1
|
Zhang M, Jia H, Zhuang L, Xu Y, Zhang T, Gu J, He S, Li D. Ultrathin high-entropy hydrotalcites-based injectable hydrogel with programmed bactericidal and anti-inflammatory effects to accelerate drug-resistant bacterial infected wound healing. Colloids Surf B Biointerfaces 2025; 247:114450. [PMID: 39671734 DOI: 10.1016/j.colsurfb.2024.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Drug-resistant bacteria infected wounds often bring high risks of delayed healing process and even death. Sonodynamic therapy (SDT) can efficiently kill drug-resistant bacteria. However, superabundant reactive oxygen species (ROS) generated during SDT inevitably trigger significant inflammatory responses, hindering tissue remodeling. Herein, we develop intelligent ultrathin high-entropy hydrotalcites (UHE-HTs)-based injectable thermal-responsive hydrogel loaded with nicotinamide mononucleotide (UHE-HTs/PFN), aiming to achieve programmed antibacterial and anti-inflammatory effects. In the early infection stage, sonosensitive UHE-HTs/PFN hydrogel simultaneously can trigger rapid production of singlet oxygen (1O2) under ultrasound and efficient MDR bacterial sterilization. After halting ultrasonic irradiation, oxidoreductase-mimicking catalysis and nicotinamide mononucleotide release of UHE-HTs/PFN hydrogel effectively reduce ROS levels at wound sites, dampening the NF-κB inflammatory pathway. Such inhibited NF-κB expression can not only reduce the production of pro-inflammatory cytokines and inflammatory responses, but also significantly down-regulate the pyroptosis pathways (NLRP3/ASC/Casp-1) and inhibit pyroptosis that leads to inflammation. Moreover, significantly reduced ROS levels and synergistic release of Mg2+ reverse pro-inflammatory immune microenvironment. Both in vitro and in vivo assays demonstrate that UHE-HTs/PFN hydrogel can transform the adverse infected wound environment into a regenerative one by eradicating drug-resistant bacteria, scavenging ROS, and synergistic anti-inflammation. Therefore, this work develop an intelligent UHE-HTs/PFN hydrogel act as a "lever" that effectively achieve a balance between ROS generation and annihilation, rebuilding harmonious bactericidal and anti-inflammatory effects to remedy drug-resistant bacteria infected wound.
Collapse
Affiliation(s)
- Mingming Zhang
- The Ninth Medical Center of Chinese PLA General Hospital, 9 Anxiang Beili, Chaoyang District, Beijing 100101, China
| | - Huaping Jia
- The Ninth Medical Center of Chinese PLA General Hospital, 9 Anxiang Beili, Chaoyang District, Beijing 100101, China
| | - Liang Zhuang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yongjie Xu
- The Ninth Medical Center of Chinese PLA General Hospital, 9 Anxiang Beili, Chaoyang District, Beijing 100101, China
| | - Ting Zhang
- The Ninth Medical Center of Chinese PLA General Hospital, 9 Anxiang Beili, Chaoyang District, Beijing 100101, China
| | - Jianwen Gu
- The Ninth Medical Center of Chinese PLA General Hospital, 9 Anxiang Beili, Chaoyang District, Beijing 100101, China.
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Dawei Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
2
|
Liao Z, Li J, Ni W, Zhan R, Xu X. Co-delivery of antimicrobial peptide and Prussian blue nanoparticles by chitosan/polyvinyl alcohol hydrogels. Carbohydr Polym 2025; 348:122873. [PMID: 39562133 DOI: 10.1016/j.carbpol.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/21/2024]
Abstract
Altered skin integrity increases the chance of infection, and bacterial infections often lead to a persistent inflammatory response that prolongs healing time. Functional artificial hydrogels are receiving increasing attention as suitable wound dressing barrier. However, the antimicrobial effect of the new dressing still needs to be explored in depth. In this work, the antimicrobial peptide MSI-1 was covalently attached to chitosan-modified poly (vinyl alcohol) hydrogels mixed with Prussian blue nanoparticles (PBNPs) via a primary amine group coupled to a carboxyl group. The synthesized hydrogel has a long-lasting antimicrobial surface and is able to maintain its bactericidal effect on Staphylococcus aureus and Escherichia coli for 24 h. Due to the presence of PBNPs, the hydrogel was able to rise to 48.3 °C within 10 min under near infrared (NIR) light irradiation at a wavelength of 808 nm and maintain this mild temperature to avoid bacterial biofilms. The hydrogel showed >90 % survival in co-culture with cells for 3 d and did not damage major organs in animal experiments. Thus, the photothermal dual-mode antimicrobial hydrogel synthesized in this study increases the selectivity as a safe and efficient wound dressing for the treatment of infected skin defects.
Collapse
Affiliation(s)
- Zhiyi Liao
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Jiayi Li
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Wenqiang Ni
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, the Third Military Medical University, Army Medical University, Chongqing 400038, China.
| | - Xisheng Xu
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China.
| |
Collapse
|
3
|
Xiong G, Chen Q, Wang Q, Wang X, Xiao Y, Jin L, Yan K, Zhang X, Hu F. Multifaceted role of nanocomposite hydrogels in diabetic wound healing: enhanced biomedical applications and detailed molecular mechanisms. Biomater Sci 2024; 12:6196-6223. [PMID: 39494707 DOI: 10.1039/d4bm01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The complex microenvironment of diabetic wounds, which is characterized by persistent hyperglycemia, excessive inflammatory responses, and hypoxic conditions, significantly impedes the efficacy of traditional hydrogels. Nanocomposite hydrogels, which combine the high-water content and biocompatibility of hydrogels with the unique functionalities of nanomaterials, offer a promising solution. These hydrogels exhibit enhanced antibacterial, antioxidant, and drug-release properties. Incorporating nanomaterials increases the mechanical strength and bioactivity of hydrogels, allowing for dynamic regulation of the wound microenvironment and promoting cell migration, proliferation, and angiogenesis, thereby accelerating wound healing. This review provides a comprehensive overview of the latest advances in nanocomposite hydrogels for diabetic wound treatment and discusses their advantages and molecular mechanisms at various healing stages. The study aims to provide a theoretical foundation and practical guidance for future research and clinical applications. Furthermore, it highlights the challenges related to the mechanical durability, antimicrobial performance, resistance issues, and interactions with the cellular environments of these hydrogels. Future directions include optimizing smart drug delivery systems and personalized medical approaches to enhance the clinical applicability of nanocomposite hydrogels.
Collapse
Affiliation(s)
- Gege Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Qiwei Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Qiuyu Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Yaomu Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Liuli Jin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Kaichong Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xueyang Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
4
|
Xu C, Zhang J, Zhang J, Li D, Yan X, Gu Y, Zhong M, Gao H, Zhao Q, Qu X, Huang P, Zhang J. Near Infrared-Triggered Nitric Oxide-Release Nanovesicles with Mild-Photothermal Antibacterial and Immunomodulation for Healing MRSA-Infected Diabetic Wounds. Adv Healthc Mater 2024; 13:e2402297. [PMID: 39175376 DOI: 10.1002/adhm.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Bacterial infection-induced excessive inflammation is a major obstacle in diabetic wound healing. Nitric oxide (NO) exhibits significant antibacterial activity but is extremely deficient in diabetes. Hence, a near-infrared (NIR)-triggered NO release system is constructed through codelivery of polyarginine (PArg) and gold nanorods (Au) in an NIR-activatable methylene blue (MB) polypeptide-assembled nanovesicle (Au/PEL-PBA-MB/PArg). Upon NIR irradiation, the quenched MB in the nanovesicles is photoactivated to generate more reactive oxygen species (ROS) to oxidize PArg and release NO in an on-demand controlled manner. With the specific bacterial capture of phenylboronic acid (PBA), NO elevated membrane permeability and boosted bacterial vulnerability in the photothermal therapy (PTT) of the Au nanorods, which is displayed by superior mild PTT antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) at temperatures < 49.7 °C in vitro. Moreover, in vivo, the antibacterial nanovesicles greatly suppressed the burst of MRSA-induced excessive inflammation, NO relayed immunomodulated macrophage polarization from M1 to M2, and the excessive inflammatory phase is successfully transferred to the repair phase. In cooperation with angiogenesis by NO, tissue regeneration is accelerated in MRSA-infected diabetic wounds. Therefore, nanoplatform has considerable potential for accelerating the healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Chang Xu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jiqing Zhang
- Department of Medical Ultrasound, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China
| | - Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qiang Zhao
- Key Laboratory of bioactive materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
5
|
Xu L, Guo H, Zhong Y, Zhao YE, Lin L. Exploring the potential of nanoparticles-based polydopamine for effective treatment of refractory keratitis: Mild photothermal loop therapy. Int J Biol Macromol 2024; 279:135479. [PMID: 39255880 DOI: 10.1016/j.ijbiomac.2024.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Keratitis is the leading cause of blindness worldwide. In refractory cases, it can even lead to eyeball enucleation. The critical challenges of refractory keratitis are the drug-resistant bacteria and bacterial biofilms formation. Therefore, we established an innovative therapeutic approach for keratitis based on mild photothermal loop (MPL) therapy. First, we analyzed the bactericidal effect of methicillin-resistant Staphylococcus aureus (MRSA) under various loops and temperature durations to determine the optimal condition. Then, RAN-seq was applied to explore the underlying mechanisms. Additionally, we formulated a dual-purpose polyvinyl alcohol-polydopamine (PDA/PVA) hydrogel system and explored its effects on the reactive oxygen species (ROS) scavenging capability, antibacterial properties, and anti-inflammatory properties in vitro, as well as its effect in vivo. The results indicated substantial bactericidal properties after exposure in four loops, each lasting 10 min at 45 °C. RNA-seq revealed the altered genes related to virulence and biofilm formation. In addition to good photothermal performance, the PDA/PVA system could effectively eliminate MRSA, reduce ROS, inhibit biofilm formation, and decrease inflammatory factors expression. Moreover, the in vivo results demonstrated the potential of MPL for bacterial keratitis. This study serves as the first attempt to use MPL therapy for refractory keratitis, offering a new approach for clinical practice.
Collapse
Affiliation(s)
- Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hanwen Guo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiming Zhong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Luo B, Xiong Y, Cai J, Jiang R, Li Y, Xu C, Wang X. Chitin-Assisted Synthesis of CuS Composite Sponge for Bacterial Capture and Near-Infrared-Promoted Healing of Infected Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50160-50174. [PMID: 39265036 DOI: 10.1021/acsami.4c07586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Diabetic wounds are prone to recurrent infections, often leading to delayed healing. To address this challenge, we developed a chitin-copper sulfide (CuS@CH) composite sponge, which combines bacterial trapping with near-infrared (NIR) activated phototherapy for treating infected diabetic wounds. CuS nanoparticles were synthesized and incorporated in situ within the sponge using a chitin assisted biomineralization strategy. The positively charged chitin surface effectively adhered bacteria, while NIR irradiation of CuS generated reactive oxygen species (ROS) heat and Cu2+ to rapidly damage the trapped bacteria. This synergistic effect resulted in an exceptional antibacterial performance against E. coli (∼99.9%) and S. aureus (∼99.3%). The bactericidal mechanism involved NIR-induced glutathione oxidation, membrane lipid peroxidation, and increased membrane permeability. In diabetic mouse models, the CuS@CH sponge accelerated the wound healing of S. aureus infected wounds by facilitating collagen deposition and reducing inflammation. Furthermore, the sponge demonstrated good biocompatibility. This dual-functional platform integrating bacterial capture and NIR-triggered phototherapy shows promise as an antibacterial wound dressing to promote healing of infected diabetic wound.
Collapse
Affiliation(s)
- Bichong Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yutong Xiong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Ruiyang Jiang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266003, China
- Shandong Luhai Lansheng Biotechnology Co. LTD,19 North Second Road, Kenli District, Dongying 257508, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Fan J, Dong Y, Sun Y, Ji Y, Feng J, Yan P, Zhu Y. Mucus and Biofilm Penetrating Nanoplatform as an Ultrasound-Induced Free Radical Initiator for Targeted Treatment of Helicobacter pylori Infection. Adv Healthc Mater 2024; 13:e2400363. [PMID: 38558539 DOI: 10.1002/adhm.202400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Helicobacter pylori (H. pylori) infection is closely associated with the development of various gastric diseases. The effectiveness of current clinical antibiotic therapy is hampered by the rise of drug-resistant strains and the formation of H. pylori biofilm. This paper reports a sonodynamic nanocomposite PtCu3-PDA@AIPH@Fucoidan (PPAF), which consists of dopamine-modified inorganic sonosensitizers PtCu3, alkyl radicals (R•) generator AIPH and fucoidan, can penetrate the mucus layer, target H. pylori, disrupt biofilms, and exhibit excellent bactericidal ability. In vitro experiments demonstrate that PPAF exhibits excellent acoustic kinetic properties, generating a significant amount of reactive oxygen species and oxygen-independent R• for sterilization under ultrasound stimulation. Simultaneously, the produced N2 can enhance the cavitation effect, aiding PPAF nanoparticles in penetrating the gastric mucus layer and disrupting biofilm integrity. This disruption allows more PPAF nanoparticles to bind to biofilm bacteria, facilitating the eradication of H. pylori. In vivo experiments demonstrate that ultrasound-stimulated PPAF exhibited significant antibacterial efficacy against H. pylori. Moreover, it effectively modulated the expression levels of inflammatory factors and maintained gastrointestinal microbiota stability when compared to the antibiotic treatment group. In summary, PPAF nanoparticles present a potential alternative to antibiotics, offering an effective and healthy option for treating H. pylori infection.
Collapse
Affiliation(s)
- Jinjie Fan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuze Dong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Sun
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yalan Ji
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Peijuan Yan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Liu L, Zhang Y, Li X, Deng J. Microenvironment of pancreatic inflammation: calling for nanotechnology for diagnosis and treatment. J Nanobiotechnology 2023; 21:443. [PMID: 37996911 PMCID: PMC10666376 DOI: 10.1186/s12951-023-02200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Acute pancreatitis (AP) is a common and life-threatening digestive disorder. However, its diagnosis and treatment are still impeded by our limited understanding of its etiology, pathogenesis, and clinical manifestations, as well as by the available detection methods. Fortunately, the progress of microenvironment-targeted nanoplatforms has shown their remarkable potential to change the status quo. The pancreatic inflammatory microenvironment is typically characterized by low pH, abundant reactive oxygen species (ROS) and enzymes, overproduction of inflammatory cells, and hypoxia, which exacerbate the pathological development of AP but also provide potential targeting sites for nanoagents to achieve early diagnosis and treatment. This review elaborates the various potential targets of the inflammatory microenvironment of AP and summarizes in detail the prospects for the development and application of functional nanomaterials for specific targets. Additionally, it presents the challenges and future trends to develop multifunctional targeted nanomaterials for the early diagnosis and effective treatment of AP, providing a valuable reference for future research.
Collapse
Affiliation(s)
- Lu Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Yiqing Zhang
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospita, PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Xinghui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
| | - Jun Deng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Mo F, Zhong S, You T, Lu J, Sun D. Aptamer and DNAzyme-Functionalized Cu-MOF Hybrid Nanozymes for the Monitoring and Management of Bacteria-Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37921634 DOI: 10.1021/acsami.3c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Metal-organic frameworks (MOFs) with peroxidase (POD)-like activity have great potential for combating drug-resistant bacterial infections. However, the use of POD-like activities is severely limited by low oxygen levels and high levels of glutathione (GSH) within the microenvironment of bacterial infection. Herein, G-quadruplex/hemin DNAzyme-aptamer probes and tannic acid-chelated Au nanoparticle (Au-TA)-decorated Cu-based MOF nanosheets (termed GATC) with triple-enzyme activities were developed for visual detection and efficient antibacterial therapy. First, the monometallic MOFs (Cu-ZIF) showed the best catalytic and loading capacity performance compared with the bimetallic MOFs (CoCu-ZIF and ZnCu-ZIF). Then, Cu-MOFs, Au-TA, and DNAzyme improve the POD-like activity to generate more hydroxyl radicals (•OH) to kill bacteria. GATC can bind to bacteria through aptamer recognition, increasing the bacterial surface contact area for efficient antibacterial activity. GATC can decompose H2O2 into O2 to alleviate hypoxia and improve the microenvironment due to its catalase (CAT)-like activity. In addition, GATC exhibited GSH peroxidase-like activity, which can avoid the loss of •OH and result in bacterial death more easily. Compared with previous studies, GATC exhibited extraordinary bactericidal ability at an extremely low dosage of 3 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Notably, the GATC-catalyzed chromogenic reaction could accurately monitor the MRSA infection treatment process. Overall, this work could establish a therapeutic platform for the monitoring and management of bacteria-infected wounds.
Collapse
Affiliation(s)
- Fayin Mo
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Sheng Zhong
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Tianhui You
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| |
Collapse
|
11
|
Shi T, Cui Y, Yuan H, Qi R, Yu Y. Burgeoning Single-Atom Nanozymes for Efficient Bacterial Elimination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2760. [PMID: 37887911 PMCID: PMC10609188 DOI: 10.3390/nano13202760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
To fight against antibacterial-resistant bacteria-induced infections, the development of highly efficient antibacterial agents with a low risk of inducing resistance is exceedingly urgent. Nanozymes can rapidly kill bacteria with high efficiency by generating reactive oxygen species via enzyme-mimetic catalytic reactions, making them promising alternatives to antibiotics for antibacterial applications. However, insufficient catalytic activity greatly limits the development of nanozymes to eliminate bacterial infection. By increasing atom utilization to the maximum, single-atom nanozymes (SAzymes) with an atomical dispersion of active metal sites manifest superior enzyme-like activities and have achieved great results in antibacterial applications in recent years. In this review, the latest advances in antibacterial SAzymes are summarized, with specific attention to the action mechanism involved in antibacterial applications covering wound disinfection, osteomyelitis treatment, and marine antibiofouling. The remaining challenges and further perspectives of SAzymes for practical antibacterial applications are also discussed.
Collapse
Affiliation(s)
- Tongyu Shi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Yuanyuan Cui
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Yu Yu
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
12
|
Li W, Fan Q, Cong W, Wang L, Li X, Li W, Hu S, Chen X, Hong W. pH/Hyal-Responsive Surface-Charge Switchable Electrostatic Complexation for Efficient Elimination of MRSA Infection. Mol Pharm 2023. [PMID: 37315332 DOI: 10.1021/acs.molpharmaceut.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a great threat to human health worldwide, making new effective antibacterial strategies urgently desired. In this study, a cationic pH-responsive delivery system (pHSM) was developed based on poly(β-amino esters)-methoxy poly(ethylene glycol), by which linezolid (LZD) could be encapsulated to form pHSM/LZD. The biocompatibility and stability of pHSM/LZD were further enhanced by adding low-molecular-weight hyaluronic acid (LWT HA) on the surface through electrostatic interaction to form pHSM/LZD@HA, of which the positive surface charges were neutralized by LWT HA under physiological conditions. LWT HA can be degraded by hyaluronidase (Hyal) after arriving at the infection site. In vitro, pHSM/LZD@HA could rapidly change to being positively charged on the surface within 0.5 h under acidic conditions, especially when Hyal was present, thus promoting bacterial binding and biofilm penetration of pHSM/LZD@HA. In addition, the pH/Hyal-dependent accelerated drug release behavior was also observed and it is beneficial for the comprehensive treatment of MRSA infection in vitro and in vivo. Our study provides a novel strategy to develop a pH/Hyal-responsive drug delivery system for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Qing Fan
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Wei Cong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Longle Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Xueling Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Weiwei Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Senhao Hu
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P.R. China
| |
Collapse
|
13
|
Wen X, Bi S, Zeng S. NIR-II Light-Activated Gold Nanorods for Synergistic Thermodynamic and Photothermal Therapy of Tumor. ACS APPLIED BIO MATERIALS 2023; 6:1934-1942. [PMID: 37032485 DOI: 10.1021/acsabm.3c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
There are tricky challenges in tumor therapy due to the hypoxic tumor microenvironment, inevitably inhibiting the treatment efficacy of the traditional photodynamic therapy (PDT), radiation therapy (RT), and sonodynamic therapy (SDT). Herein, to overcome tumor hypoxia limitation, we constructed a near-infrared II (NIR-II) light-triggered thermodynamic therapy (TDT) nanoplatform of Au@mSiO2-AIPH@PCM/PEG (ASAPP) by integrating the Au nanorods (Au NRs) and thermally activated alkyl free radical-releasing molecules (AIPH). Au NRs@mSiO2 was used as a photothermally responsive material and AIPH carrier, and the hot-melt phase-change material (PCM) was used as a capping agent to prevent leakage of AIPH during blood circulation. Upon NIR-II light irradiation, heat-triggered free radical release from AIPH was successfully achieved for killing cancer cells in vitro and in vivo without oxygen dependence, leading to synergistically enhanced antitumor therapy.
Collapse
Affiliation(s)
- Xingwang Wen
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, P. R. China
| | - Shenghui Bi
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, P. R. China
| | - Songjun Zeng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
14
|
Different Dimensional Copper-Based Metal-Organic Frameworks with Enzyme-Mimetic Activity for Antibacterial Therapy. Int J Mol Sci 2023; 24:ijms24043173. [PMID: 36834604 PMCID: PMC9967080 DOI: 10.3390/ijms24043173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Fighting against bacterial infection and accelerating wound healing remain important and challenging in infected wound care. Metal-organic frameworks (MOFs) have received much attention for their optimized and enhanced catalytic performance in different dimensions of these challenges. The size and morphology of nanomaterials are important in their physiochemical properties and thereby their biological functions. Enzyme-mimicking catalysts, based on MOFs of different dimensions, display varying degrees of peroxidase (POD)-like activity toward hydrogen peroxide (H2O2) decomposition into toxic hydroxyl radicals (•OH) for bacterial inhibition and accelerating wound healing. In this study, we investigated the two most studied representatives of copper-based MOFs (Cu-MOFs), three-dimensional (3D) HKUST-1 and two-dimensional (2D) Cu-TCPP, for antibacterial therapy. HKUST-1, with a uniform and octahedral 3D structure, showed higher POD-like activity, resulting in H2O2 decomposition for •OH generation rather than Cu-TCPP. Because of the efficient generation of toxic •OH, both Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus could be eliminated under a lower concentration of H2O2. Animal experiments indicated that the as-prepared HKUST-1 effectively accelerated wound healing with good biocompatibility. These results reveal the multivariate dimensions of Cu-MOFs with high POD-like activity, providing good potential for further stimulation of specific bacterial binding therapies in the future.
Collapse
|
15
|
Wang X, Li J, Zhang S, Zhou W, Zhang L, Huang X. pH-activated antibiofilm strategies for controlling dental caries. Front Cell Infect Microbiol 2023; 13:1130506. [PMID: 36949812 PMCID: PMC10025512 DOI: 10.3389/fcimb.2023.1130506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Dental biofilms are highly assembled microbial communities surrounded by an extracellular matrix, which protects the resident microbes. The microbes, including commensal bacteria and opportunistic pathogens, coexist with each other to maintain relative balance under healthy conditions. However, under hostile conditions such as sugar intake and poor oral care, biofilms can generate excessive acids. Prolonged low pH in biofilm increases proportions of acidogenic and aciduric microbes, which breaks the ecological equilibrium and finally causes dental caries. Given the complexity of oral microenvironment, controlling the acidic biofilms using antimicrobials that are activated at low pH could be a desirable approach to control dental caries. Therefore, recent researches have focused on designing novel kinds of pH-activated strategies, including pH-responsive antimicrobial agents and pH-sensitive drug delivery systems. These agents exert antibacterial properties only under low pH conditions, so they are able to disrupt acidic biofilms without breaking the neutral microenvironment and biodiversity in the mouth. The mechanisms of low pH activation are mainly based on protonation and deprotonation reactions, acids labile linkages, and H+-triggered reactive oxygen species production. This review summarized pH-activated antibiofilm strategies to control dental caries, concentrating on their effect, mechanisms of action, and biocompatibility, as well as the limitation of current research and the prospects for future study.
Collapse
Affiliation(s)
- Xiuqing Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shujun Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Xiaojing Huang,
| |
Collapse
|
16
|
Zheng D, Huang C, Hu Y, Zheng T, An J. Constructions of synergistic photothermal therapy antibacterial hydrogel based on polydopamine, tea polyphenols and polyvinyl alcohol and effects on wound healing in mouse. Colloids Surf B Biointerfaces 2022; 219:112831. [PMID: 36113224 DOI: 10.1016/j.colsurfb.2022.112831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Hydrogels with significant antibacterial efficacy have enormous potential in wound healing. This work reported a series of effective antibacterial and antioxidant hydrogels based on tea polyphenols (TP), polydopamine (PDA), and polyvinyl alcohol (PVA). PDA-TP molecular chains are formed from oxidized TP and PDA. These molecular chains, which were cross-linked with PVA by cyclic freeze-thaw (FT), formed the PVA/PDA-TP hydrogel (PPTP). The number of freezing-thawing cycles and the amount of TP would affect the mechanical properties and swelling properties of hydrogel. The PPTP hydrogel exhibited high photo thermal conversion efficiency, high antibacterial efficacy, antioxidant properties, good cellular compatibility and short wound closure time. The PPTP hydrogel leaded to wound closure in approximately 10 d in a full-thickness skin defect mouse model. The preparation method of hydrogel with non-chemical cross-linked and ability of rapid high temperature generation provided a new way to apply TP to wound healing and proved that synergistic chemical and photothermal therapy can effectively inhibit resistant bacteria and accelerate wound healing.
Collapse
Affiliation(s)
- Dantong Zheng
- College of Light Industry and Food Engineering, Guangxi university, Nanning 530000, Guangxi, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi university, Nanning 530000, Guangxi, China.
| | - Yong Hu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Tianchang Zheng
- College of Light Industry and Food Engineering, Guangxi university, Nanning 530000, Guangxi, China
| | - Jiejie An
- College of Light Industry and Food Engineering, Guangxi university, Nanning 530000, Guangxi, China
| |
Collapse
|
17
|
Zhou L, Zhou L, Wei C, Guo R. A bioactive dextran-based hydrogel promote the healing of infected wounds via antibacterial and immunomodulatory. Carbohydr Polym 2022; 291:119558. [DOI: 10.1016/j.carbpol.2022.119558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
18
|
Zhang S, Feng S, Ma L, Yang Y, Liu C, Song N, Yang Y. Research of Synergistic Photothermal Antibacterial Strategy Based on Polymeric Guanidine Derivative Grafted on Mesoporous Carbon Nanospheres. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Peng Z, Zhang X, Yuan L, Li T, Chen Y, Tian H, Ma D, Deng J, Qi X, Yin X. Integrated endotoxin-adsorption and antibacterial properties of platelet-membrane-coated copper silicate hollow microspheres for wound healing. J Nanobiotechnology 2021; 19:383. [PMID: 34809612 PMCID: PMC8607565 DOI: 10.1186/s12951-021-01130-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serious infection caused by drug-resistant gram-negative bacteria and their secreted toxins (e.g., lipopolysaccharide) is a serious threat to human health. Thus, treatment strategies that efficiently kill bacteria and reducing the impact of their toxins simultaneously are urgently required. Herein, a novel antibacterial platform composed of a mesoporous copper silicate microsphere (CSO) core and a platelet membrane (PM) shell was prepared (CSO@PM). CSO@PM specifically targets bacteria owing to formyl peptide receptors on the PM and, combined with photothermal therapy (PTT), exhibits highly effective bacter icidal activity. Importantly, CSO@PM can adsorb lipopolysaccharide secreted by gram-negative bacteria, resulting in inflammation reduction. Thus, CSO@PM stimulates re-epithelialization and granulation-tissue formation, promoting wound healing. Moreover, this antibacterial platform exhibits no obvious toxicity at all the test concentrations in vitro and in vivo. Thus, CSO@PM exhibits a robust antibacterial effect and a strong toxin-adsorption capacity, facilitating the clinical treatment of many bacterial infections and the development of next-generation antibacterial nanoagents.
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaochun Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ting Li
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dandan Ma
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
20
|
Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100368. [PMID: 34351704 PMCID: PMC8498904 DOI: 10.1002/advs.202100368] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.
Collapse
Affiliation(s)
- Wenlong Li
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Eng San Thian
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Miao Wang
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zuyong Wang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Lei Ren
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
21
|
Zheng D, Huang C, Zhu X, Huang H, Xu C. Performance of Polydopamine Complex and Mechanisms in Wound Healing. Int J Mol Sci 2021; 22:10563. [PMID: 34638906 PMCID: PMC8508909 DOI: 10.3390/ijms221910563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Polydopamine (PDA) has been gradually applied in wound healing of various types in the last three years. Due to its rich phenol groups and unique structure, it can be combined with a variety of materials to form wound dressings that can be used for chronic infection, tissue repair in vivo and serious wound healing. PDA complex has excellent mechanical properties and self-healing properties, and it is a stable material that can be used for a long period of time. Unlike other dressings, PDA complexes can achieve both photothermal therapy and electro activity. In this paper, wound healing is divided into four stages: antibacterial, anti-inflammatory, cell adhesion and proliferation, and re-epithelialization. Photothermal therapy can improve the bacteriostatic rate and remove reactive oxygen species to inhibit inflammation. Electrical signals can stimulate cell proliferation and directional migration. With low reactive oxygen species (ROS) levels, inflammatory factors are down-regulated and growth factors are up-regulated, forming regular collagen fibers and accelerating wound healing. Finally, five potential development directions are proposed, including increasing drug loading capacity, optimization of drug delivery platforms, improvement of photothermal conversion efficiency, intelligent electroactive materials and combined 3D printing.
Collapse
Affiliation(s)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Daxue Road 100, Nanning 530000, China; (D.Z.); (X.Z.); (H.H.); (C.X.)
| | | | | | | |
Collapse
|
22
|
Cui H, Liu M, Yu W, Cao Y, Zhou H, Yin J, Liu H, Que S, Wang J, Huang C, Gong C, Zhao G. Copper Peroxide-Loaded Gelatin Sponges for Wound Dressings with Antimicrobial and Accelerating Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26800-26807. [PMID: 34096255 DOI: 10.1021/acsami.1c07409] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalytic conversion of hydrogen peroxide (H2O2) to more toxic hydroxyl radicals (•OH) is a good choice for sterilization and anti-infection, but endogenous H2O2 is insufficient to achieve satisfactory sterilization efficacy. Despite great efforts, designing and developing antimicrobial materials that specifically and effectively self-supply H2O2 at the wound site remain as tremendous challenges. Here, we report a pH-responsive copper peroxide-loaded wound dressing made from copper hydroxide and gelatin sponge and then reacted with H2O2. In vitro experiments show that the prepared wound dressing has good bactericidal properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa). Moreover, the as-prepared wound dressing can release •OH specifically in the bacterial-infected skin wound, rather than in normal tissues, and in vivo skin wound-healing experiments proved that the synthesized copper peroxide-loaded gelatin sponge could combat E. coli effectively; in addition, Cu2+ released from the gelatin sponge could stimulate angiogenesis and collagen deposition simultaneously. The study provides a strategy to improve antibacterial efficacy and reduce the toxic side effects through the release of •OH by bacterial self-activation.
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen 361101, P. R. China
| | - Mingsheng Liu
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| | - Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, P. R. China
| | - Yufei Cao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| | - Haicun Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, P. R. China
| | - Juanjuan Yin
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, P. R. China
| | - Sheng Que
- Department of Chemistry, Minorities Teachers College, Qinghai Normal University, Xining 810008, P. R. China
| | - Jingjing Wang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen 361101, P. R. China
| | - Congshu Huang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen 361101, P. R. China
| | - Chenliang Gong
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| | - Guanghui Zhao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| |
Collapse
|
23
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
24
|
Lee K, Wan Y, Li X, Cui X, Li S, Lee C. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Adv Healthc Mater 2021; 10:e2100055. [PMID: 33738983 DOI: 10.1002/adhm.202100055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is extensively explored for anticancer and antibacterial applications. It typically relies on oxygen-dependent generation of reactive oxygen species (ROS) to realize its killing effect. This type of therapy modality shows compromised therapeutic results for treating hypoxic tumors or bacteria-infected wounds. Recently, alkyl radicals attracted much attention as they can be generated from some azo-based initiators only under mild heat stimulus without oxygen participation. Many nanocarriers or hydrogel systems have been developed to load and deliver these radical initiators to lesion sites for theranostics. These systems show good anticancer or antimicrobial effect in hypoxic environment and some of them possess specific imaging abilities providing precise guidance for treatment. This review summarizes the developed materials that aim at treating hypoxic cancer and bacteria-infected wound by using this kind of oxygen-irrelevant alkyl radicals. Based on the carrier components, these agents are divided into three groups: inorganic, organic, as well as inorganic and organic hybrid carrier-based therapeutic systems. The construction of these agents and their specific advantages in biomedical field are highlighted. Finally, the existing problems and future promising development directions are discussed.
Collapse
Affiliation(s)
- Ka‐Wai Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Yingpeng Wan
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiaozhen Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiao Cui
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Shengliang Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| |
Collapse
|
25
|
Xiao L, Ni W, Zhao X, Guo Y, Li X, Wang F, Luo G, Zhan R, Xu X. A moisture balanced antibacterial dressing loaded with lysozyme possesses antibacterial activity and promotes wound healing. SOFT MATTER 2021; 17:3162-3173. [PMID: 33620055 DOI: 10.1039/d0sm02245d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wound moisture management is very important in wound healing. Previous wound management has included dry healing and moist healing, and the theory of wound moisture balance is currently generally accepted. However, current studies have not reported which humidity is suitable for wound healing and how to appropriately use antibacterial compounds when the humidity is suitable. Our study explored the moisture balance of polyurethane foam dressings through a moisture balance test and constructed a safe and effective moisture balanced antibacterial dressing by loading lysozyme onto a polyurethane foam dressing. Wound healing experiments showed that the wound healing speed was the fastest when the humidity was 25%. In vivo and in vitro antibacterial experiments showed the superior antibacterial performance of the dressing after lysozyme loading. We loaded lysozyme on moisture balanced polyurethane dressings by means of dopamine adsorption, and the modified dressings were named PU/DA-LYS (polyurethane/dopamine-lysozyme). Experiments on wound healing in infected mice indicated that PU/DA-LYS helps fight infection while promoting wound healing. Cytotoxicity experiments and in vivo biological safety experiments indicated that PU/DA-LYS was safe for use. Our study found that the lysozyme loaded polyurethane dressing can provide appropriate wound moisture and prevent bacterial infection, which is a future developmental direction for wound dressings.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xu M, Li L, Hu Q. The recent progress in photothermal-triggered bacterial eradication. Biomater Sci 2021; 9:1995-2008. [PMID: 33564803 DOI: 10.1039/d0bm02057e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggested that bacterial infection diseases posed a great threat to human health and became the leading cause of mortality. However, the abuse of antibiotics and their residues in the environment result in the emergence and prevalence of drug-resistant bacteria. Photothermal therapy (PTT) has received considerable attention owing to its noninvasiveness, and proved to be promising in preventing bacterial infection diseases. In this review, we first surveyed the recent progress of PTT-based responsive targeting strategies for bacterial killing. We then highlighted the PTT-based smart designs of bio-films, hydrogels and synergistic methods for treating bacterial infections. Existing challenges and perspectives are also discussed to inspire the future development of a PTT-based platform for the efficient therapy of bacterial infections.
Collapse
Affiliation(s)
- Minjie Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | | | | |
Collapse
|
27
|
Guo C, Ma X, Wang B. Metal-organic Frameworks-based Composites and Their Photothermal Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based smart materials. Chem Soc Rev 2021; 50:8319-8343. [DOI: 10.1039/d1cs00374g] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides in-depth insight into the structural engineering of PDA-based materials to enhance their responsive feature and the use of them in construction of PDA-based stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
29
|
Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2020; 4:3937-3961. [DOI: 10.1021/acsabm.0c01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qinyu Han
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Thang Cong Do
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhijun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637549, Singapore
| |
Collapse
|
30
|
Zhang Y, Pi Y, Hua Y, Xie J, Wang C, Guo K, Zhao Z, Yong Y. Bacteria responsive polyoxometalates nanocluster strategy to regulate biofilm microenvironments for enhanced synergetic antibiofilm activity and wound healing. Theranostics 2020; 10:10031-10045. [PMID: 32929332 PMCID: PMC7481423 DOI: 10.7150/thno.49008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Backgroud: Nowadays, biofilms that are generated as a result of antibiotic abuse cause serious threats to global public health. Such films are the primary factor that contributes to the failure of antimicrobial treatment. This is due to the fact that the films prevent antibiotic infiltration, escape from innate immune attacks by phagocytes and consequently generate bacterial resistance. Therefore, exploiting novel antibacterial agents or strategies is extremely urgent. Methods: Herein, we report a rational construction of a novel biofilm microenvironment (BME)-responsive antibacterial platform that is based on tungsten (W)-polyoxometalate clusters (POMs) to achieve efficient bactericidal effects. Results: On one hand, the acidity and reducibility of a BME could lead to the self-assembly of POMs to produce large aggregates, which favor biofilm accumulation and enhance photothermal conversion under near-infrared (NIR) light irradiation. On the other hand, reduced POM aggregates with BME-induced photothermal-enhanced efficiency also exhibit surprisingly high peroxidase-like activity in the catalysis of bacterial endogenous hydrogen peroxide (H2O2) to produce abundant reactive oxygen species (ROS). This enhances biofilm elimination and favors antibacterial effects. Most importantly, reduced POMs exhibit the optimal peroxidase-like activity in an acidic BME. Conclusion: Therefore, in addition to providing a prospective antibacterial agent, intelligent acid/reductive dual-responsive POMs will establish a new representative paradigm for the areas of healthcare with minimal side effects.
Collapse
|
31
|
Xu Q, Chang M, Zhang Y, Wang E, Xing M, Gao L, Huan Z, Guo F, Chang J. PDA/Cu Bioactive Hydrogel with "Hot Ions Effect" for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31255-31269. [PMID: 32530593 DOI: 10.1021/acsami.0c08890] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quick and effective sterilization of drug-resistant bacteria inevitably became an ever-growing global challenge. In this study, a multifunctional composite (PDA/Cu-CS) hydrogel mainly composed of polydopamine (PDA) and copper-doped calcium silicate ceramic (Cu-CS) was prepared. It was confirmed that PDA/copper (PDA/Cu) complexing in the composite hydrogel played a key role in enhancing the photothermal performance and antibacterial activity. Through a unique "hot ions effect", created by the heating of Cu ions through the photothermal effect of the composite hydrogel, the hydrogel showed high-efficiency, quick, and long-term inhibition of methicillin-resistant Staphylococcus aureus and Escherichia coli. In addition, the hydrogel possessed remarkable bioactivity to stimulate angiogenesis. The in vivo results confirmed that the "hot ions effect" of the composite hydrogel removed existing infection in the wound area efficiently and significantly promoted angiogenesis and collagen deposition during infectious skin wound healing. Our results suggested that the design of multifunctional hydrogels with "hot ions effect" may be an effective therapeutic approach for the treatment of infectious wounds.
Collapse
Affiliation(s)
- Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Mengling Chang
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Endian Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Min Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
32
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
33
|
Zhao B, Wang H, Dong W, Cheng S, Li H, Tan J, Zhou J, He W, Li L, Zhang J, Luo G, Qian W. A multifunctional platform with single-NIR-laser-triggered photothermal and NO release for synergistic therapy against multidrug-resistant Gram-negative bacteria and their biofilms. J Nanobiotechnology 2020; 18:59. [PMID: 32293461 PMCID: PMC7158002 DOI: 10.1186/s12951-020-00614-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Infectious diseases caused by multidrug-resistant (MDR) bacteria, especially MDR Gram-negative strains, have become a global public health challenge. Multifunctional nanomaterials for controlling MDR bacterial infections via eradication of planktonic bacteria and their biofilms are of great interest. Results In this study, we developed a multifunctional platform (TG-NO-B) with single NIR laser-triggered PTT and NO release for synergistic therapy against MDR Gram-negative bacteria and their biofilms. When located at the infected sites, TG-NO-B was able to selectively bind to the surfaces of Gram-negative bacterial cells and their biofilm matrix through covalent coupling between the BA groups of TG-NO-B and the bacterial LPS units, which could greatly improve the antibacterial efficiency, and reduce side damages to ambient normal tissues. Upon single NIR laser irradiation, TG-NO-B could generate hyperthermia and simultaneously release NO, which would synergistically disrupt bacterial cell membrane, further cause leakage and damage of intracellular components, and finally induce bacteria death. On one hand, the combination of NO and PTT could largely improve the antibacterial efficiency. On the other hand, the bacterial cell membrane damage could improve the permeability and sensitivity to heat, decrease the photothermal temperature and avoid damages caused by high temperature. Moreover, TG-NO-B could be effectively utilized for synergistic therapy against the in vivo infections of MDR Gram-negative bacteria and their biofilms and accelerate wound healing as well as exhibit excellent biocompatibility both in vitro and in vivo. Conclusions Our study demonstrates that TG-NO-B can be considered as a promising alternative for treating infections caused by MDR Gram-negative bacteria and their biofilms.
Collapse
Affiliation(s)
- Baohua Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - He Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wenjing Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shaowen Cheng
- Department of Trauma Centre, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, Hainan, China
| | - Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junyi Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
34
|
Ran HH, Cheng X, Gao G, Sun W, Jiang YW, Zhang X, Jia HR, Qiao Y, Wu FG. Colistin-Loaded Polydopamine Nanospheres Uniformly Decorated with Silver Nanodots: A Nanohybrid Platform with Improved Antibacterial and Antibiofilm Performance. ACS APPLIED BIO MATERIALS 2020; 3:2438-2448. [DOI: 10.1021/acsabm.0c00163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ying Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
35
|
Yang Y, Wu X, He C, Huang J, Yin S, Zhou M, Ma L, Zhao W, Qiu L, Cheng C, Zhao C. Metal–Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13698-13708. [PMID: 32129070 DOI: 10.1021/acsami.0c01666] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
36
|
Lin A, Liu Y, Zhu X, Chen X, Liu J, Zhou Y, Qin X, Liu J. Bacteria-Responsive Biomimetic Selenium Nanosystem for Multidrug-Resistant Bacterial Infection Detection and Inhibition. ACS NANO 2019; 13:13965-13984. [PMID: 31730327 DOI: 10.1021/acsnano.9b05766] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multidrug-resistant (MDR) bacterial infections are a severe threat to public health owing to their high risk of fatality. Noticeably, the premature degradation and undeveloped imaging ability of antibiotics still remain challenging. Herein, a selenium nanosystem in response to a bacteria-infected microenvironment is proposed as an antibiotic substitute to detect and inhibit methicillin-resistant Staphylococcus aureus (MRSA) with a combined strategy. Using natural red blood cell membrane (RBCM) and bacteria-responsive gelatin nanoparticles (GNPs), the Ru-Se@GNP-RBCM nanosystem was constructed for effective delivery of Ru-complex-modified selenium nanoparticles (Ru-Se NPs). Taking advantage of natural RBCM, the immune system clearance was reduced and exotoxins were neutralized efficiently. GNPs could be degraded by gelatinase in pathogen-infected areas in situ; therefore, Ru-Se NPs were released to destroy the bacteria cells. Ru-Se NPs with intense fluorescence imaging capability could accurately monitor the infection treatment process. Moreover, excellent in vivo bacteria elimination and a facilitated wound healing process were confirmed by two kinds of MRSA-infected mice models. Overall, the above advantages proved that the prepared nanosystem is a promising antibiotic alternative to combat the ever-threatening multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ange Lin
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanan Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
- College of Life Sciences , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Xufeng Zhu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xu Chen
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jiawei Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanhui Zhou
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xiuying Qin
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jie Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
37
|
Wang L, Niu X, Song Q, Jia J, Hao Y, Zheng C, Ding K, Xiao H, Liu X, Zhang Z, Zhang Y. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. J Control Release 2019; 318:197-209. [PMID: 31672622 DOI: 10.1016/j.jconrel.2019.10.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023]
Abstract
With the in-depth research of organelles, the microenvironment characteristics of their own, such as the acid environment of lysosomes and the high temperature environment of mitochondria, could be used as a natural and powerful condition for tumor therapy. Based on this, we constructed a two-step precise targeting nanoplatform which can realize the drug release and drug action triggered by the microenvironment of lysosomes (endosomes) and mitochondria, respectively. To begin with, the mesoporous silica nanoparticles (MSNs) were modified with triphenylphosphonium (TPP) and loaded with 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Then, folic acid (FA) targeted pH-sensitive liposomes containing docetaxel (Lipo/DTX-FA) were prepared by thin-film dispersion method, and the core-shell AIPH/MSN-TPP@Lipo/DTX-FA nanoparticles were constructed by self-assembly during the hydration of the liposomes. When this nanoplatform entered into the tumor cells through FA receptor-mediated endocytosis, the pH-sensitive liposomes were destabilized in the lysosomes, resulting in the release of DTX and AIPH/MSN-TPP nanoparticles. After that, AIPH was delivered to mitochondria by AIPH/MSN-TPP, and the alkyl radicals produced by AIPH under the high temperature environment can cause oxidative damage to mitochondria. Not only that, the DTX could enhance the anti-tumor effect of AIPH by downregulating the expression of anti-apoptotic Bcl-2 protein. The in vitro and in vivo results demonstrate that this delivery system could induce apoptosis based on organelles' s own microenvironment, which provides a new approach for tumor therapy.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Xiuxiu Niu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Jiajia Jia
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yongwei Hao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Cuixia Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Kaili Ding
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Huifang Xiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
38
|
Su L, Li Y, Liu Y, An Y, Shi L. Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications. Macromol Biosci 2019; 19:e1900289. [PMID: 31642591 DOI: 10.1002/mabi.201900289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Bacterial infection is becoming the biggest threat to human health. The scenario is partly due to the ineffectiveness of the conventional antibiotic treatments against the emergence of multidrug-resistant bacteria and partly due to the bacteria living in biofilms or cells. Adaptive biomaterials can change their physicochemical properties in the microenvironment of bacterial infection, thereby facilitating either their interactions with bacteria or drug release. The trends in treating bacterial infections using adaptive biomaterials-based systems are flourishing and generate innumerous possibility to design novel antimicrobial therapeutics. This feature article aims to summarize the recent developments in the formulations, mechanisms, and advances of adaptive materials in bacterial infection diagnosis, contact killing of bacteria, and antimicrobial drug delivery. Also, the challenges and limitations of current antimicrobial treatments based on adaptive materials and their clinical and industrial future prospects are discussed.
Collapse
Affiliation(s)
- Linzhu Su
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuanfeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
39
|
Liu Y, Guo Z, Li F, Xiao Y, Zhang Y, Bu T, Jia P, Zhe T, Wang L. Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31649-31660. [PMID: 31407880 DOI: 10.1021/acsami.9b10096] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Synergistic therapeutic strategies for bacterial infection have attracted extensive attentions owing to their enhanced therapeutic effects and less adverse effects compared with monotherapy. Herein, we report a novel synergistic antibacterial platform that integrates the nanocatalytic antibacterial therapy and photothermal therapy (PTT) by hemoglobin-functionalized copper ferrite nanoparticles (Hb-CFNPs). In the presence of a low concentration of hydrogen peroxide (H2O2), the excellent Fenton and Fenton-like reaction activity of Hb-CFNPs can effectively catalyze the decomposition of H2O2 to produce hydroxyl radicals (·OH), rendering an increase in the permeability of the bacterial cell membrane and the sensitivity to heat. With the assistance of NIR irradiation, hyperthermia generated by Hb-CFNPs can induce the death of the damaged bacteria. Additionally, owing to the outstanding magnetic property of Hb-CFNPs, it can improve the photothermal efficiency by about 20 times via magnetic enrichment, which facilitates to realize excellent bactericidal efficacy at a very low experimental dose (20 μg/mL). In vitro antibacterial experiment shows that this synergistic antibacterial strategy has a broad-spectrum antibacterial property against Gram-negative Escherichia coli (E. coli, 100%) and Gram-positive Staphylococcus aureus (S. aureus, 96.4%). More importantly, in vivo S. aureus-infected abscess treatment studies indicate that Hb-CFNPs can serve as an antibacterial candidate with negligible toxicity to realize synergistic treatment of bacterial infections through catalytic and photothermal effects. Accordingly, this study proposes a novel, high-efficiency, and multifunctional therapeutic system for the treatment of bacterial infection, which will open up a new avenue for the design of synergistic antibacterial systems in the future.
Collapse
Affiliation(s)
- Yingnan Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Zhirong Guo
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Fan Li
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Yaqing Xiao
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Yalan Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Tong Bu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Pei Jia
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Taotao Zhe
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Li Wang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| |
Collapse
|