1
|
Ganesan S, Kokulnathan T, Wang TJ, Palaniappan A. Sulfur-doped graphitic C 3N 4 decorated on cauliflower-like CaMoO 4: An efficient electrocatalyst for electrochemical detection of carcinogenic organic pollutant (metol). CHEMOSPHERE 2024; 369:143815. [PMID: 39613001 DOI: 10.1016/j.chemosphere.2024.143815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Environmental monitoring of organic pollutants in water sources is crucial for protecting human health and ecosystem sustainability. Herein, we develop a highly active electrocatalyst composite consisting of cauliflower-like calcium molybdate (CaMoO4) decorated with sulfur-doped graphitic carbon nitride (S-C3N4) for the ultrasensitive electrochemical detection of organic pollutant metol. Various microscopic and spectroscopic techniques were employed to analyze the structural and compositional characteristics of the S-C3N4/CaMoO4 composite. The electrochemical sensor with the optimized S-C3N4/CaMoO4 composite demonstrates a high sensitivity of 3.93 μA μM-1 cm-2 and a low limit of detection of 0.002 μM in a wide linear range (0.01-134 μM) by the DPV method. The excellent performance can be attributed to their high conductivity, high surface area, swift electron transportation, favorable active sites, and synergistic effect. Besides, the proposed electrochemical sensor exhibits good reproducibility and remarkable selectivity in the presence of various potential interference compounds in water sources. Its practical applicability for environmental monitoring is verified by quantifying metol in tap water, lake water, and river water. This work highlights the feasibility of rapid and robust electrochemical sensing of the organic pollutant metol at low concentrations and validates its suitability for the in-field applications.
Collapse
Affiliation(s)
- Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Human Organ Manufacturing Engineering Lab, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering Lab, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang C, Liu R, Liu R, Cui W, Sun Y, Yang WD. Ultrasonically assisted fabrication of electrochemical platform for tinidazole detection. ULTRASONICS SONOCHEMISTRY 2024; 110:107056. [PMID: 39232289 PMCID: PMC11403520 DOI: 10.1016/j.ultsonch.2024.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Based on sonochemistry, green synthesis methods play an important role in the development of nanomaterials. In this work, a novel chitosan modified MnMoO4/g-C3N4 (MnMoO4/g-C3N4/CHIT) was developed using ultrasonic cell disruptor (500 W, 30 kHz) for ultra-sensitive electrochemical detection of tinidazole (TNZ) in the environment. The morphology and surface properties of the synthesized MnMoO4/g-C3N4/CHIT electrode were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were utilized to assess the electrochemical performance of TNZ. The results indicate that the electrochemical detection performance of TNZ is highly efficient, with a detection limit (LOD) of 3.78 nM, sensitivity of 1.320 µA·µM-1·cm-2, and a detection range of 0.1-200 μM. Additionally, the prepared electrode exhibits excellent selectivity, desirable anti-interference capability, and decent stability. MnMoO4/g-C3N4/CHIT can be successfully employed to detect TNZ in both the Songhua River and tap water, achieving good recovery rates within the range of 93.0 % to 106.6 %. Consequently, MnMoO4/g-C3N4/CHIT's simple synthesis might provide a new electrode for the sensitive, repeatable, and selective measurement of TNZ in real-time applications. Using the MnMoO4/g-C3N4/CHIT electrode can effectively monitor and detect the concentration of TNZ in environmental water, guiding the sewage treatment process and reducing the pollution level of antibiotics in the water environment.
Collapse
Affiliation(s)
- Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rijia Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Wenyu Cui
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
3
|
Elanthamilan E, Wang SF. Flower-like 3D SnS decorated on nickel metal-organic framework for electrochemical detection of dimetridazole in food samples. Food Chem 2024; 452:139575. [PMID: 38735112 DOI: 10.1016/j.foodchem.2024.139575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Dimetridazole (DMZ) is a broad-spectrum antibiotic effective against bacterial and protozoan infections in humans and poultry farms. However, excessive DMZ intake leads to harmful effects. Thus, minimizing its environmental presence is crucial for sustaining daily life. This study presents an innovative approach to construct flower-like SnS particle decorations on a nickel metal-organic framework (Ni-MOF@SnS) as an electrocatalyst for DMZ detection. The Ni-MOF@SnS/GCE sensor exhibits exceptional electrocatalytic behavior, including a significantly reduced detection limit of 1.6 nM, extensive linear ranges from 0.01 μM to 60 μM and from 60 μM to 231 μM at lower and higher DMZ concentrations, respectively. It also shows enhanced sensitivity (0.139 μA μM-1 cm-2) and remarkable selectivity for DMZ detection using differential-pulse voltammetry (DPV). Furthermore, the proposed sensor demonstrates good recovery results with actual food samples.
Collapse
Affiliation(s)
- Elaiyappillai Elanthamilan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| |
Collapse
|
4
|
Bharathi P, Wang SF. Synchronous activation of praseodymium vanadate/graphitic carbon nitride nanocomposite: A promising electrode material for detection of flavonoid- Quercetin. Food Chem 2024; 441:138405. [PMID: 38218142 DOI: 10.1016/j.foodchem.2024.138405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Flavonoids or phenolic compounds are part of the daily intake of every human being. Though they are positive traders for metabolism, excessive intakes bring about detrimental impacts on human health. Herein, the anti-cancer capacitive nature quercetin (Qc) was electrochemically detected through the rare earth metal-based sphere like praseodymium vanadate (PrVO4) entrapped graphitic carbon nitride (g-CN) as electrode modifiers. The nanocomposite was prepared by the one-pot hydrothermal method and characterized by phase compositional and morphology-based techniques. The existing synergistic nature between the PrV@g-CN (praseodymium vanadate@graphitic carbon nitride) makes them have an enhanced electrochemical response towards the Qc than the individual material. The obtained cyclic voltammogram and differential pulse voltammogram profile show one major oxidation peak which is attributed to the conversion of quercetin to quercetin-o-quinone. The PrV@g-CN/GCE (GCE- glassy carbon electrode) shows a good electrochemical active surface area (A = 110 cm2) and linear range between 0.05 and 252.00 μM with a LOD (limit of detection) of 0.002 µM. Moreover, the PrV@g-CN/GCE exhibits good current retention (94.76 %) around 14 days and appreciable repeatability (RSD- 0.5 %) and reproducibility (RSD- 1.3 %) towards the Qc. The real-time implementation of the proposed sensor exhibits a good recovery range towards the black tea (95.00-98.10 %) and green tea (97.80-99.60 %).
Collapse
Affiliation(s)
- Pandiyan Bharathi
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| |
Collapse
|
5
|
Sengupta A, Goyal P, Prava Mantry S, Sundararajan M, Kumar Verma P, Kumar Mohapatra P. Remarkably High Separation of Neodymium from Praseodymium by Selective Dissolution from their Oxide Mixture using an Ionic Liquid Containing aβ-Diketone. Chemistry 2024; 30:e202303923. [PMID: 38314903 DOI: 10.1002/chem.202303923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
A simple, efficient, direct and economical method for the mutual separation of Nd and Pr was developed by the selective dissolution of Nd2O3 from their oxide mixtures in an ionic liquid containing 2-thenoyltrifluoroacetone (HTTA) resulting in an unprecedented separation factor (βNd/Pr)>500, which is 277 times more than the thus far reported βNd/Pr values. The proposed mechanism was supported by DFT computations.
Collapse
Affiliation(s)
- Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400085, India
| | - Priya Goyal
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Swarna Prava Mantry
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Mahesh Sundararajan
- Homi Bhabha National Institute, Mumbai, 400085, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Parveen Kumar Verma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Prasanta Kumar Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400085, India
| |
Collapse
|
6
|
Sanjeewani UGA, Wang SF. Synergistically Enhanced Electrochemical Sensing of Food Adulterant in Milk Sample at Erbium Vanadate/Graphitic Carbon Nitride Composite. SENSORS (BASEL, SWITZERLAND) 2024; 24:1808. [PMID: 38544072 PMCID: PMC10975317 DOI: 10.3390/s24061808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024]
Abstract
Dimetridazole (DMZ), a nitroimidazole derivative, is a notable antibiotic that has garnered growing interest in the medical community owing to its noteworthy pharmacological and toxicological properties. Increasing interest is being directed toward developing high-performance sensors for continuous monitoring of DMZ in food samples. This research investigated an electrochemical sensor-based nano-sized ErVO4 attached to a sheet-like g-CN-coated glassy carbon electrode to determine dimetridazole (DMZ). The chemical structure and morphological characterization of synthesized ErVO4@g-CN were analyzed with XRD, FTIR, TEM, and EDS. Irregular shapes of ErVO4 nanoparticles are approximately 15 nm. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were followed to examine the electrochemical performance in pH 7 phosphate buffer solution for higher performance. This electrochemical sensor showed a low detection limit (LOD) of 1 nM over a wide linear range of 0.5 to 863.5 µM. Also, selectivity, stability, repeatability, and reproducibility studies were investigated. Furthermore, this electrochemical sensor was applied to real-time milk sample analysis for the detection of analytes.
Collapse
Affiliation(s)
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
7
|
Mohammad A, Chandra P, Khan ME, Choi CH, Yoon T. Sulfur-doped graphitic carbon nitride: Tailored nanostructures for photocatalytic, sensing, and energy storage applications. Adv Colloid Interface Sci 2023; 322:103048. [PMID: 37988855 DOI: 10.1016/j.cis.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Rapid globalization and industrialization have led to widespread pollution and energy crises, necessitating the development of innovative solutions. Metal-free g-C3N4-based polymeric materials have unique properties but face limitations such as low surface area and inefficient light absorption. Doping, especially sulfur doping, is a prevalent technique to enhance their optical and electronic properties. This comprehensive review focuses on the synthesis techniques employed for sulfur doping of g-C3N4 (S-CN), highlighting the complexities associated with S-doping and the advantages of co-doping. Additionally, the review encompasses the diverse applications of S-CN in catalysis, photocatalysis, sonocatalysis, pollutant remediation, and electrochemical sensing. By incorporating sulfur into the g-C3N4 structure, various desirable properties can be achieved, including improved light absorption efficiency and enhanced charge carrier separation and migration. These advancements have broadened the application potential of S-CN in a range of important fields. S-CN has shown promise as a catalyst, facilitating various chemical reactions, as well as a photocatalyst, harnessing solar energy for environmental remediation and energy conversion processes. Moreover, S-CN exhibits potential in sonocatalysis for ultrasound-mediated reactions, pollutant remediation, and electrochemical sensing applications.
Collapse
Affiliation(s)
- Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Prakash Chandra
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382426, India.
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering and Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan 45971, Saudi Arabia
| | - Chang-Hyung Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Taeho Yoon
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
8
|
Zokhtareh R, Rahimnejad M, Najafpour-Darzi G, Karimi-Maleh H. A novel sensing platform for electrochemical detection of metronidazole antibiotic based on green-synthesized magnetic Fe 3O 4 nanoparticles. ENVIRONMENTAL RESEARCH 2023; 216:114643. [PMID: 36341789 DOI: 10.1016/j.envres.2022.114643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of antibiotic resistant genes has become a serious global concern. Thus, the development of efficient antibiotic monitoring systems to reduce their environmental risks is of great importance. Here, a potent electrochemical sensor was fabricated to detect metronidazole (MNZ) on the basis of green synthesis of Fe3O4 nanoparticles (NPs) using Sambucus ebulus L. leaves alcoholic plant extract as a safe and impressive reducing and stabilizing agent. Several analyses such as X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS) confirmed the production of homogeneous, monodisperse, regular, and stable magnetite NPs with a spherical morphology. The as-prepared Fe3O4NPs were afterwards applied to evaluate the electrochemical activity of MNZ by merging them with graphene nanosheets (GR NSs) on the glassy carbon electrode (GCE). The GR/Fe3O4NPs/GCE represented extraordinary catalytic activity toward MNZ with two dynamic ranges of 0.05-5 μM and 5-120 μM, limit of detection (LOD) of 0.23 nM, limit of quantification (LOQ) of 0.76 nM, and sensitivity of 7.34 μA μM-1 cm-2. The fabricated sensor was further employed as a practical tool for electrochemical detection of MNZ in real aqueous samples.
Collapse
Affiliation(s)
- Rosan Zokhtareh
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa
| |
Collapse
|
9
|
Ahmed F, Kokulnathan T, Umar A, Akbar S, Kumar S, Shaalan NM, Arshi N, Alam MG, Aljaafari A, Alshoaibi A. Zinc Oxide/Phosphorus-Doped Carbon Nitride Composite as Potential Scaffold for Electrochemical Detection of Nitrofurantoin. BIOSENSORS 2022; 12:bios12100856. [PMID: 36290993 PMCID: PMC9599398 DOI: 10.3390/bios12100856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/06/2023]
Abstract
Herein, we present an electrocatalyst constructed by zinc oxide hexagonal prisms/phosphorus-doped carbon nitride wrinkles (ZnO HPs/P-CN) prepared via a facile sonochemical method towards the detection of nitrofurantoin (NF). The ZnO HPs/P-CN-sensing platform showed amplified response and low-peak potential compared with other electrodes. The exceptional electrochemical performance could be credited to ideal architecture, rapid electron/charge transfer, good conductivity, and abundant active sites in the ZnO HPs/P-CN composite. Resulting from these merits, the ZnO HPs/P-CN-modified electrode delivered rapid response (2 s), a low detection limit (2 nM), good linear range (0.01-111 µM), high sensitivity (4.62 µA µM-1 cm2), better selectivity, decent stability (±97.6%), and reproducibility towards electrochemical detection of NF. We further demonstrated the feasibility of the proposed ZnO HPs/P-CN sensor for detecting NF in samples of water and human urine. All the above features make our proposed ZnO HPs/P-CN sensor a most promising probe for detecting NF in natural samples.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Gulfam Alam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Abdullah Aljaafari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
10
|
Sriram B, Kogularasu S, Hsu YF, Wang SF, Sheu JK. Fabrication of Praseodymium Vanadate Nanoparticles on Disposable Strip for Rapid and Real-Time Amperometric Sensing of Arsenic Drug Roxarsone. Inorg Chem 2022; 61:16370-16379. [PMID: 36184926 DOI: 10.1021/acs.inorgchem.2c02388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 μM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | | | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan701, Taiwan
| |
Collapse
|
11
|
Keerthika Devi R, Ganesan M, Chen TW, Chen SM, Lou BS, Ajmal Ali M, Al-Hemaid FM, Li RH. Gadolinium vanadate nanosheets entrapped with 1D-halloysite nanotubes-based nanocomposite for the determination of prostate anticancer drug nilutamide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ce-MOFs derived cerium phosphate for high-efficiency electrochemical detection of metronidazole. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
14
|
EL AAMRI M, MOHAMMADI H, Amine A. Development of a Novel Electrochemical Sensor Based on Functionalized Carbon Black for the Detection of Guanine Released from DNA Hydrolysis. ELECTROANAL 2022. [DOI: 10.1002/elan.202100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maliana EL AAMRI
- University Hassan II Mohammedia Casablanca Faculty of Science Techniques MOROCCO
| | - Hasna MOHAMMADI
- University Hassan II Mohammedia Casablanca Faculty of Science Techniques MOROCCO
| | | |
Collapse
|
15
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. Surfactant-Assisted Synthesis of Praseodymium Orthovanadate Nanofiber-Supported NiFe-Layered Double Hydroxide Bifunctional Catalyst: The Electrochemical Detection and Degradation of Diphenylamine. Inorg Chem 2022; 61:5824-5835. [PMID: 35369690 DOI: 10.1021/acs.inorgchem.2c00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Physiological storage disorders are caused by ineffective post-harvest handling of horticultural crops, particularly fruits. To address these post-harvest concerns, diphenylamine (DPAH•+) is widely used as a preservative to prevent fruit degradation and surface scald during storage around the world. Humans are negatively affected by the use of high concentrations of DPAH•+ because of the various health complications related to its exposure. As a result, accurate detection and quantification of DPAH•+ residues in treated fruits are critical. Rare earth metal orthovanadates, which have excellent physical and chemical properties, are potential materials for electrochemical sensors in this area. Herein, we present a simple and direct ultrasonication technique for the surfactant-assisted synthesis of praseodymium orthovanadate (PrVO4 or PrV) loaded on nickel iron layered double hydroxide (NiFe-LDH) synthesized with deep eutectic solvent assistance, as well as its application as an effective catalyst in the detection and degradation of DPAH•+ in fruits and water samples. The current work presents supreme electrochemical features of a PrV@NiFe-LDH-modified screen-printed carbon electrode (SPCE) where cetyltrimethylammonium bromide (CTAB) surfactant-driven fabrication of PrV directs the formation of highly qualified engineered structures and the deep eutectic solvent based green synthesis of NiFe-LDH creates hierarchical lamellar structures following the principles of green chemistry. PrV and NiFe-LDH combine to produce a synergistic effect that improves the number of active sites, charge transfer kinetics, and electronic conductivity. Differential pulse voltammetry analysis of PrV@NiFe-LDH/SPCE reveals a dynamic working range (0.005-226.26 μM), increased sensitivity (133.13 μA μM-1 cm-2), enhanced photocatalytic activity, and low detection limit (0.001 μM), which are considered significant when compared with the former reported electrodes in the literature for the determination of DPAḢ+ for its real-time applications.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai600086, Tamil Nadu, India.,Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai600086, Tamil Nadu, India
| |
Collapse
|
16
|
Arumugam B, Nagarajan V, Nattamai Perumal K, Annaraj J, Kannan Ramaraj S. Fabrication of wurtzite ZnO embedded functionalized carbon black as sustainable electrocatalyst for detecting endocrine disruptor trichlorophenol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Devi RK, Ganesan M, Chen TW, Chen SM, Liu X, Ali MA, Almutairi SM, Sethupathi M. Surface engineering of gadolinium oxide nanoseeds with nitrogen-doped carbon quantum dots: an efficient nanocomposite for precise detection of antibiotic drug clioquinol. NEW J CHEM 2022. [DOI: 10.1039/d1nj05243h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitrogen-doped carbon quantum dot decorated gadolinium oxide nanoseeds as an electrode modifier for the sensitive electrochemical detection of the antibiotic drug clioquinol in urine samples.
Collapse
Affiliation(s)
- Ramadhass Keerthika Devi
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Muthusankar Ganesan
- Department of Mechanical Engineering, National Taipei University of Technology, Taiwan, Republic of China
- Department of Industrial Chemistry, Alagappa University, Karaikudi-630003, Tamil Nadu, India
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW72AZ, UK
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Xiaoheng Liu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeedah M. Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan Sethupathi
- Department of Industrial Chemistry, Alagappa University, Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|
18
|
Bhuvaneswari C, Ganesh Babu S. Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C3N4 nanostructure: An ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Amperometric detection of antibiotic drug ciprofloxacin using cobalt-iron Prussian blue analogs capped on carbon nitride. Mikrochim Acta 2021; 189:31. [PMID: 34931258 DOI: 10.1007/s00604-021-05061-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Ciprofloxacin (CIP) electrochemical sensor was constructed using cobalt-iron Prussian blue analogs decorated on carbon nitride (Co-Fe-PBA@CN). Co-Fe-PBA decorated on CN was fabricated using a simple sonication-assisted hydrothermal method to prepare the composite to obtain a cube-shaped structure decorated on CN sheets. The fabricated Co-Fe-PBA@CN was physically characterized using XRD and SEM analysis. Then, the fabricated composite was electrochemically studied to sense antibiotic drug ciprofloxacin (CIP). The electrochemical behavior was investigated using tools such as cyclic voltammetry (CV) and amperometric I-t studies. The Co-Fe-PBA@CN modified electrode displays a wide linear range (0.005-300 and 325-741 μM) with a low detection limit (0.7389 and 1.0313 nM) and good sensitivity (0.3157 and 0.2263 μA.μM-1cm-2) toward CIP. The Co-Fe-PBA@CN modified electrode also exhibits good selectivity, reproducibility, and repeatability toward CIP. The proposed sensor was validated with real sample analysis, biological samples like urine and blood serum containing commercially available ciprofloxacin tablets were studied, and the results demonstrate good viability.
Collapse
|
20
|
Haghighi Shishavan Y, Amjadi M. A new enhanced chemiluminescence reaction based on polymer dots for the determination of metronidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119992. [PMID: 34082355 DOI: 10.1016/j.saa.2021.119992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Polymer dots (PDs) with non-conjugated functional groups are attracting nanomaterials due to their ease of synthesis, the biocompatibility of precursors, and low toxicity. In this work, PDs with non-conjugated groups were synthesized with a simple and straightforward method by Schiff base reaction. Then their possible application in the chemiluminescence (CL) reactions was explored. Results were shown that PDs increased the CL intensity of the NaIO4-fluorescein system about 15 times. Regarding the CL mechanism, we proved that the emitting species is fluorescein, which can be excited by the energy transfer from the excited-state PDs. It was observed that CL emission is promoted by the interaction of metronidazole (MND) with the PDs. Therefore, we designed a novel and sensitive assay for MND based on its enhancing effect on NaIO4-fluorescein-PDs CL system. The introduced assay showed a linear response in the range of 5.0-300 nM with a detection limit of 1.5 nM. The method was used for the determination of MND in spiked plasma samples.
Collapse
Affiliation(s)
- Yalda Haghighi Shishavan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| |
Collapse
|
21
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M, Veerakumar P, Lin KC. Electrochemical sensor-based barium zirconate on sulphur-doped graphitic carbon nitride for the simultaneous determination of nitrofurantoin (antibacterial agent) and nilutamide (anticancer drug). J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Sriram B, Baby JN, Wang SF, Hsu YF, Sherlin V A, George M. Well-Designed Construction of Yttrium Orthovanadate Confined on Graphitic Carbon Nitride Sheets: Electrochemical Investigation of Dimetridazole. Inorg Chem 2021; 60:13150-13160. [PMID: 34428891 DOI: 10.1021/acs.inorgchem.1c01548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are the most important drugs for people and animals to fight bacterial illnesses. Overuse of antibiotics has had unintended consequences, such as antibiotic resistance and ecosystem eradication owing to toxic chemical discharge, which have a negative influence on the biome. Herein, we report the synthesis of a hollow ellipsoid-shaped yttrium vanadate/graphitic carbon nitride (YVO4@CN) nanocomposite by a hydrothermal approach followed by a sonochemical method for the effective detection of dimetridazole (DMZ). The synergic and coupling effect between both the phases offer non-linear cumulative ramifications which can positively enhance the individual properties of the materials under consideration. This positive hybrid effect increases the conductivity, shortens the ion-diffusion pathway, enhances the electron/ion transportation, and provides more active sites and electron-conducting channels. The accurate optimization of the experimental conditions proposes good electrocatalytic activity for the YVO4@CN catalyst, exhibiting a good response toward DMZ detection. It reveals an extensive linear concentration range (0.001-153.3 and 176.64-351.6 μM), a low detection limit (0.8 nM), higher sensitivity (4.98 μA μM-1 cm-2), appreciable selectivity, increased operational stability (2200 s), and good cycle stability (60 cycles). The electrochemical performance of YVO4@CN indicates its practical application in real-time sample analysis of several families of nitroimidazole drugs.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| |
Collapse
|
23
|
Zhang W, Xu D, Wang F, Chen M. Element-doped graphitic carbon nitride: confirmation of doped elements and applications. NANOSCALE ADVANCES 2021; 3:4370-4387. [PMID: 36133458 PMCID: PMC9417723 DOI: 10.1039/d1na00264c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 05/11/2023]
Abstract
Doping is widely reported as an efficient strategy to enhance the performance of graphitic carbon nitride (g-CN). In the study of element-doped g-CN, the characterization of doped elements is an indispensable requirement, as well as a huge challenge. In this review, we summarize some useful characterization methods which can confirm the existence and chemical states of doped elements. The advantages and shortcomings of these characterization methods are discussed in detail. Various applications of element-doped g-CN and the function of doped elements are also introduced. Overall, this review article aims to provide helpful information for the research of element-doped g-CN.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Datong Xu
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Fengjue Wang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Meng Chen
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| |
Collapse
|
24
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. Toward the Development of Disposable Electrodes Based on Holmium Orthovanadate/ f-Boron Nitride: Impacts and Electrochemical Performances of Emerging Inorganic Contaminants. Inorg Chem 2021; 60:12425-12435. [PMID: 34311546 DOI: 10.1021/acs.inorgchem.1c01678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rare-earth metal orthovanadates have great technological relevance in the family of rare-earth compounds owing to their excellent physical and chemical properties. A significant number of studies have been carried out on this class of compounds to exploit their electrochemical properties in virtue of variable oxidation states. But holmium vanadate (HoV) and its morphology selective synthesis have not been considered, which can have potential applications similar to the rest of the family. In this work, we propose the synthesis of superior architectures of HoV with a functionalized boron nitride (f-BN) nanocomposite. The synergistic effect between HoV and f-BN can have a positive effect on the physical characteristics of the nanocomposite, which can be explored for its electrochemical capacity. Here, HoV incorporated with f-BN is explored for the electrochemical detection of Hg2+ ions, which is known for its toxicity-induced environmental health hazards. The structural and compositional revelation reveals higher conductivity and faster electron transfer in the composite, which facilitates a wide working range (0.02-53.8 and 64.73-295.4 μM), low limit of detection (5 nM), higher sensitivity (66.6 μA μM-1 cm-2), good selectivity over 10-fold higher concentration of other interfering compounds compared to Hg2+ ion concentration, and good cycles stability (30 segments) toward Hg2+ ion detection. This also envisages the morphology selective synthesis and utilization of other rare-earth metals, whose electrochemical capacities are unexplored.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
25
|
Venkatesh K, Rajakumaran R, Chen SM, Karuppiah C, Yang CC, Ramaraj SK, Ali MA, Al-Hemaid FMA, El-Shikh MS, Almunqedhi BMA. A novel hybrid construction of MnMoO 4 nanorods anchored graphene nanosheets; an efficient electrocatalyst for the picomolar detection of ecological pollutant ornidazole in water and urine samples. CHEMOSPHERE 2021; 273:129665. [PMID: 33508687 DOI: 10.1016/j.chemosphere.2021.129665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Nitroimidazole compounds are widely used antibiotics to encounter anaerobic bacterial and parasitic infections. The wide usage of antibiotic drugs became an ecological contaminant which in turn into potential monitoring. In this regards, we have designed and developed a new electrochemical sensing probe to monitor an antiprotozoal drug, ornidazole (ODZ), with the aid of a glassy carbon electrode (GCE) integrated with manganese molybdate nanorods (MnMoO4) decorated graphene nanosheets (GNS) hybrid materials that prepared by feasible probe sonochemical method (parameters: 2-4 W, 5 mV amp, 20 kHz). The electrochemical investigations of the developed probe were performed by using rapid scan electrochemical workstations namely cyclic voltammetry (CV) and amperometric (i-t) techniques. The as-prepared MnMoO4/GNS nanocomposite was characterized and its purity of nanocomposite formation was confirmed by various analytical techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. In addition to that, the textural morphology of the MnMoO4/GNS nanocomposite was examined with the aid of field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The MnMoO4/GNS nanocomposite rotating disk glassy carbon electrode (RDGCE) plays a crucial role in electrochemical detection of ODZ, which results in excellent anti-interference ability, a lower detection limit of 845 pM, massive linear ranges from 10 to 770 nM, and good sensitivity of about 104.62 μA μM-1 cm-2. From the acquired electrochemical studies, we have developed a disposable electrochemical sensor probe using a low-cost screen-printed carbon electrode (SPCE) with MnMoO4/GNS nanocomposite. The MnMoO4/GNS/SPCE are capably employed in real-time sensing of ODZ in water and urine samples. These electrochemical studies revealed the integral new vision on the electrocatalytic performance of the modified SPCE and also shown excellent amplification results in ultra-trace levels.
Collapse
Affiliation(s)
- Krishnan Venkatesh
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Chelladurai Karuppiah
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Chun-Chen Yang
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India.
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Suliman El-Shikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - B M A Almunqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
26
|
Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Sharma TSK, Hwa KY. Facile Synthesis of Ag/AgVO 3/N-rGO Hybrid Nanocomposites for Electrochemical Detection of Levofloxacin for Complex Biological Samples Using Screen-Printed Carbon Paste Electrodes. Inorg Chem 2021; 60:6585-6599. [PMID: 33878862 DOI: 10.1021/acs.inorgchem.1c00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silver vanadate nanorods (β-AgVO3) with silver nanoparticles (Ag-NPs) decorated on the surface of the rods were synthesized by using simple hydrothermal technique and later anchored onto nitrogen-doped reduced graphene oxide (N-rGO) to make a novel nanocomposite. Experimental analyses were carried out to identify the electronic configuration by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis, which revealed monoclinic patterns of the C12/m1 space group with Wulff construction forming beta silver vanadate (β-AgVO3) crystals with optical density and phase transformations. Ag nucleation showed consistent results with metallic formation and electronic changes occurring in [AgO5] and [AgO3] clusters. Transmission electron microscopy and field-emission scanning electron microscopy with elemental mapping and EDX analysis of the morphology reveals the nanorod structure for β-AgVO3 with AgNPs on the surface and sheets for N-rGO. Additionally, a novel electrochemical sensor is constructed by using Ag/AgVO3/N-rGO on screen-printed carbon paste electrodes for the detection of antiviral drug levofloxacin (LEV) which is used as a primary antibiotic in controlling COVID-19. Using differential pulse voltammetry, LEV is determined with a low detection limit of 0.00792 nm for a linear range of 0.09-671 μM with an ultrahigh sensitivity of 152.19 μA μM-1 cm-2. Furthermore, modified electrode performance is tested by real-time monitoring using biological and river samples.
Collapse
Affiliation(s)
- Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan.,Center for Biomedical Industry, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan.,Center for Biomedical Industry, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
28
|
Zhang Z, Liu Y, Huang P, Wu FY, Ma L. Polydopamine molecularly imprinted polymer coated on a biomimetic iron-based metal-organic framework for highly selective fluorescence detection of metronidazole. Talanta 2021; 232:122411. [PMID: 34074401 DOI: 10.1016/j.talanta.2021.122411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 01/13/2023]
Abstract
Molecular imprinting technology was used to coat polydopamine (PDA) onto MIL-53(Fe) surface by simple self-polymerization. The MIL-53(Fe)@MIP composite with enhanced peroxidase-like activity and specific target recognition function was synthesized and selected to construct a fluorescence sensor to detect metronidazole (MNZ). Since the substrate terephthalic acid was incorporated in the framework of MIL-53(Fe)@MIP, no additional luminescent substrate was required. This avoided the interference of the substrate on the enzymatic detection system and improved the accuracy of the assay. The characteristics of MIL-53(Fe)@MIP composite were investigated and confirmed by systematic analyses. The experimental results proved that the sensor provided satisfactory performances for quantitative determination of MNZ in wide linear range from 1 to 200 μM with low limit of detection as 53.4 nM. Potential interfering substances such as common cations and anions, amino acids, other antibiotics, sugars, and food additive were studied to show negligible effect on the assay, allowing the practical application to different fields including milk and human serum by the standard addition method. The recoveries were obtained between 93.2 and 102%, and the RSD was less than 3%.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ying Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Lihua Ma
- College of Science and Engineering, University of Houston at Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA
| |
Collapse
|
29
|
Muthukutty B, Arumugam B, Chen SM, Ramaraj SK. Low potential detection of antiprotozoal drug metronidazole with aid of novel dysprosium vanadate incorporated oxidized carbon nanofiber modified disposable screen-printed electrode. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124745. [PMID: 33341580 DOI: 10.1016/j.jhazmat.2020.124745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this work, we designed tetragonal nanogravel structured dysprosium vanadate Dy(VO4) nanoparticles unified with oxidized carbon nanofiber (f-CNF) denoted as Dy(VO4)/f-CNF nanocomposite for the low potential determination of antiprotozoal drug metronidazole (MEZ). The physicochemical properties of novel Dy(VO4)/f-CNF nanocomposite were analyzed through microscopic and spectroscopic techniques and obtained results express nanocomposite formed with desired surface morphology, crystalline phase, atomic vibrational modes, and preferred elemental compositions. The electrocatalytic activity of Dy(VO4)/f-CNF nanocomposite was examined with a disposable screen-printed electrode (SPCE) via cyclic voltammetry (CV) and linear sweep voltammetry technique (LSV) with a conventional three-electrode system. Dy(VO4)/f-CNF/SPCE delivers a higher active surface area recommends superior electrocatalytic activity which is favorable for the MEZ sensor. Electrocatalytic reduction of MEZ occurred with lower reduction potential (-0.55 V) with dynamic linear range (1.5-1036.9 µM), lower detection limit (6 nm), LOQ (0.022 µM), and higher sensitivity (1.12 μA μM-1 cm2). The anti-interference studies retain its actual current without any shift in cathodic potential. Besides, the practical feasibility outcomes with higher cathodic current with the higher recovery rate and RSD in human blood sample, urine sample, and lake water as a real samples. Thus, Dy(VO4)/f-CNF nanocomposite modified SPCE considers being a potential candidate for the MEZ sensor.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Balamurugan Arumugam
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu, India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu, India.
| |
Collapse
|
30
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. Synergy of the LaVO4/h-BN Nanocomposite: A Highly Active Electrocatalyst for the Rapid Analysis of Carbendazim. Inorg Chem 2021; 60:5271-5281. [DOI: 10.1021/acs.inorgchem.1c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N. Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| |
Collapse
|
31
|
Kokulnathan T, Ahmed F, Chen SM, Chen TW, Hasan PMZ, Bilgrami AL, Darwesh R. Rational Confinement of Yttrium Vanadate within Three-Dimensional Graphene Aerogel: Electrochemical Analysis of Monoamine Neurotransmitter (Dopamine). ACS APPLIED MATERIALS & INTERFACES 2021; 13:10987-10995. [PMID: 33624494 DOI: 10.1021/acsami.0c22781] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Real-time monitoring of neurotransmitter levels is of tremendous technological demand, which requires more sensitive and selective sensors over a dynamic concentration range. As a use case, we report yttrium vanadate within three-dimensional graphene aerogel (YVO/GA) as a novel electrocatalyst for detecting dopamine (DA). This synergy effect endows YVO/GA nanocomposite with good electrochemical behaviors for DA detection compared to other electrodes. Benefiting from tailorable properties, it provides a large specific surface area, rapid electron transfer, more active sites, good catalytic activity, synergic effect, and high conductivity. The essential analytical parameters were estimated from the calibration plot, such as a limit of detection (1.5 nM) and sensitivity (7.1 μA μM-1 cm-2) with the YVO/GA sensor probe electrochemical approach. The calibration curve was fitted with the correlation coefficient of 0.994 in the DA concentration range from 0.009 to 83 μM, which is denoted as the linear working range. We further demonstrate the proposed YVO/GA sensor's applicability to detect DA in human serum sample with an acceptable recovery range. Our results imply that the developed sensor could be applied to the early analysis of dementia, psychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O Box 400, Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - P M Z Hasan
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Reem Darwesh
- Department of Physics, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Mikrochim Acta 2021; 188:21. [PMID: 33404741 DOI: 10.1007/s00604-020-04671-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the abuse of antibiotics has led to the pollution of soil and water environment, not only poultry husbandry and food manufacturing will be influenced to different degree, but also the human body will produce antibody. The detection of antibiotic content in production and life is imperative. In this review, we provide comprehensive information about chemical sensors and biosensors for antibiotic detection. We classify the currently reported antibiotic detection technologies into chromatography, mass spectrometry, capillary electrophoresis, optical detection, and electrochemistry, introduce some representative examples for each technology, and conclude the advantages and limitations. In particular, the optical and electrochemical methods based on nanomaterials are discussed and evaluated in detail. In addition, the latest research in the detection of antibiotics by photosensitive materials is discussed. Finally, we summarize the pros and cons of various antibiotic detection methods and present a discussion and outlook on the expansion of cross-scientific areas. The synthesis and application of optoelectronic nanomaterials and aptamer screening are discussed and prospected, and the future trends and potential impact of biosensors in antibiotic detection are outlined.Graphical abstract.
Collapse
|
33
|
Joseph XB, Umesh NM, Wang SF, Jesila JA. CoFe 2O 4 supported g-C 3N 4 nanocomposite for the sensitive electrochemical detection of dopamine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02188e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The CoFe2O4@g-CN modified electrode has been applied for the real-time detection of DA in human biological samples with appreciable recovery results.
Collapse
Affiliation(s)
- Xavier Benadict Joseph
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| | - N. M. Umesh
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| | - J. Antolin Jesila
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| |
Collapse
|
34
|
Kokulnathan T, Vishnuraj R, Wang TJ, Kumar EA, Pullithadathil B. Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111276. [PMID: 32931965 DOI: 10.1016/j.ecoenv.2020.111276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Aquatic contamination from the accumulation of pharmaceuticals has induced severe toxicological impact to the ecological environment, especially from non-steroidal anti-inflammatory drugs (NSAIDs). Real-time monitoring of flutamide, which is a class of NSAIDs, is very significant in environmental protection. In this work, we have synthesized the hexagonal-h boron nitride decorated on bismuth oxide (Bi2O3/h-BN) based nanocomposite for the effective electrochemical detection of flutamide (FTM). The structural and morphological information of the heterostructured Bi2O3/h-BN nanocomposite was analyzed by using a sequence of characterization methods. Voltammetric techniques were used to evaluate the analytical performance of the Bi2O3/h-BN modified screen-printed carbon electrode (SPCE) for the FTM detection. The Bi2O3/h-BN modified SPCE displays a synergetic catalytic effect for the reduction of FTM due to large surface area, numerous active sites, fast charge transfer and abundant defects. The proposed electrochemical sensing platform demonstrates high selectivity, low detection limit (9.0 nM), good linear ranges (0.04-87 μM) and short response time for the detection of FTM. The feasibility of the electrochemical sensor has been proved by the successful application to determine FTM in environmental samples.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | | | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Elumalai Ashok Kumar
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Biji Pullithadathil
- Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, India
| |
Collapse
|
35
|
Vivekanandan AK, Subash V, Chen SM, Chen SH. Sonochemical synthesis of nickel-manganous oxide nanocrumbs decorated partially reduced graphene oxide for efficient electrochemical reduction of metronidazole. ULTRASONICS SONOCHEMISTRY 2020; 68:105176. [PMID: 32480290 DOI: 10.1016/j.ultsonch.2020.105176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
In the present work, we report on the synthesis of crump-like nickel manganous oxide nanoparticles decorated partially reduced graphene oxide (NiMnO@pr-GO) nanocomposite through high-intensity ultrasonic bath sonication (ultrasonic frequency = 37 kHz and power = 150 W). The NiMnO@pr-GO nanocomposite modified glassy carbon electrode (GCE) was then employed for the electrochemical reduction of detrimental metronidazole (MNZ). The crystalline phase and formation of the NiMnO@pr-GO nanocomposites were confirmed by X-ray diffraction and other spectroscopic techniques. The cyclic voltammetry results demonstrate that this NiMnO@pr-GO nanocomposite modified GCE has a lower reduction potential and higher catalytic activity towards MNZ than do NiMnO and GO modified GCEs. Under optimized conditions, the fabricated NiMnO@pr-GO electrode can detect metronidazole over a wide linear range with a lower limit of detection of 90 nM. The sensitivity of the sensor was 1.22 µA µM-1cm-2 and was found to have excellent selectivity and durability for the detection of MNZ.
Collapse
Affiliation(s)
- Alangadu Kothandan Vivekanandan
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, No:43, Section 4, Keelung Road, Taipei 106, Taiwan, Republic of China
| | - Vetriselvi Subash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Shih-Hsun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, No:43, Section 4, Keelung Road, Taipei 106, Taiwan, Republic of China.
| |
Collapse
|
36
|
Synthesis of two-dimensional nanosheet like samarium molybdate with abundant active sites: real-time carbendazimin analysis in environmental samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Kokulnathan T, Chen SM. Design and Construction of the Gadolinium Oxide Nanorod-Embedded Graphene Aerogel: A Potential Application for Electrochemical Detection of Postharvest Fungicide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16216-16226. [PMID: 32149501 DOI: 10.1021/acsami.9b20224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid development of electrochemical sensors holds great promise to serve as next generation point-of-care safety devices. However, the practical performances of electrochemical sensors are cruelly limited by stability, selectivity, and sensitivity. These issues have been well addressed by introducing rational designs into the modified electrode for achieving the required performances. Herein, we demonstrate the gadolinium oxide nanorods embedded on the graphene aerogel (GdO NRs/GA) for a highly selective electrochemical detection of carbendazim (CDM). The GdO NRs/GA nanocomposite was characterized using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission gun scanning electron microscopy, transmission electron microscopy with elemental mapping, and energy-dispersive spectrometry. The GdO NRs/GA-modified electrode shows a much improved electrochemical performance compared to other electrodes. Interestingly, the GdO NRs are strongly anchored in the GA matrix, which provides a more sufficient pathway for the rapid electron and ion transportation. On the basis of these findings, our proposed sensor achieves a wide detection range from 0.01 to 75 μM with a correlation coefficient of 0.996 and a low detection limit of 3.0 nM. Most markedly, the real-time monitoring of the proposed electrochemical sensor was proved by the successful determination of CDM in environmental samples. Our research work has opened a novel way to the rationale for the construction of highly efficient practical electrochemical sensors.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
38
|
Suvina V, Kokulnathan T, Wang TJ, Balakrishna RG. Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110098. [PMID: 31901811 DOI: 10.1016/j.ecoenv.2019.110098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer is one of the primary causes of death around the world. As an important drug, flutamide has been used in the clinical diagnosis of prostate cancer. However, the over dosage and improper discharge of flutamide could affect the living organism. Thus, it necessary to develop the sensor for detection of flutamide with highly sensitivity. In this paper, we report the synthesis of lanthanum cobaltite decorated halloysite nanotube (LCO/HNT) nanocomposite prepared by a facile method and evaluated for selective reduction of flutamide. The as-prepared LCO/HNT nanocomposite shows the best catalytic performance towards detection of flutamide, when compared to other bare and modified electrodes. The good electrochemical performance of the LCO/HNT nanocomposite modified electrode is ascribed to abundant active sites, large specific surface area and their synergetic effects. Furthermore, the LCO/HNT modified electrode exhibits low detection limit (0.002 μM), wide working range (0.009-145 μM) and excellent selectivity with remarkable stability. Meaningfully, the developed electrochemical sensor was applied in real environmental samples with an acceptable recovery range.
Collapse
Affiliation(s)
- V Suvina
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India.
| |
Collapse
|
39
|
Feng J, Sun J, Liu X, Zhu J, Tian S, Wu R, Xiong Y. Coupling effect of piezomaterial and DSA catalyst for degradation of metronidazole: Finding of induction electrocatalysis from remnant piezoelectric filed. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Wang Y, Yao L, Liu X, Cheng J, Liu W, Liu T, Sun M, Zhao L, Ding F, Lu Z, Zou P, Wang X, Zhao Q, Rao H. CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole. Biosens Bioelectron 2019; 142:111483. [DOI: 10.1016/j.bios.2019.111483] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/20/2023]
|
41
|
Hwa KY, Sharma TSK, Karuppaiah P. Development of an electrochemical sensor based on a functionalized carbon black/tungsten carbide hybrid composite for the detection of furazolidone. NEW J CHEM 2019. [DOI: 10.1039/c9nj02531f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, the simple sonochemical synthesis of functionalized carbon black (f-CB) anchored with tungsten carbide (WC) is used to prepare a novel electrocatalyst for the electrochemical detection of furazolidone (FU) by modifying screen-printed carbon electrodes (SPCE).
Collapse
Affiliation(s)
- Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Palpandi Karuppaiah
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| |
Collapse
|
42
|
Ramki S, Sukanya R, Chen SM, Sakthivel M. Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: inter-connected path in multi-layered structure for efficient electron transfer. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00158a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The schematic illustration for electrochemical sensing of MTZ at Mo2/C/f-CNF modified GCE.
Collapse
Affiliation(s)
- Settu Ramki
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Ramaraj Sukanya
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Mani Sakthivel
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| |
Collapse
|