1
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
2
|
Harthorn A, Kuo TH, Torres SW, Lobb RR, Hackel BJ. Expression-Dependent Tumor Pretargeting via Engineered Avidity. Mol Pharm 2025; 22:558-572. [PMID: 39704255 DOI: 10.1021/acs.molpharmaceut.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Selective delivery of therapeutic modalities to tumor cells via binding of tumor-selective cell-surface biomarkers has empowered substantial advances in cancer treatment. Yet, tumor cells generally lack a truly specific biomarker that is present in high density on tumor tissue while being completely absent from healthy tissue. Rather, low but nonzero expression in healthy tissues results in on-target, off-tumor activity with detrimental side effects that constrain the therapeutic window or prevent use altogether. Advanced technologies to enhance the selectivity for tumor targeting are sorely needed. We have engineered a binding platform that is quantitatively dependent upon expression levels, via avidity-driven specificity, rather than binarily reliant on the presence or absence of a biomarker. We systematically varied monomeric binding affinity by engineering affibodies to target carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and folate receptor 1 (FolR1). Two identical affibody ligands were tethered, with varying polypeptide linker lengths, to a nanobody that binds Alfa peptide to create a bispecific, trivalent protein for use in pretargeted radioligand therapy. Expression-dependent targeting was achieved in both systems: with 110 nM monomeric affinity to CEACAM5 with a two-amino-acid linker or with 250 nM monomeric affinity for FolR1 and a 10 amino acid linker. The latter bispecific, trivalent achieved over 25-fold differentiation between FolR1high and FolR1low cells in a mixed culture. Similar selectivity was achieved in a size-efficient bivalent molecule lacking a central nanobody. Moreover, the avid bivalent affibody molecule exhibited minimal inhibition by soluble antigen, whereas high-affinity bivalent antibody was inhibited by 97 ± 2%, which is indicative of serum inhibition of shed antigen. This work advances design principles for achieving expression-dependent tumor targeting via low-affinity, high-avidity ligands.
Collapse
Affiliation(s)
- Abbigael Harthorn
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Tse-Han Kuo
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Sarah W Torres
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Roy R Lobb
- MRB Biotherapeutics, Newton Center, Massachusetts 02459, United States
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- MRB Biotherapeutics, Newton Center, Massachusetts 02459, United States
| |
Collapse
|
3
|
Park HB, An EK, Kim SJ, Ryu D, Zhang W, Pack CG, Kim H, Kwak M, Im W, Ryu JH, Lee PCW, Jin JO. Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy. ACS NANO 2024; 18:33366-33380. [PMID: 39603816 DOI: 10.1021/acsnano.4c08448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer. These LNPs, termed piLNPs, are encapsulated with indocyanine green and incorporated with the antigen (Ag)-binding fragment of the anti-PD-L1 antibody for targeting tumors and immunotherapy. Intravenously injected piLNPs in 4T1 breast tumor-bearing BALB/c mice effectively target the 4T1 tumor and are suitable for performing PTT using a near-infrared laser. Moreover, lung metastatic 4T1 tumor growth is completely prevented in mice previously cured of the 4T1 breast tumor by piLNP treatment and rechallenged with lung 4T1 metastatic cancer. Blockage of the second challenged metastatic 4T1 breast cancer by piLNP is due to the activation of Ag-specific T cells. Cytotoxic T lymphocytes from piLNP-cured mice selectively attack 4T1 breast cancer cells. Therefore, piLNP can be used as a multifunctional breast cancer treatment composition that can target tumors, treat primary tumors, and prevent metastasis and recurrence.
Collapse
Affiliation(s)
- Hae-Bin Park
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chan-Gi Pack
- Department of Biomedical Engineering, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| |
Collapse
|
4
|
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2023; 51:197-217. [PMID: 36368516 PMCID: PMC10491979 DOI: 10.1016/j.jare.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Even with the advancement in the areas of cancer nanotechnology, prostate cancer still poses a major threat to men's health. Nanomaterials and nanomaterial-derived theranostic systems have been explored for diagnosis, imaging, and therapy for different types of cancer still, for prostate cancer they have not delivered at full potential because of the limitations like in vivo biocompatibility, immune responses, precise targetability, and therapeutic outcome associated with the nanostructured system. AIM OF REVIEW Functionalizing nanomaterials with different biomolecules and bioactive agents provides advantages like specificity towards cancerous tumors, improved circulation time, and modulation of the immune response leading to early diagnosis and targeted delivery of cargo at the site of action. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have emphasized the classification and comparison of various nanomaterials based on biofunctionalization strategy and source of biomolecules such that it can be used for possible translation in clinical settings and future developments. This review highlighted the opportunities for embedding highly specific biological targeting moieties (antibody, aptamer, oligonucleotides, biopolymer, peptides, etc.) on nanoparticles which can improve the detection of prostate cancer-associated biomarkers at a very low limit of detection, direct visualization of prostate tumors and lastly for its therapy. Lastly, special emphasis was given to biomimetic nanomaterials which include functionalization with extracellular vesicles, exosomes and viral particles and their application for prostate cancer early detection and drug delivery. The present review paves a new pathway for next-generation biofunctionalized nanomaterials for prostate cancer theranostic application and their possibility in clinical translation.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
5
|
Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, Huang Z, Shi J, Yang Y. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnology 2023; 21:149. [PMID: 37149605 PMCID: PMC10163864 DOI: 10.1186/s12951-023-01890-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.
Collapse
Affiliation(s)
- Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingxia Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Arnett LP, Rana R, Chung WWY, Li X, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for Mass Cytometry. Chem Rev 2023; 123:1166-1205. [PMID: 36696538 DOI: 10.1021/acs.chemrev.2c00350] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 μm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Rahul Rana
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Wilson Wai-Yip Chung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc. (formerly Fluidigm Canada Inc.), 1380 Rodick Road, Suite 400, Markham, OntarioL3R 4G5, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
7
|
Mandal S, Sunagawa SW, Prathipati PK, Belshan M, Shibata A, Destache CJ. Targeted Immuno-Antiretroviral to Promote Dual Protection against HIV: A Proof-of-Concept Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1942. [PMID: 35683795 PMCID: PMC9183115 DOI: 10.3390/nano12111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
The C-C motif chemokine receptor-5 (CCR5) expression on the T-cell surface is the prime barrier to HIV/AIDS eradication, as it promotes both active human immunodeficiency virus (HIV)-infection and latency; however, antiretrovirals (ARVs) suppress plasma viral loads to non-detectable levels. Keeping this in mind, we strategically designed a targeted ARVs-loaded nanoformulation that targets CCR5 expressing T-cells (e.g., CD4+ cells). Conceptually, CCR5-blocking and targeted ARV delivery would be a dual protection strategy to prevent HIV infection. For targeting CCR5+ T-cells, the nanoformulation was surface conjugated with anti-CCR5 monoclonal antibodies (CCR5 mAb) and loaded with dolutegravir+tenofovir alafenamide (D+T) ARVs to block HIV replication. The result demonstrated that the targeted-ARV nanoparticle's multimeric CCR5 binding property improved its antigen-binding affinity, prolonged receptor binding, and ARV intracellular retention. Further, nanoformulation demonstrated high binding affinity to CCR5 expressing CD4+ cells, monocytes, and other CCR5+ T-cells. Finally, the short-term pre-exposure prophylaxis study demonstrated that prolonged CCR5 blockage and ARV presence further induced a "protective immune phenotype" with a boosted T-helper (Th), temporary memory (TM), and effector (E) sub-population. The proof-of-concept study that the targeted-ARV nanoformulation dual-action mechanism could provide a multifactorial solution toward achieving HIV "functional cure."
Collapse
Affiliation(s)
- Subhra Mandal
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
| | - Shawnalyn W. Sunagawa
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
| | - Pavan Kumar Prathipati
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
| | - Michael Belshan
- Department of Medical Microbiology & Immunology, Creighton University School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Annemarie Shibata
- Department of Biology, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA;
| | - Christopher J. Destache
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
- Division of Infectious Diseases, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
8
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
9
|
Lin T, Huang X, Guo L, Zhou S, Li X, Liu Y, Hu J, Chen X, Xiong Y. Boronate affinity-assisted oriented antibody conjugation on quantum dot nanobeads for improved detection performance in lateral flow immunoassay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Ultrasensitive Detection of Ovarian Cancer Biomarker Using Au Nanoplate SERS Immunoassay. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00031-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Kim H, Kang H, Kim HN, Kim H, Moon J, Guk K, Park H, Yong D, Bae PK, Park HG, Lim EK, Kang T, Jung J. Development of 6E3 antibody-mediated SERS immunoassay for drug-resistant influenza virus. Biosens Bioelectron 2021; 187:113324. [PMID: 34020222 DOI: 10.1016/j.bios.2021.113324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023]
Abstract
Influenza viruses are responsible for several pandemics and seasonal epidemics and pose a major public health threat. Even after a major outbreak, the emergence of drug-resistant influenza viruses can pose disease control problems. Here we report a novel 6E3 monoclonal antibody capable of recognizing and binding to the H275Y neuraminidase (NA) mutation, which has been associated with reduced susceptibility of influenza viruses to NA inhibitors. The 6E3 antibody had a KD of 72.74 μM for wild-type NA and 32.76 pM for H275Y NA, suggesting that it can identify drug-resistant pandemic H1N1 (pH1N1) influenza virus. Molecular modeling studies also suggest the high-affinity binding of this antibody to pH1N1 H275Y NA. This antibody was also subject to dot-blot, enzyme-linked immunosorbent assay, bare-eye detection, and lateral flow assay to demonstrate its specificity to drug-resistant pH1N1. Furthermore, it was immobilized on Au nanoplate and nanoparticles, enabling surface-enhanced Raman scattering (SERS)-based detection of the H275Y mutant pH1N1. Using 6E3 antibody-mediated SERS immunoassay, the drug-resistant influenza virus can be detected at a low concentration of 102 plaque-forming units/mL. We also detected pH1N1 in human nasopharyngeal aspirate samples, suggesting that the 6E3-mediated SERS assay has the potential for diagnostic application. We anticipate that this newly developed antibody and SERS-based immunoassay will contribute to the diagnosis of drug-resistant influenza viruses and improve treatment strategies for influenza patients.
Collapse
Affiliation(s)
- Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hye-Nan Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hongki Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
12
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
13
|
Wang Y, Jiang J, Fotina H, Zhang H, Chen J. Advances in Antibody Preparation Techniques for Immunoassays of Total Aflatoxin in Food. Molecules 2020; 25:molecules25184113. [PMID: 32916811 PMCID: PMC7571119 DOI: 10.3390/molecules25184113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin (AF) contamination is a major concern in the food and feed industry because of its prevalence and toxicity. Improved aflatoxin detection methods are still needed. Immunoassays are an important method for total aflatoxin (TAF) analysis in food due to its technical advantages such as high specificity, sensitivity, and simplicity, but require high-quality antibodies. Here, we first review the three ways to prepare high-quality antibodies for TAF immunoassay, second, compare the advantages and disadvantages of antigen synthesis methods for B-group and G-group aflatoxins, and third, describe the status of novel genetic engineering antibodies. This review can provide new methods and ideas for the development of TAF immunoassays.
Collapse
Affiliation(s)
- Yanan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
- Correspondence: (J.J.); (H.F.); Tel.: +86-135-2508-3536 (J.J.)
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Correspondence: (J.J.); (H.F.); Tel.: +86-135-2508-3536 (J.J.)
| | - Haitang Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
| | - Junjie Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
| |
Collapse
|
14
|
Lee H, Youn H, Hwang A, Lee H, Park JY, Kim W, Yoo Y, Ban C, Kang T, Kim B. Troponin Aptamer on an Atomically Flat Au Nanoplate Platform for Detection of Cardiac Troponin I. NANOMATERIALS 2020; 10:nano10071402. [PMID: 32708486 PMCID: PMC7407982 DOI: 10.3390/nano10071402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/14/2023]
Abstract
Well-ordered bioreceptors on atomically flat Au surfaces can be a high-performance biosensor. Cardiac troponin I proteins (cTnIs) have been regarded as a specific biomarker for acute myocardial infarction (AMI). Here, we report the accurate detection of cTnIs using an aptamer-immobilized Au nanoplate platform. The single-crystalline and atomically flat Au nanoplate was characterized by atomic force microscopy. For the precise detection of cTnI, we immobilized an aptamer that can strongly bind to cTnI onto an atomically flat Au nanoplate. Using the aptamer-immobilized Au nanoplate, cTnIs were successfully detected at a concentration of 100 aM (2.4 fg/mL) in buffer solution. Furthermore, cTnIs in serum could be identified at a concentration of 100 fM (2.4 pg/mL). The total assay time was ~7 h. Importantly, the aptamer-immobilized Au nanoplate enabled us to diagnose AMI patients accurately, suggesting the potential of the present method in the diagnosis of AMI.
Collapse
Affiliation(s)
- Hyoban Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
| | - Hyungjun Youn
- Department of Chemistry, POSTECH, Pohang 37673, Korea;
| | - Ahreum Hwang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
| | - Hyunsoo Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Center for Nanomaterials and Chemical Reactions, IBS, Daejeon 34141, Korea
| | - Jeong Young Park
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Center for Nanomaterials and Chemical Reactions, IBS, Daejeon 34141, Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul 02447, Korea;
| | - Youngdong Yoo
- Department of Chemistry, Ajou University, Suwon 16499, Korea;
| | - Changill Ban
- Department of Chemistry, POSTECH, Pohang 37673, Korea;
- Correspondence: (C.B.); (T.K.); (B.K.)
| | - Taejoon Kang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
- Correspondence: (C.B.); (T.K.); (B.K.)
| | - Bongsoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Correspondence: (C.B.); (T.K.); (B.K.)
| |
Collapse
|
15
|
Sun Y, Zhu X, Liu H, Dai Y, Han R, Gao D, Luo C, Wang X, Wei Q. Novel Chemiluminescence Sensor for Thrombin Detection Based on Dual-Aptamer Biorecognition and Mesoporous Silica Encapsulated with Iron Porphyrin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5569-5577. [PMID: 31933352 DOI: 10.1021/acsami.9b20255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Thrombin is a marker of blood-related diseases, and its detection is of great significance in the fields of medical and biological research. Herein, a novel chemiluminescence (CL) sensor for thrombin detection was prepared based on dual-aptamer biorecognition and mesoporous silica encapsulated with iron porphyrin. Mesoporous silica encapsulated with hematin by aptamer1 (Apt1/hematin/M-SiO2) and magnetic microspheres modified with aptamer2 (Apt2/NH2-MS) were successfully prepared, and the two materials were used to construct a CL sensor to detect thrombin. Primarily, Apt2/NH2-MS is used for pretreatment separation of thrombin samples by the biorecognition effect between the aptamer (Apt2) and target (thrombin). Then, thrombin/Apt2/NH2-MS is again recognized with Apt1 on the surface of Apt1/hematin/M-SiO2 and Apt1/thrombin/Apt2/NH2-MS is formed, so dual-aptamer biorecognition is realized. Meanwhile, the generated Apt1/thrombin/Apt2/NH2-MS makes Apt1 shed off the surface of M-SiO2 and release hematin. The released hematin can catalyze the luminol-H2O2 CL reaction. Therefore, a sandwich-type CL sensor was constructed based on dual-aptamer biorecognition and hematin catalysis for the detection of thrombin. The sensor has a linear range of 7.5 × 10-15 to 2.5 × 10-10 mol·L-1 and a detection limit of 2.2 × 10-15 mol·L-1 and also exhibits excellent selectivity, reproducibility, and stability. The sensor was successfully used for the detection of thrombin in serum samples, which makes it possible to apply the sensor in the detection of thrombin in actual samples.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xiaodong Zhu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Rui Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Dandan Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| |
Collapse
|
16
|
Gao L, Yang Q, Wu P, Li F. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst 2020; 145:4069-4078. [DOI: 10.1039/d0an00597e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights functional roles of nanomaterials for advancing conventional ELISA assays by serving as substrate-alternatives, enzyme-alternatives, or non-enzyme amplifiers.
Collapse
Affiliation(s)
- Lu Gao
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| | - Qianfan Yang
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| | - Peng Wu
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| | - Feng Li
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| |
Collapse
|
17
|
Hwang A, Kim E, Moon J, Lee H, Lee M, Jeong J, Lim EK, Jung J, Kang T, Kim B. Atomically Flat Au Nanoplate Platforms Enable Ultraspecific Attomolar Detection of Protein Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18960-18967. [PMID: 31062578 DOI: 10.1021/acsami.9b04363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atomically flat surfaces of single-crystalline Au nanoplates can maximize the functionality of biomolecules, thus realizing extremely high-performance biosensors. Here, we report both highly specific and supersensitive detection of C-reactive protein (CRP) by employing atomically flat Au nanoplates. CRP is a protein biomarker for inflammation and infection and can be used as a predictive or prognostic marker for various cardiovascular diseases. To maximize the binding capacity for CRP, we carefully optimized the Au nanoplate-Cys3-protein G-anti-CRP structure by observing atomic force microscopy (AFM) images. The optimally anti-CRP-immobilized Au nanoplates allowed extremely specific detection of CRP at the attomolar level. To confirm the binding of CRP onto the Au nanoplate, we assembled Au nanoparticles (NPs) onto the CRP-captured Au nanoplate by sandwich immunoreaction and obtained surface-enhanced Raman scattering (SERS) spectra and scanning electron microscopy (SEM) images. Both the SERS and SEM results showed that we completely eliminated the nonspecific binding of Au NPs onto the optimally anti-CRP-immobilized Au nanoplate. Compared with the anti-CRP-immobilized rough Au film and the randomly anti-CRP-attached Au nanoplate, the optimally anti-CRP-immobilized Au nanoplate provided a highly improved detection limit of 10-17 M. In this study, it was validated that ultraclean and ultraflat Au nanoplates can maximize the sensing capability of CRP. We expect that these Au nanoplates will enable the feasible detection of many important biomarkers with high specificity and high sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyoung Jeong
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Eun-Kyung Lim
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Juyeon Jung
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Taejoon Kang
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | | |
Collapse
|