W, Jiang J, Dang J, Lv R, Wang H, Ma M, Sun D, Zhang M. Non-antibiotic dependent photothermal antibacterial hemostatic MXene hydrogel for infectious wounds healing. BIOMATERIALS ADVANCES 2025; 169:214157. [PMID: 39721572 DOI: 10.1016/j.bioadv.2024.214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (Ti3C2Tx) through employing H2O2/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA. By employing TA as the multi-functional H-bond provider, the adhesiveness, hemostatic ability, mechanical property and bactericidal performance of the hydrogel was enhanced. And MXene in this system exerted benign photothermal antimicrobial performance, it was able to transform near-infrared (NIR) light into heat, then the bacteria would be physically damaged (thermal destruction) due to the hyperthermy, hence the antibacterial effect of which will not be restricted by antibiotic resistance. The temperature of the hydrogel in the experimental group can be increased by 25 °C after irradiation by 808 nm NIR light for 10 min, and the bactericidal efficiency against both E. coli and S. aureus reached >99 %. In vivo tests demonstrated that with the assistance of NIR irradiation, the hydrogel can distinctly accelerate the S. aureus infected wound closure. We envisage that this non-antibiotic dependent multifunctional photothermal hydrogel can provide a promise for bacteria-invaded wound healing.
Collapse
Affiliation(s)
- Xingyu Zhou
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wendi Ma
- Chongqing Polycomp International Co., Ltd, Chongqing 400082, China
| | - Junhui Jiang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junbo Dang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ruifu Lv
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongbo Wang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Minna Ma
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dahui Sun
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Mei Zhang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Yuan S, Ge L, Li Y, Wang X, Liu Z, Cao Y, Yang L. Ti 3C 2/CuWO 4/Pt nanozyme: photothermal-enhanced chemodynamic antibacterial effects induced by NIR. RSC Adv 2025; 15:9985-9996. [PMID: 40171291 PMCID: PMC11959366 DOI: 10.1039/d4ra08791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
With the growing issue of antibiotic resistance, it has become increasingly crucial to develop highly efficient antimicrobial materials. While the single-component nanozyme systems exhibited some catalytic activity, their efficiency remains suboptimal. This study presents a Ti3C2/CuWO4/Pt hybrid nanozyme composed of photothermal agents and nanozymes, which leverages the photothermal effect to enhance nanozyme activity and achieve efficient antimicrobial effects. The composite material exhibited peroxidase (POD)-like catalytic activity, effectively converting hydrogen peroxide (H2O2) into hydroxyl radicals (·OH). Meanwhile, the Ti3C2/CuWO4/Pt material demonstrated high photothermal conversion ability, which not only promoted the generation of ·OH under near-infrared (NIR) light irradiation, but also facilitated copper (Cu2+) ions release from the CuWO4 nanozyme, thereby further augmenting its catalytic activity. After 4 to 5 min of light irradiation, the Ti3C2/CuWO4/Pt nanozyme exhibited significant antimicrobial performance against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In summary, this work presents a Ti3C2/CuWO4/Pt nanoplatform that utilizes the photothermal effect to enhance the chemodynamic antimicrobial activity, showcasing its potential applications in antibiotic-free antimicrobial fields.
Collapse
Affiliation(s)
- Simin Yuan
- College of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 P. R. China
| | - Lianyuan Ge
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University Haikou 570228 P. R. China
| | - Yi Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University Haikou 570228 P. R. China
| | - Xiaohong Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University Haikou 570228 P. R. China
| | - Zhongyuan Liu
- College of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 P. R. China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University Haikou 570228 P. R. China
| | - Linglin Yang
- College of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 P. R. China
- Shenjiu Group Co., Ltd Luzhou 646000 P. R. China
| |
Collapse
|
11
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
12
|
Srikrajang S, Kabir L, Sagadevan S, Wijaya K, Oh WC. Representative modeling of biocompatible MXene nanocomposites for next-generation biomedical technologies and healthcare. J Mater Chem B 2025; 13:2912-2951. [PMID: 39886804 DOI: 10.1039/d4tb02478h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
MXenes are a class of 2D transition metal carbides and nitrides (Mn+1XnT) that have attracted significant interest owing to their remarkable potential in various fields. The unique combination of their excellent electromagnetic, optical, mechanical, and physical properties have extended their applications to the biological realm as well. In particular, their ultra-thin layered structure holds specific promise for diverse biomedical applications. This comprehensive review explores the synthesis methods of MXene composites, alongside the biological and medical design strategies that have been employed for their surface engineering. This review delves into the interplay between these strategies and the resulting properties, biological activities, and unique effects at the nano-bio-interface. Furthermore, the latest advancements in MXene-based biomaterials and medicine are systematically summarized. Further discussion on MXene composites designed for various applications, including biosensors, antimicrobial agents, bioimaging, tissue engineering, and regenerative medicine, are also provided. Finally, with a focus on translating research results into real-world applications, this review addresses the current challenges and exciting future prospects of MXene composite-based biomaterials.
Collapse
Affiliation(s)
- Siwaluk Srikrajang
- Department of Physical Therapy, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Latiful Kabir
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Karna Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| |
Collapse
|
13
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
14
|
Shin H, Jeong W, Han TH. Maximizing light-to-heat conversion of Ti 3C 2T x MXene metamaterials with wrinkled surfaces for artificial actuators. Nat Commun 2024; 15:10507. [PMID: 39627230 PMCID: PMC11614877 DOI: 10.1038/s41467-024-54802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
MXene, a promising photothermal nanomaterial, faces challenges due to densely stacked nanosheets with high refractive index (RI). To maximize photothermal performance, MXene metamaterials (m-MXenes) are developed with a superlattice with alternating MXene and organic layers, reducing RI and inducing multiple light reflections. This approach increases light absorption, inducing 90% photothermal conversion efficiency. The m-MXene is coated onto liquid crystal elastomer (LCE) fibers, as actuating platforms via a dip-coating (m-MXene/aLCE fiber), exhibiting excellent light-driven actuating owing to the synergetic effect of the patterned m-MXene laysers by structural deformation. The m-MXene/aLCE fibers lift ~6,900 times their weight and exhibit a work density 6 times higher than that of human skeletal muscle. It is applied to artificial muscles, grippers, and a bistable structure (a shooting device, and switchable gripper). Our study offers an effective strategy to enhance light absorption in 2D nanomaterials and contributes to advancements in photothermal technologies in various fields.
Collapse
Affiliation(s)
- Hwansoo Shin
- Department of Organic and Nano Engineering, Hanyang University, Seoul, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, Republic of Korea
| | - Woojae Jeong
- Department of Organic and Nano Engineering, Hanyang University, Seoul, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, Republic of Korea.
- Human-Tech Convergence Program, Hanyang University, Seoul, Republic of Korea.
- Research Institute of Industrial Science, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Paramasivam G, Yadavali SP, Atchudan R, Arya S, Sundramoorthy AK. Recent advances in the medical applications of two-dimensional MXene nanosheets. Nanomedicine (Lond) 2024; 19:2633-2654. [PMID: 39552604 DOI: 10.1080/17435889.2024.2422806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
MXene-based materials are gaining significant attention due to their exceptional properties and adaptability, leading to diverse advanced applications. In 3D printing, MXenes enhance the performance of photoblockers, photocurable inks, and composites, enabling the creation of precise, flexible and durable structures. MXene/siloxane composites offer both flexibility and resilience, while MXene/spidroin scaffolds provide excellent biocompatibility and mechanical strength, making them ideal for tissue engineering. Sustainable inks such as MXene/cellulose nano inks, alginate/MXene and MXene/emulsion underscore their role in high-performance printed materials. In cancer therapy, MXenes enable innovative photothermal and photodynamic therapies, where nanosheets generate heat and reactive oxygen species to destroy cancer cells. MXene theranostic nanoprobes combine imaging and treatment, while MXene/niobium composites support hyperthermia therapy and MXene/cellulose hydrogels allow controlled drug release. Additionally, MXene-based nanozymes enhance catalytic activity, and MXene/gold nanorods enable near-infrared-triggered drug release for noninvasive treatments. In antimicrobial applications, MXene composites enhance material durability and hygiene, providing anticorrosive protection for metals. For instance, MXene/graphene, MXene/polycaprolactone nanofibers and MXene/chitosan hydrogels exhibit significant antibacterial activity. Additionally, MXene sensors have been developed to detect antibiotic residues. MXene cryogels also promote tissue regeneration, while MXene nanohybrids facilitate photocatalytic antibacterial therapy. These advancements underscore the potential of MXenes in regenerative medicine and other fields.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Yadavali
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu & Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics & Materials Science, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
16
|
Deb VK, Jain U. Ti 3C 2 (MXene), an advanced carrier system: role in photothermal, photoacoustic, enhanced drugs delivery and biological activity in cancer therapy. Drug Deliv Transl Res 2024; 14:3009-3031. [PMID: 38713400 DOI: 10.1007/s13346-024-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
In the realm of healthcare and the advancing field of medical sciences, the development of efficient drug delivery systems become an immense promise to cure several diseases. Despite considerable advancements in drug delivery systems, numerous challenges persist, necessitating further enhancements to optimize patient outcomes. Smart nano-carriers, for instance, 2D sheets nano-carriers are the recently emerging nanosheets that may garner attention for targeted delivery of bioactive compounds, drugs, and genes to kill cancer cells. Within these advancements, Ti3C2TX-MXene, characterized as a two-dimensional transition metal carbide, has surfaced as a prominent intelligent nanocarrier within nanomedicine. Its noteworthy characteristics facilitated it as an ideal nanocarrier for cancer therapy. In recent advancements in drug delivery research, Ti3C2TX-MXene 2D nanocarriers have been designed to release drugs in response to specific stimuli, guided by distinct physicochemical parameters. This review emphasized the multifaceted role of Ti3C2TX-MXene as a potential carrier for delivering poorly hydrophilic drugs to cancer cells, facilitated by various polymer coatings. Furthermore, beyond drug delivery, this smart nanocarrier demonstrates utility in photoacoustic imaging and photothermal therapy, further highlighting its significant role in cellular mechanisms.
Collapse
Affiliation(s)
- Vishal Kumar Deb
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
17
|
Avinashi SK, Mishra RK, Singh R, Shweta, Rakhi, Fatima Z, Gautam CR. Fabrication Methods, Structural, Surface Morphology and Biomedical Applications of MXene: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47003-47049. [PMID: 39189322 DOI: 10.1021/acsami.4c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recently, two-dimensional (2-D) layered materials have revealed outstanding properties and play a crucial role for numerous advanced applications. The emerging transition metal carbides and nitrides, known as MXene with empirical formula Mn+1XnTx, have generated widespread attention and demonstrated impressive potential in various fields. The fabrication of 2-D novel MXene and its composites and their characterizations are applicable to vast applications in different areas such as energy storage, gas sensors, catalysis, and biomedical applications. In this review, the main focus is on the various synthesis methods, their properties, and biomedical applications. This review provides detailed illustrations of MXenes for many biomedical applications, including bioimaging, drug delivery, therapies, biosensors, tissue engineering, and antibacterial reagents. The challenges and future prospects were highlighted in a comprehensive manner, and the existing problems and potential for MXene-based biomaterials were analyzed with the goal of accelerating their use in the biomedical field.
Collapse
Affiliation(s)
- Sarvesh Kumar Avinashi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rajat Kumar Mishra
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rahul Singh
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Shweta
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rakhi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Zaireen Fatima
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chandki Ram Gautam
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| |
Collapse
|
18
|
Konieva A, Deineka V, Diedkova K, Aguilar-Ferrer D, Lyndin M, Wennemuth G, Korniienko V, Kyrylenko S, Lihachev A, Zahorodna V, Baginskiy I, Coy E, Gogotsi O, Blacha-Grzechnik A, Simka W, Kube-Golovin I, Iatsunskyi I, Pogorielov M. MXene-Polydopamine-antiCEACAM1 Antibody Complex as a Strategy for Targeted Ablation of Melanoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43302-43316. [PMID: 39111771 PMCID: PMC11345726 DOI: 10.1021/acsami.4c08129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Photothermal therapy (PTT) is a method for eradicating tumor tissues through the use of photothermal materials and photosensitizing agents that absorb light energy from laser sources and convert it into heat, which selectively targets and destroys cancer cells while sparing healthy tissue. MXenes have been intensively investigated as photosensitizing agents for PTT. However, achieving the selectivity of MXenes to the tumor cells remains a challenge. Specific antibodies (Ab) against tumor antigens can achieve homing of the photosensitizing agents toward tumor cells, but their immobilization on MXene received little attention. Here, we offer a strategy for the selective ablation of melanoma cells using MXene-polydopamine-antiCEACAM1 Ab complexes. We coated Ti3C2Tx MXene with polydopamine (PDA), a natural compound that attaches Ab to the MXene surface, followed by conjugation with an anti-CEACAM1 Ab. Our experiments confirm the biocompatibility of the Ti3C2Tx-PDA and Ti3C2Tx-PDA-antiCEACAM1 Ab complexes across various cell types. We also established a protocol for the selective ablation of CEACAM1-positive melanoma cells using near-infrared irradiation. The obtained complexes exhibit high selectivity and efficiency in targeting and eliminating CEACAM1-positive melanoma cells while sparing CEACAM1-negative cells. These results demonstrate the potential of MXene-PDA-Ab complexes for cancer therapy. They underline the critical role of targeted therapies in oncology, offering a promising avenue for the precise and safe treatment of melanoma and possibly other cancers characterized by specific biomarkers. Future research will aim to refine these complexes for clinical use, paving the way for new strategies for cancer treatment.
Collapse
Affiliation(s)
- Anastasia Konieva
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Volodymyr Deineka
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Kateryna Diedkova
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Daniel Aguilar-Ferrer
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
- Institut
Europeen des Membranes, IEM, UMR 5635, Université de Montpellier,
ENSCM, CNRS, 34730 Montpellier, France
| | - Mykola Lyndin
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Gunther Wennemuth
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Viktoriia Korniienko
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Sergiy Kyrylenko
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Alexey Lihachev
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | | | - Ivan Baginskiy
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Materials
Research Centre, 3 Krzhizhanovskogo
Str., 03142 Kyiv, Ukraine
| | - Emerson Coy
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
| | - Oleksiy Gogotsi
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Materials
Research Centre, 3 Krzhizhanovskogo
Str., 03142 Kyiv, Ukraine
| | - Agata Blacha-Grzechnik
- Faculty of
Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
| | - Wojciech Simka
- Faculty of
Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
| | - Irina Kube-Golovin
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Igor Iatsunskyi
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
| | - Maksym Pogorielov
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| |
Collapse
|
19
|
Zahra T, Javeria U, Jamal H, Baig MM, Akhtar F, Kamran U. A review of biocompatible polymer-functionalized two-dimensional materials: Emerging contenders for biosensors and bioelectronics applications. Anal Chim Acta 2024; 1316:342880. [PMID: 38969417 DOI: 10.1016/j.aca.2024.342880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.
Collapse
Affiliation(s)
- Tahreem Zahra
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Umme Javeria
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Mirza Mahmood Baig
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan; Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Urooj Kamran
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden; Institute of Advanced Machinery Design Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
21
|
Yang W, Wang L, Fan L, Li W, Zhao Y, Shang L, Jiang M. Photothermal Responsive Microcarriers Encapsulated With Cangrelor and 5-Fu for Colorectal Cancer Treatment. SMALL METHODS 2024; 8:e2301002. [PMID: 38127997 DOI: 10.1002/smtd.202301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Localized chemotherapy is emerging as a potential strategy for cancer treatment due to its low systemic toxicity. However, the immune evasion of tumor cells and the lack of an intelligent design of the delivery system limit its clinical application. Herein, photothermal responsive microcarriers are designed by microfluidic electrospray for colorectal tumor treatment. The microcarriers loaded with Cangrelor, 5-FU and MXene (G-M@F/C+NIR) show sustained delivery of antiplatelet drug Cangrelor, thus inhibiting the activity of platelets, interactions of platelet-tumor cell, as well as the tumor cells invasion and epithelial-mesenchymal transition (EMT). In addition, the sustained delivery of chemotherapeutics 5-FU and the photothermal effect provided by MXene enable the microcarriers to inhibit tumor cells proliferation and migration. In vivo studies validate that the G-M@F/C+NIR microcarriers significantly inhibites tumor growth, decreased the expression of Ki-67 in tumor cells and vascular endothelial growth factor (VEGF) in the tumor microenvironment, while increased the expression of E-cadherin. It is believe that by means of the proposed photothermal responsive microcarriers, the synergistic strategy of platelet inhibition, chemotherapy, and photothermal therapy can find practical applications in cancer treatment.
Collapse
Affiliation(s)
- Wei Yang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Li Wang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lu Fan
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenzhao Li
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuanjin Zhao
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Co-laboratory of Medical Epigenetics and Metabolism Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghua Jiang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
22
|
Solanki R, Bhatia D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024; 10:440. [PMID: 39057463 PMCID: PMC11275390 DOI: 10.3390/gels10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a highly heterogeneous disease and remains a global health challenge affecting millions of human lives worldwide. Despite advancements in conventional treatments like surgery, chemotherapy, and immunotherapy, the rise of multidrug resistance, tumor recurrence, and their severe side effects and the complex nature of the tumor microenvironment (TME) necessitates innovative therapeutic approaches. Recently, stimulus-responsive nanomedicines designed to target TME characteristics (e.g., pH alterations, redox conditions, enzyme secretion) have gained attention for their potential to enhance anticancer efficacy while minimizing the adverse effects of chemotherapeutics/bioactive compounds. Among the various nanocarriers, hydrogels are intriguing due to their high-water content, adjustable mechanical characteristics, and responsiveness to external and internal stimuli, making them promising candidates for cancer therapy. These properties make hydrogels an ideal nanocarrier for controlled drug release within the TME. This review comprehensively surveys the latest advancements in the area of stimulus-responsive hydrogels for cancer therapy, exploring various stimuli-responsive mechanisms, including biological (e.g., pH, redox), chemical (e.g., enzymes, glucose), and physical (e.g., temperature, light), as well as dual- or multi-stimuli responsiveness. Furthermore, this review addresses the current developments and challenges in hydrogels in cancer treatment. Our aim is to provide readers with a comprehensive understanding of stimulus-responsive hydrogels for cancer treatment, offering novel perspectives on their development for cancer therapy and other medical applications.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| |
Collapse
|
23
|
Qiu X, Nie L, Liu P, Xiong X, Chen F, Liu X, Bu P, Zhou B, Tan M, Zhan F, Xiao X, Feng Q, Cai K. From hemostasis to proliferation: Accelerating the infected wound healing through a comprehensive repair strategy based on GA/OKGM hydrogel loaded with MXene@TiO 2 nanosheets. Biomaterials 2024; 308:122548. [PMID: 38554642 DOI: 10.1016/j.biomaterials.2024.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The treatment of infected wounds poses a formidable challenge in clinical practice due to the detrimental effects of uncontrolled bacterial infection and excessive oxidative stress, resulting in prolonged inflammation and impaired wound healing. In this study, we presented a MXene@TiO2 (MT) nanosheets loaded composite hydrogel named as GA/OKGM/MT hydrogel, which was formed based on the Schiff base reaction between adipic dihydrazide modified gelatin (GA)and Oxidized Konjac Glucomannan (OKGM), as the wound dressing. During the hemostasis phase, the GA/OKGM/MT hydrogel demonstrated effective adherence to the skin, facilitating rapid hemostasis. In the subsequent inflammation phase, the GA/OKGM/MT hydrogel effectively eradicated bacteria through MXene@TiO2-induced photothermal therapy (PTT) and eliminated excessive reactive oxygen species (ROS), thereby facilitating the transition from the inflammation phase to the proliferation phase. During the proliferation phase, the combined application of GA/OKGM/MT hydrogel with electrical stimulation (ES) promoted fibroblast proliferation and migration, leading to accelerated collagen deposition and angiogenesis at the wound site. Overall, the comprehensive repair strategy based on the GA/OKGM/MT hydrogel demonstrated both safety and reliability. It expedited the progression through the hemostasis, inflammation, and proliferation phases of wound healing, showcasing significant potential for the treatment of infected wounds.
Collapse
Affiliation(s)
- Xingan Qiu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Linxia Nie
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xiaojiang Xiong
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Fangye Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengzhen Bu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bikun Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 400044, China; Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
24
|
Sadeghi M, Khoshnevisan B. DFT study of Ti 3C 2 MXene nanosheets as a drug delivery system for 5-fluorouracil. RSC Adv 2024; 14:20300-20311. [PMID: 38919286 PMCID: PMC11197842 DOI: 10.1039/d4ra02399d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we modeled a drug delivery system consisting of Ti3C2 MXene nanosheets as a carrier and 5-fluorouracil (FU) as a selected drug molecule using density functional theory (DFT) computations. During the adsorption procedure, electronic, magnetic and structural properties were calculated. Our results showed that the adsorption of FU drugs on the Ti3C2 surface is thermodynamically favorable. Our spin-polarized calculations also determined that the magnetization of Ti3C2 after FU adsorption does not change significantly, which is an important factor for magnetic hyperthermia and drug delivery. In addition, our calculations indicate that in the slightly acidic environment of tumor tissue, FU could start to be released (by increasing distance from the MXene surface and then instability of the complex) from the Ti3C2 surface without any substantial change in the structural properties. This study could provide a deep understanding of the interaction mechanism of 2-dimensional (2D) MXene materials with drugs at the atomistic scale and have an important contribution to the discovery and application of novel 2D materials as drug delivery systems.
Collapse
|
25
|
Zhang W, Xia CJ, Zhao XM, Zhang GQ, Li LB, Su YH, Fang QL. First-principles studies on the electronic and contact properties of monolayer Ga 2STe-metal contacts. Phys Chem Chem Phys 2024; 26:11958-11967. [PMID: 38573215 DOI: 10.1039/d3cp06331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Monolayer (ML) Janus III-VI compounds have attracted the use of multiple competitive platforms for future-generation functional electronics, including non-volatile memories, field effect transistors, and sensors. In this work, the electronic and interfacial properties of ML Ga2STe-metal (Au, Ag, Cu, and Al) contacts are systematically investigated using first-principles calculations combined with the non-equilibrium Green's function method. The ML Ga2STe-Au/Ag/Al contacts exhibit weak electronic orbital hybridization at the interface, while the ML Ga2STe-Cu contact exhibits strong electronic orbital hybridization. The Te surface is more conducive to electron injection than the S surface in ML Ga2STe-metal contact. Quantum transport calculations revealed that when the Te side of the ML Ga2STe is in contact with Au, Ag and Cu electrodes, p-type Schottky contacts are formed. When in contact with the Al electrode, an n-type Schottky contact is formed with an electron SBH of 0.079 eV. When the S side of ML Ga2STe is in contact with Au and Al electrodes, p-type Schottky contacts are formed, and when it is in contact with Ag and Cu electrodes, n-type Schottky contacts are formed. Our study will guide the selection of appropriate metal electrodes for constructing ML Ga2STe devices.
Collapse
Affiliation(s)
- Wanyunfei Zhang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Cai-Juan Xia
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Xu-Mei Zhao
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Guo-Qing Zhang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Lian-Bi Li
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Yao-Heng Su
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Qing-Long Fang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
26
|
Rizwan M, Roy VAL, Abbasi R, Irfan S, Khalid W, Atif M, Ali Z. Novel 2D MXene Cobalt Ferrite (CoF@Ti 3C 2) Composite: A Promising Photothermal Anticancer In Vitro Study. ACS Biomater Sci Eng 2024; 10:2074-2087. [PMID: 38111288 DOI: 10.1021/acsbiomaterials.3c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In search of materials with superior capability of light-to-heat (photothermal) conversion, biocompatibility, and confinement of active photothermal materials within the cells, novel magnetic MXene-based nanocomposites are found to possess all of these criteria. The CoF@Ti3C2 composite is fabricated by a simple two-step method, including an exfoliation strategy followed by sonochemical method. MXene composite has been modified with polyvinylpyrrolidone (PVP) to improve the stability in physiological conditions. The synthesized composite was characterized with multiple analytical tools. In vitro photothermal conversion efficiency of composite was determined by the time constant method and achieved η = 34.2% with an NIR 808 nm laser. In vitro, cytotoxicity studies conducted on human malignant melanoma (Ht144) and cells validated the photothermal property of the CoF@Ti3C2-PVP composite in the presence of an NIR laser (808 nm, 1.0 W cm-2), with significantly increased cytotoxicity. Calculated IC50 values were 86 μg/mL with laser, compared to 226 μg/mL without the presence of NIR laser. Microscopic results demonstrated increased apoptosis in the presence of NIR laser. Additionally, hemolysis assay confirmed biocompatibility of CoF@Ti3C2-PVP composite for intravenous applications at the IC50 concentration. The research described in this work expands the potential applications of MXene-based nanoplatforms in the biomedical field, particularly in photothermal therapy (PTT). Furthermore, the addition of cobalt ferrite serves as a magnetic nanocomposite, which eventually helps to confine therapeutic photothermal materials inside the cells, provides enhanced photothermal conversion efficiency, and creates externally controlled theranostic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering, 24 Mauve Area, Sector G-9/1, Islamabad 44000, Pakistan
| | - Sumaira Irfan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Waqas Khalid
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Muhammad Atif
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Zulqurnain Ali
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| |
Collapse
|
27
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J Funct Biomater 2024; 15:93. [PMID: 38667550 PMCID: PMC11051498 DOI: 10.3390/jfb15040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains. It further illuminates the integration of nanomaterials and advanced synthesis techniques that have significantly improved the mechanical, chemical, and biological properties of hybrid cellulose-based materials.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
28
|
Anas Z, Hasan SFS, Moiz MA, Zuberi MAW, Shah HH, Ejaz A, Dave T, Panjwani MH, Rauf SA, Hussain MS, Waseem R. The role of hydrogels in the management of brain tumours: a narrative review. Ann Med Surg (Lond) 2024; 86:2004-2010. [PMID: 38576913 PMCID: PMC10990399 DOI: 10.1097/ms9.0000000000001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Conventional therapeutic techniques for brain tumours have limitations and side effects, necessitating the need for alternative treatment options. MRI-monitored therapeutic hydrogel systems show potential as a non-surgical approach for brain tumour treatment. Hydrogels have unique physical and chemical properties that make them promising for brain tumour treatment, including the ability to encapsulate therapeutic agents, provide sustained and controlled drug release, and overcome the blood-brain barrier for better penetration. By combining hydrogel systems with MRI techniques, it is possible to develop therapeutic approaches that provide real-time monitoring and controlled release of therapeutic agents. Surgical resection remains important, but there is a growing need for alternative approaches that can complement or replace traditional methods. The objective of this comprehensive narrative review is to evaluate the potential of MRI-monitored therapeutic hydrogel systems in non-surgical brain tumour treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | | | | | | |
Collapse
|
29
|
Dmytriv TR, Lushchak VI. Potential Biosafety of Mxenes: Stability, Biodegradability, Toxicity and Biocompatibility. CHEM REC 2024; 24:e202300338. [PMID: 38389182 DOI: 10.1002/tcr.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Indexed: 02/24/2024]
Abstract
MXenes are two-dimensional nanomaterials with unique properties that are widely used in various fields of research, mostly in the field of energy. Fewer publications are devoted to MXene application in biomedicine and the question is: are MXenes safe for use in biological systems? The sharp edges of MXenes provide the structure of "nanoknives" which cause damage in direct physical contact with cells. This is effectively used for antibacterial research. However, on the other hand, most studies in cultured cells and rodents report that they do not cause obvious signs of cytotoxicity and are fully biocompatible. The aim of our review was to consider whether MXenes can really be considered non-toxic and biocompatible. Often the last two concepts are confused. We first reviewed aspects such as the stability and biodegradation of MXenes, and then analyzed the mechanisms of toxicity and their consequences for bacteria, cultured cells, and rodents, with subsequent conclusions regarding their biocompatibility.
Collapse
Affiliation(s)
- Tetiana R Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
- Research and Development University, Shota Rustaveli Str., 76018, Ivano-Frankivsk, Ukraine
| |
Collapse
|
30
|
Wang W, Yu Q, Shao Z, Guo Y, Wang Y, Yang Y, Zhao W, Zhao C. Exudate-Induced Gelatinizable Nanofiber Membrane with High Exudate Absorption and Super Bactericidal Capacity for Bacteria-Infected Wound Management. Adv Healthc Mater 2024; 13:e2303293. [PMID: 38060135 DOI: 10.1002/adhm.202303293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Invasion of bacteria and continuous oozing of exudate are significant causes of interference with the healing of infected wounds. Therefore, an exudate-induced gelatinizable and near-infrared (NIR)-responsive nanofiber membrane composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMC), and Fe-doped phosphomolybdic acid (Fe-PMA) with exceptional exudate absorption capacity and potent bactericidal efficacy is developed and denoted as the PVA-FP-CMC membrane. After absorbing exudate, the fiber membrane can transform into a hydrogel membrane, forming coordination bonds between the Fe-PMA and CMC. The unique exudate-induced gelation process imparts the membrane with high exudate absorption and retention capability, and the formed hydrogel also traps the bacteria that thrive in the exudate. Moreover, it is discovered for the first time that the Fe-PMA exhibits an enhanced photothermal conversion capability and photocatalytic activity compared to the PMA. Therefore, the presence of Fe-PMA provides the membrane with a photothermal and photodynamic therapeutic effect for killing bacteria. The PVA-FP-CMC membrane is proven with a liquid absorption ratio of 520.7%, a light-heat conversion efficiency of 41.9%, high-level generation of hydroxyl radical (•OH) and singlet oxygen (1O2), and a bacterial killing ratio of 100% for S. aureus and 99.6% for E. coli. The treatment of infected wounds on the backs of rats further confirms the promotion of wound healing by the PVA-FP-CMC membrane with NIR irradiation. Overall, this novel functional dressing for the synergistic management of bacteria-infected wounds presents a promising therapeutic strategy for tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ye Yang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
31
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
32
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Zheng B, Zhang R, Kuang F, Hui T, Fu C, Zhang L, Zhou C, Qiu M, Yue B. Schottky heterojunction CeO 2@MXene nanosheets with synergistic type I and type II PDT for anti-osteosarcoma. J Mater Chem B 2024; 12:1816-1825. [PMID: 38291968 DOI: 10.1039/d3tb02835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Photodynamic therapy (PDT) has shown great potential for tumor treatment as the method is noninvasive, highly selective, and causes minimal side effects. However, conventional type II PDT, which relies on 1O2, presents poor therapeutic efficacy for hypoxic tumors due to its reliance on oxygen. Here, CeO2/Ti3C2-MXene (CeO2@MXene) hybrids were successfully designed by growing CeO2in situ using Ti3C2-MXene (MXene) nanosheets. CeO2@MXene serves as a reduction-oxidation (REDOX) center due to the presence of Ce in the lattice of CeO2 nanoparticles. This REDOX center reacts with H2O2 to generate oxygen and weakens the hypoxic tumor cell environment, achieving type II PDT. At the same time, many other ROS (such as ⋅O2- and ⋅OH) can be produced via a type I photodynamic mechanism (electron transfer process). The CeO2@MXene heterojunction performs nanoenzymatic functions for synergistic type I and type II PDT, which improves cancer treatment.
Collapse
Affiliation(s)
- Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Peoples Republic of China.
| | - Ranran Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Fei Kuang
- Qingdao University, College of Life Sciences, 308 Ningxia Road, Qingdao, Shandong Province, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Chenchen Fu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Li Zhang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chuanli Zhou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Peoples Republic of China.
| |
Collapse
|
34
|
Li N, Wang Y, Li Y, Zhang C, Fang G. Recent Advances in Photothermal Therapy at Near-Infrared-II Based on 2D MXenes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305645. [PMID: 37775938 DOI: 10.1002/smll.202305645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Indexed: 10/01/2023]
Abstract
The use of photothermal therapy (PTT) with the near-infrared II region (NIR-II: 1000-1700 nm) is expected to be a powerful cancer treatment strategy. It retains the noninvasive nature and excellent temporal and spatial controllability of the traditional PTT, and offers significant advantages in terms of tissue penetration depth, background noise, and the maximum permissible exposure standards for skin. MXenes, transition-metal carbides, nitrides, and carbonitrides are emerging inorganic nanomaterials with natural biocompatibility, wide spectral absorption, and a high photothermal conversion efficiency. The PTT of MXenes in the NIR-II region not only provides a valuable reference for exploring photothermal agents that respond to NIR-II in 2D inorganic nanomaterials, but also be considered as a promising biomedical therapy. First, the synthesis methods of 2D MXenes are briefly summarized, and the laser light source, mechanism of photothermal conversion, and evaluation criteria of photothermal performance are introduced. Second, the latest progress of PTT based on 2D MXenes in NIR-II are reviewed, including titanium carbide (Ti3 C2 ), niobium carbide (Nb2 C), and molybdenum carbide (Mo2 C). Finally, the main problems in the PTT application of 2D MXenes to NIR-II and future research directions are discussed.
Collapse
Affiliation(s)
- Nan Li
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yang Li
- Cell Department, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, China
| | - Guangyou Fang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| |
Collapse
|
35
|
Ye S, Zhang H, Lai H, Xu J, Yu L, Ye Z, Yang L. MXene: A wonderful nanomaterial in antibacterial. Front Bioeng Biotechnol 2024; 12:1338539. [PMID: 38361792 PMCID: PMC10867285 DOI: 10.3389/fbioe.2024.1338539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.
Collapse
Affiliation(s)
- Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Stomatology College of Chifeng University, Chifeng, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, and Discipline of Intelligent Instrument and Equipment, Xiamen, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
36
|
Zhang M, Li J, Ji N, Bao Q, Sun N, Rong H, Peng X, Yang L, Xie M, He S, Lin Q, Zhang Z, Li L, Zhang L. Reducing Cholesterol Level in Live Macrophages Improves Delivery Performance by Enhancing Blood Shear Stress Adaptation. NANO LETTERS 2024; 24:607-616. [PMID: 38095305 DOI: 10.1021/acs.nanolett.3c03569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In recent years, live-cell-based drug delivery systems have gained considerable attention. However, shear stress, which accompanies blood flow, may cause cell death and weaken the delivery performance. In this study, we found that reducing cholesterol in macrophage plasma membranes enhanced their tumor targeting ability by more than 2-fold. Our study demonstrates that the reduced cholesterol level deactivated the mammalian target of rapamycin (mTOR) and consequently promoted the nuclear translocation of transcription factor EB (TFEB), which in turn enhanced the expression of superoxide dismutase (SOD) to reduce reactive oxygen species (ROS) induced by shear stress. A proof-of-concept system using low cholesterol macrophages attached to MXene (e.g., l-RX) was fabricated. In a melanoma mouse model, l-RX and laser irradiation treatments eliminated tumors with no recurrences observed in mice. Therefore, cholesterol reduction is a simple and effective way to enhance the targeting performance of macrophage-based drug delivery systems.
Collapse
Affiliation(s)
- Mengxing Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ji
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ningyun Sun
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongding Rong
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Peng
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Yang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingxin Xie
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Lin Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
37
|
Rashid B, Sridewi N, Anwar A, Shahabbudin S, Mon AA. A review on human cancer and potential role of MXenes in cancer therapy. E3S WEB OF CONFERENCES 2024; 488:03021. [DOI: 10.1051/e3sconf/202448803021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is the second leading cause of death worldwide and is having a serious impact on the global economy. Various treatment modalities are in use to treat cancer but none of the techniques is risk-free. Recently, various nanomaterials such as gold, boron, and other compounds have been investigated for radiotherapy and as anti-cancer drug carriers with promising results. MXenes are 2D novel nanomaterials and their biomedical and anticancer properties are gaining interest due to their high biomedical activity, less bio-toxicity, and photo-responsive nature. However, the biological properties of MXense have not been studied extensively, therefore, limited data is published on its in-vitro and in-vivo anticancer activities, drug loading efficacy, targeted release, and on its photothermal therapy response. In this review, we have discussed the use of nanoparticles and MXenen nanomaterial in cancer therapy. Furthermore, the role of Mxene as a photothermal agent and drug carrier has also been emphasized, along with the present challenges for the use of nanomaterials in the treatment of cancer.
Collapse
|
38
|
Han Y, Guo Y, Nakajima T, Gong JP. Thermoresponsive Lamellar Hydrogels with Tunable Turbidity, Structural Color, and Anisotropic Swelling. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38029328 DOI: 10.1021/acsami.3c14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We report a thermoresponsive anisotropic photonic hydrogel: poly(dodecyl glyceryl itaconate)/polyacrylamide-poly(N-isopropylacrylamide) hydrogel (PDGI/PAAm-PNIPAM hydrogel). Hydrogels with uniaxially aligned lamellar bilayers possess bright structural color and swelling anisotropy, while PNIPAM-based hydrogels exhibit distinct thermoresponsive properties around a lower critical solution temperature (LCST). Hybridization of thermoresponsive PNIPAM with the lamellar hydrogel can give the anisotropic photonic hydrogel various fascinating thermoresponsive properties, such as structural color/turbid transition, thermoresponsive structural color, and anisotropic deswelling/reswelling behavior by temperature stimuli. The temperature-induced changes in turbidity, structural color, and anisotropic swelling of the gel around the LCST can be tuned by controlling the incorporated PNIPAM density. PNIPAM can be regioselectively incorporated into the specific region of the lamellar hydrogels by photomasking during UV polymerization. The PDGI/PAAm-PNIPAM hydrogel can find diverse promising applications such as smart windows and smart displays.
Collapse
Affiliation(s)
- Yang Han
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yunzhou Guo
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
39
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
40
|
Wan H, Chen Y, Tao Y, Chen P, Wang S, Jiang X, Lu A. MXene-Mediated Cellulose Conductive Hydrogel with Ultrastretchability and Self-Healing Ability. ACS NANO 2023; 17:20699-20710. [PMID: 37823822 DOI: 10.1021/acsnano.3c08859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Constructing natural polymers such as cellulose, chitin, and chitosan into hydrogels with excellent stretchability and self-healing properties can greatly expand their applications but remains very challenging. Generally, the polysaccharide-based hydrogels have suffered from the trade-off between stiffness of the polysaccharide and stretchability due to the inherent nature. Thus, polysaccharide-based hydrogels (polysaccharides act as the matrix) with self-healing properties and excellent stretchability are scarcely reported. Here, a solvent-assisted strategy was developed to construct MXene-mediated cellulose conductive hydrogels with excellent stretchability (∼5300%) and self-healability. MXene (an emerging two-dimensional nanomaterial) was introduced as emerging noncovalent cross-linking sites between the solvated cellulose chains in a benzyltrimethylammonium hydroxide aqueous solution. The electrostatic interaction between the cellulose chains and terminal functional groups (O, OH, F) of MXene led to cross-linking of the cellulose chains by MXene to form a hydrogel. Due to the excellent properties of the cellulose-MXene conductive hydrogel, the work not only enabled their strong potential in both fields of electronic skins and energy storage but provided fresh ideas for some other stubborn polymers such as chitin to prepare hydrogels with excellent properties.
Collapse
Affiliation(s)
- Huixiong Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yongzhen Tao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Pan Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Liu T, Zhou Z, Zhang M, Lang P, Li J, Liu Z, Zhang Z, Li L, Zhang L. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor. J Control Release 2023; 362:502-512. [PMID: 37652367 DOI: 10.1016/j.jconrel.2023.08.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The cuproptosis cell death pathway brings fresh opportunities for tumor therapy. However, efficient and targeted cuproptosis induction in tumors is still a challenge. Unfortunately, the well-known cuproptosis initiator, disulfiram and copper complex (DSF/Cu2+), also increases PD-L1 level in tumors, which may diminish the final therapeutic outcome. In this study, DSF/Cu2+-loading MXene nanosheets are coated with PD-1 overexpressing T cell membrane to generate CuX-P system. CuX-P could recognize and stick to PD-L1 on tumor cells like a patch, which promotes the endocytosis of both CuX-P and PD-L1 by tumor cells. Following internalization and release of DSF/Cu2+ in the cytoplasm, PD-L1 expression is upregulated. However, due to the presence of CuX-P in the tumor microenvironment, the then supplemented PD-L1 on tumor surface again binds CuX-P for internalization. This feedback loop keeps blocking and consuming the PD-L1 on tumor surface and promotes the enrichment of CuX-P in tumors to induce cuproptosis. After CuX-P treatment with laser irradiation, strong anti-tumor immune responses are stimulated in a mouse model with triple-negative breast cancer. Thus, this study develops a tumor-targeted biomimetic system that offers simultaneous cuproptosis killing, photothermal therapy (PTT) and immunotherapy in mice.
Collapse
Affiliation(s)
- Tiantian Liu
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University, College of Polymer Science and Engineering, Chengdu 610065, China
| | - Mengxing Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Puxin Lang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenmi Liu
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Lin Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
42
|
Wong PC, Kurniawan D, Wu JL, Wang WR, Chen KH, Chen CY, Chen YC, Veeramuthu L, Kuo CC, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44607-44620. [PMID: 37722031 DOI: 10.1021/acsami.3c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Lin Wu
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Biomedical Technologies and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
43
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
45
|
Zhang G, Ma C, He Q, Dong H, Cui L, Li L, Li L, Wang Y, Wang X. An efficient Pt@MXene platform for the analysis of small-molecule natural products. iScience 2023; 26:106622. [PMID: 37250310 PMCID: PMC10214401 DOI: 10.1016/j.isci.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Small-molecule (m/z<500) natural products have rich biological activity and significant application value thus need to be effectively detected. Surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) has become a powerful detection tool for small-molecule analysis. However, more efficient substrates need to be developed to improve the efficiency of SALDI MS. Thus, platinum nanoparticle-decorated Ti3C2 MXene (Pt@MXene) was synthesized in this study as an ideal substrate for SALDI MS in positive ion mode and exhibited excellent performance for the high-throughput detection of small molecules. Compared with using MXene, GO, and CHCA matrix, a stronger signal peak intensity and wider molecular coverage was obtained using Pt@MXene in the detection of small-molecule natural products, with a lower background, excellent salt and protein tolerance, good repeatability, and high detection sensitivity. The Pt@MXene substrate was also successfully used to quantify target molecules in medicinal plants. The proposed method has potentially wide application.
Collapse
Affiliation(s)
- Guanhua Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Li Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yan Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiao Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| |
Collapse
|
46
|
Won JS, Prasad C, Jeong SG, Rosaiah P, Reddy AS, Ahmad Z, Sangaraju S, Choi HY. Recent advances in the development of MXenes/cellulose based composites: A review. Int J Biol Macromol 2023; 240:124477. [PMID: 37076072 DOI: 10.1016/j.ijbiomac.2023.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Over the past few years, transition metal carbides, nitrides, and carbonitrides, commonly referred to as MXenes have been discovered and utilized quickly in a range of technical fields due to their distinctive and controlled characteristics. MXenes are a new class of two-dimensional (2D) materials that have found extensive use in a variety of fields, including energy storage, catalysis, sensing, biology, and other scientific disciplines. This is because of their exceptional mechanical and structural characteristics, metal electrical conductivity, and other outstanding physical and chemical properties. In this contribution, we review recent cellulose research advances and show that MXene hybrids are effective composites that benefit from cellulose superior water dispersibility and the electrostatic attraction between cellulose and MXene to prevent MXene accumulation and improve the composite's mechanical properties. Electrical, materials, chemical, mechanical, environmental, and biomedical engineering are all fields in which cellulose/MXene composites are used. These properties and applications-based reviews on MXene/cellulose composite, critically analyze the results and accomplishments in these fields and provide context for potential future research initiatives. It examines newly reported applications for cellulose nanocomposites assisted by MXene. To support their development and future applications, perspectives and difficulties are suggested in the conclusion.
Collapse
Affiliation(s)
- Jong Sung Won
- Defense Materials & Energy Technology Center, Agency for Defense Development, Daejeon 34060, Republic of Korea
| | - Cheera Prasad
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, India
| | - A Subba Reddy
- Analytical Development Laboratory, Apicore LLC, NJ 08873, USA
| | - Zubair Ahmad
- Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Hyeong Yeol Choi
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
47
|
Manisekaran R, Chettiar ADR, Kandasamy G, Garcia-Contreras R, Acosta-Torres LS. State-of-the-art: MXene structures in nano-oncology. BIOMATERIALS ADVANCES 2023; 147:213354. [PMID: 36842245 DOI: 10.1016/j.bioadv.2023.213354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Cancer nanomedicine has been investigated widely and boomed in the last two decades, resulting in designing nanostructures with biofunctionalization, giving rise to an "All-in-One" multifunctional platform. The development of rational design technology with extended functionalities brought interdisciplinary researchers to work continuously, aiming to find a prevent or effectively treat the deadly disease of the century. Thus, it led to some Food and Drug Administration (FDA)-approving nano-based formulations for cancer treatment and opening a vast area of promising discoveries by exploiting different nanomaterials. Two-dimensional (2D) materials have recently gained tremendous interest among scientists because of their outstanding structural, optical, electronic, thermal, and mechanical characteristics. Among various 2D nanomaterials, MXenes are a widely studied nanosystem because of their close similarity to graphene analogs. So, it is synthesized using multiple approaches and exploits their inherited properties. But in most cases, surface functionalization techniques are carried out for targeting, site-specific drug clearance, renal clearance, and biocompatible with healthy cells. Thus, fabricating a multimodal agent for mono or combined therapies is also an image-guided diagnostic agent. This review will explain the recent and emerging advancements of MXenes-based composites as a multifunctional theragnostic agent and discuss the possibilities of transferring laboratory research to clinical translation.
Collapse
Affiliation(s)
- Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico.
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| |
Collapse
|
48
|
Desai TR, Kundale SS, Dongale TD, Gurnani C. Evaluation of Cellulose–MXene Composite Hydrogel Based Bio-Resistive Random Access Memory Material as Mimics for Biological Synapses. ACS APPLIED BIO MATERIALS 2023; 6:1763-1773. [PMID: 36976913 DOI: 10.1021/acsabm.2c01073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We report a memory device based on organic-inorganic hybrid cellulose-Ti3C2TX MXene composite hydrogel (CMCH) as a switching layer sandwiched between Ag top and FTO bottom electrodes. The device (Ag/CMCH/FTO) was fabricated by a simple, solution-processed route and exhibits reliable and reproducible bipolar resistive switching. Multilevel switching behavior was observed at low operating voltages (±0.5 to ±1 V). Furthermore, the capacitive-coupled memristive characteristics of the device were corroborated with electrochemical impedance spectroscopy and this affirmed the filamentary conduction switching mechanism (LRS-HRS). The synaptic functions of the CMCH-based memory device were evaluated, wherein potentiation/depression properties over 8 × 103 electric pulses were observed. The device also exhibited spike time-dependent plasticity-based symmetric Hebbian learning rule of a biological synapse. This hybrid hydrogel is expected to be a potential switching material for low-cost, sustainable, and biocompatible memory storage devices and artificial synaptic applications.
Collapse
|
49
|
Wang W, Chen M, Wu Y. Compressible Cellulose Wood Prepared with Deep Eutectic Solvents and Its Improved Technology. Polymers (Basel) 2023; 15:polym15071593. [PMID: 37050209 PMCID: PMC10097187 DOI: 10.3390/polym15071593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
Elastic materials have a wide range of applications in many industries, but their widespread use is often limited by small-scale production methods and the use of highly polluting chemical reagents. In this study, we drew inspiration from research on wood softening to develop an environmentally friendly and scalable approach for producing a new type of compressible wood material called CW from natural wood. To achieve this, we employed a top-down approach using a novel type of “ionic liquid” eutectic solvent (DES) that is cost-effective, environmentally friendly, and recyclable. After treatment with DES, the resulting CW demonstrated good elasticity and durable compressibility, which was achieved by removing some lignin and hemicellulose from the wood and thinning the cell walls, thereby creating a honeycomb structure that allows for sustained compression and rebound. However, we found that the wood treated with a single eutectic solvent showed some softening (CW-1), although there was still room for further improvement of its elasticity. To address this, we used a secondary treatment with sodium hydroxide alkali solution to produce a softer and more elastic wood (CW-2). We conducted a series of comparative analyses and performance tests on natural wood (NW) and CW, including microscopic imaging; determination of chemical composition, mechanical properties, and compressive stress effects; and laser confocal testing. The results show that the DES and sodium hydroxide alkali solution treatments effectively removed some lignin, hemicellulose, and cellulose from the wood, resulting in the thinning of the cell walls and creating a more elastic material with a sustainable compression rebound rate of over 90%. The various properties of CW, including its elasticity, durability, and sustainability, provide great potential for its application in a range of fields, such as sensors, water purification, and directional tissue engineering.
Collapse
|
50
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|