1
|
Dong A, Lin G, Li Z, Wu W, Cao X, Li W, Wang L, Zhao Y, Chen D, Sun L. Interlayer-bonded Ni/MoO 2 electrocatalyst for efficient hydrogen evolution reaction with stability over 6000 h at 1000 mA cm -2. Nat Commun 2025; 16:4955. [PMID: 40436858 PMCID: PMC12119828 DOI: 10.1038/s41467-025-59933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/05/2025] [Indexed: 06/01/2025] Open
Abstract
The mechanical stability of the catalytic electrodes used for hydrogen evolution reactions (HER) is crucial for their industrial applications in anion exchange membrane water electrolysis (AEM-WE). This study develops a corrosion strategy to construct a self-supported electrocatalyst (Int-Ni/MoO2) with high mechanical stability by anchoring the Ni/MoO2 catalytic layer with a dense interlayer of MoO2 nanoparticles. The Int-Ni/MoO2 exhibits a strengthened homostructural interface between the interlayer and catalytic layer, preventing the detachment of the catalyst during ultrasonic treatment. The blade-shaped catalytic layer reduces bubble shock and potential fluctuations at high current densities up to -6000 mA cm-2. As a result, the Int-Ni/MoO2 electrode exhibits a low overpotential of 73.2 ± 14.2 mV and long-term stability for 6000 h at -1000 mA cm-2 in a 1 M KOH solution. The Int-Ni/MoO2 assembled AEM-WE device demonstrates long-term stability at 1000 mA cm-2 for 1000 h with a very low degradation rate of 3.96 µV h-1.
Collapse
Affiliation(s)
- Anrui Dong
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Gaoxin Lin
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Zhiheng Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Wen Wu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Xing Cao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Wenlong Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Yilong Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Dexin Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
2
|
Hersbach TJP, Garcia-Esparza AT, Hanselman S, Paredes Mellone OA, Hoogenboom T, McCrum IT, Anastasiadou D, Feaster JT, Jaramillo TF, Vinson J, Kroll T, Garcia AC, Krtil P, Sokaras D, Koper MTM. Platinum hydride formation during cathodic corrosion in aqueous solutions. NATURE MATERIALS 2025; 24:574-580. [PMID: 39843682 DOI: 10.1038/s41563-024-02080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/12/2024] [Indexed: 01/24/2025]
Abstract
Cathodic corrosion is an electrochemical phenomenon that etches metals at moderately negative potentials. Although cathodic corrosion probably occurs by forming a metal-containing anion, such intermediate species have not yet been observed. Here, aiming to resolve this long-standing debate, our work provides such evidence through X-ray absorption spectroscopy. High-energy-resolution X-ray absorption near-edge structure experiments are used to characterize platinum nanoparticles during cathodic corrosion in 10 mol l-1 NaOH. These experiments detect minute chemical changes in the Pt during corrosion that match first-principles simulations of X-ray absorption spectra of surface platinum multilayer hydrides. Thus, this work supports the existence of hydride-like platinum during cathodic corrosion. Notably, these results provide a direct observation of these species under conditions where they are highly unstable and where prominent hydrogen bubble formation interferes with most spectroscopy methods. Therefore, this work identifies the elusive intermediate that underlies cathodic corrosion.
Collapse
Affiliation(s)
- Thomas J P Hersbach
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Angel T Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Selwyn Hanselman
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Oscar A Paredes Mellone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Thijs Hoogenboom
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Ian T McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, USA
| | | | - Jeremy T Feaster
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Amanda C Garcia
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Faculty of Science, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Petr Krtil
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Elnagar MM, Kibler LA, Jacob T. Electrochemical Fabrication of Nanoparticles and Single-Atom Catalysts via Cathodic Corrosion. Chemistry 2025:e202500036. [PMID: 40019306 DOI: 10.1002/chem.202500036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
While cathodic corrosion may appear as an undesired degradation process at electrode surfaces, it has become a powerful electrochemical method for fabricating nanoparticles and single-atom catalysts. In contrast to traditional wet chemical synthesis, cathodic corrosion affords rapid, straightforward, capping-agent-free production of nanoparticles, enabling fine control over size, shape, and elemental composition. This mini-review summarizes recent advances in cathodic corrosion-based synthesis, emphasizing its unique capabilities for producing metallic, alloyed, and oxide nanoparticles, as well as single-atom catalysts. It explores the effects of varying parameters such as electrode material, electrolyte composition, voltage waveform, and frequency on the characteristics of the generated particles. Furthermore, it highlights the enhanced electrocatalytic or photoelectrocatalytic performance of the nanoparticles produced via cathodic corrosion.
Collapse
Affiliation(s)
| | - Ludwig A Kibler
- Institute of Electrochemistry, Ulm University, 89069, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89069, Ulm, Germany
| |
Collapse
|
4
|
Yan K, Lee SW, Yap KMK, Mule AS, Hannagan RT, Matthews JE, Kamat GA, Lee DU, Stevens MB, Nielander AC, Jaramillo TF. On-line Inductively Coupled Plasma Mass Spectrometry Reveals Material Degradation Dynamics of Au and Cu Catalysts during Electrochemical CO 2 Reduction. J Am Chem Soc 2025; 147:4079-4088. [PMID: 39871661 DOI: 10.1021/jacs.4c13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
A significant challenge in commercializing electrochemical CO2 reduction (CO2R) is achieving catalyst durability. In this study, online inductively coupled mass spectrometry (ICP-MS) was used to investigate catalyst degradation via nanoparticle detachment and/or dissolution into metal ions under CO2R operating conditions in 0.1 M KHCO3. We developed an experimental framework with ex situ characterization to validate the online ICP-MS method for in situ evaluation of degradation from metal foils. By varying the applied potential and microenvironment (CO2 vs N2-saturated electrolyte), we gained insights into the degradation of Au and Cu foils under CO2R and hydrogen evolution reaction (HER) conditions. While both Au and Cu foils were observed to be stable to dissolution in these regimes, degradation via nanoparticle detachment from the foil surface at the femtogram scale was observed as a function of reaction conditions, providing new insights into material degradation mechanisms. When applying potential steps at -0.1 and -1.0 V vs the reversible hydrogen electrode (RHE), Au was found to degrade via nanoparticle detachment under CO2R operating conditions more than under HER conditions, while Cu was found to degrade via nanoparticle detachment in similar amounts during both reactions. Au lost ∼1.8× more mass and ∼7.5× more nanoparticles than Cu under CO2R operating conditions. This study demonstrates the use of online ICP-MS to gain insight into the degradation of Au and Cu, the importance of studying unconventional degradation mechanisms such as nanoparticle detachment, and that online ICP-MS can be further utilized to gain fundamental understanding of catalyst durability for a variety of reaction systems.
Collapse
Affiliation(s)
- Katherine Yan
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sang-Won Lee
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kyra M K Yap
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Aniket S Mule
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ryan T Hannagan
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jesse E Matthews
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Gaurav A Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dong Un Lee
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
5
|
Lapawae K, Wutikhun T, Treetong A, Phuthong W, Pavarajarn V, Chakthranont P, Sinthiptharakoon K. Electrochemical Deterioration of a Gold Thin Film in Bicarbonate Solution: Correlative Optical, Nano-Mechanical, and Chemical Considerations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24230-24240. [PMID: 39500511 DOI: 10.1021/acs.langmuir.4c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The electrochemical dissolution of metals in liquid electrolytes is of great concern for various electrochemical technologies. However, it is also the focus for boosting metal recovery processes, e.g., from electronic wastes, one of which is the extraction of gold (Au) using eco-friendly electrolytes. To shed more light on the possibility and improvement of such metal leaching, this work presents the investigation of electrochemical deterioration of a Au nanofilm coated on a silicon (Si) support─ubiquitous materials in electronic components─in aqueous potassium bicarbonate (KHCO3) electrolyte, a solution widely used in food products. In addition to the time-dependent in situ Raman spectra revealing the reduced reflectivity of Au associated with its molecular degradation, the significant role of the electric double layer (EDL) at the metal/electrolyte interface is also indicated. Analyzing surface adhesion maps and force-distance spectra acquired using atomic force microscopy and spectroscopy (AFM/AFS), metal degradation is related to nanoscale worm-shaped reconstructed surface features that act as local sites of reduced refractive index. Complemented by the non-negligible fraction of K observed on the treated Au surfaces using scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), an electrochemical framework of metal degradation is proposed, depicting the electric-field-induced transport of K+ and H+ ions toward the Au surface regardless of bias polarity and implying the formation of ternary gold hydrides. The consideration of faradic current in the EDL circuit also suggests the occurrence of ternary gold oxides. Such determination is reinforced by the attributability of the polar and electrostatic characteristics of the worm-like features to residual negatively charged anionic clusters of the hydrides and the oxides. The analysis process and the new understanding of metal degradation provide a potential route for inspecting other metal/solution systems.
Collapse
Affiliation(s)
- Komsun Lapawae
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Witchukorn Phuthong
- Department of Physics, Faculty of Science, Kasetsart University, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Varong Pavarajarn
- Center of Excellence in Particle and Materials Processing Technology, Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kitiphat Sinthiptharakoon
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Liu S, Li Y, Wang D, Xi S, Xu H, Wang Y, Li X, Zang W, Liu W, Su M, Yan K, Nielander AC, Wong AB, Lu J, Jaramillo TF, Wang L, Canepa P, He Q. Alkali cation-induced cathodic corrosion in Cu electrocatalysts. Nat Commun 2024; 15:5080. [PMID: 38871724 PMCID: PMC11176167 DOI: 10.1038/s41467-024-49492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The reconstruction of Cu catalysts during electrochemical reduction of CO2 is a widely known but poorly understood phenomenon. Herein, we examine the structural evolution of Cu nanocubes under CO2 reduction reaction and its relevant reaction conditions using identical location transmission electron microscopy, cyclic voltammetry, in situ X-ray absorption fine structure spectroscopy and ab initio molecular dynamics simulation. Our results suggest that Cu catalysts reconstruct via a hitherto unexplored yet critical pathway - alkali cation-induced cathodic corrosion, when the electrode potential is more negative than an onset value (e.g., -0.4 VRHE when using 0.1 M KHCO3). Having alkali cations in the electrolyte is critical for such a process. Consequently, Cu catalysts will inevitably undergo surface reconstructions during a typical process of CO2 reduction reaction, resulting in dynamic catalyst morphologies. While having these reconstructions does not necessarily preclude stable electrocatalytic reactions, they will indeed prohibit long-term selectivity and activity enhancement by controlling the morphology of Cu pre-catalysts. Alternatively, by operating Cu catalysts at less negative potentials in the CO electrochemical reduction, we show that Cu nanocubes can provide a much more stable selectivity advantage over spherical Cu nanoparticles.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Yuheng Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Singapore.
| | - Haoming Xu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Yulin Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Xinzhe Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Wenjie Zang
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Weidong Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Mengyao Su
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Katherine Yan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrew B Wong
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| | - Pieremanuele Canepa
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| |
Collapse
|
7
|
Ostervold L, Smerigan A, Liu MJ, Filardi LR, Vila FD, Perez-Aguilar JE, Hong J, Tarpeh WA, Hoffman AS, Greenlee LF, Clark EL, Janik MJ, Bare SR. Cation Incorporation into Copper Oxide Lattice at Highly Oxidizing Potentials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47025-47036. [PMID: 37756387 DOI: 10.1021/acsami.3c10296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.
Collapse
Affiliation(s)
- Lars Ostervold
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam Smerigan
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Leah R Filardi
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lauren F Greenlee
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ezra Lee Clark
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
8
|
El-Nagar GA, Haun F, Gupta S, Stojkovikj S, Mayer MT. Unintended cation crossover influences CO 2 reduction selectivity in Cu-based zero-gap electrolysers. Nat Commun 2023; 14:2062. [PMID: 37045816 PMCID: PMC10097803 DOI: 10.1038/s41467-023-37520-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Membrane electrode assemblies enable CO2 electrolysis at industrially relevant rates, yet their operational stability is often limited by formation of solid precipitates in the cathode pores, triggered by cation crossover from the anolyte due to imperfect ion exclusion by anion exchange membranes. Here we show that anolyte concentration affects the degree of cation movement through the membranes, and this substantially influences the behaviors of copper catalysts in catholyte-free CO2 electrolysers. Systematic variation of the anolyte (KOH or KHCO3) ionic strength produced a distinct switch in selectivity between either predominantly CO or C2+ products (mainly C2H4) which closely correlated with the quantity of alkali metal cation (K+) crossover, suggesting cations play a key role in C-C coupling reaction pathways even in cells without discrete liquid catholytes. Operando X-ray absorption and quasi in situ X-ray photoelectron spectroscopy revealed that the Cu surface speciation showed a strong dependence on the anolyte concentration, wherein dilute anolytes resulted in a mixture of Cu+ and Cu0 surface species, while concentrated anolytes led to exclusively Cu0 under similar testing conditions. These results show that even in catholyte-free cells, cation effects (including unintentional ones) significantly influence reaction pathways, important to consider in future development of catalysts and devices.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
| | - Flora Haun
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Siddharth Gupta
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sasho Stojkovikj
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Matthew T Mayer
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
| |
Collapse
|
9
|
Qin X, Vegge T, Hansen HA. Cation-Coordinated Inner-Sphere CO 2 Electroreduction at Au-Water Interfaces. J Am Chem Soc 2023; 145:1897-1905. [PMID: 36630567 DOI: 10.1021/jacs.2c11643] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a promising technology for the clean energy economy. Numerous efforts have been devoted to enhancing the mechanistic understanding of CO2RR from both experimental and theoretical studies. Electrolyte ions are critical for the CO2RR; however, the role of alkali metal cations is highly controversial, and a complete free energy diagram of CO2RR at Au-water interfaces is still missing. Here, we provide a systematic mechanism study toward CO2RR via ab initio molecular dynamics simulations integrated with the slow-growth sampling (SG-AIMD) method. By using the SG-AIMD approach, we demonstrate that CO2RR is facile at the inner-sphere interface in the presence of K cations, which promote the CO2 activation with the free energy barrier of only 0.66 eV. Furthermore, the competitive hydrogen evolution reaction (HER) is inhibited by the interfacial cations with the induced kinetic blockage effect, where the rate-limiting Volmer step shows a much higher energy barrier (1.27 eV). Eventually, a comprehensive free energy diagram including both kinetics and thermodynamics of the CO2RR to CO and the HER at the electrochemical interface is derived, which illustrates the critical role of cations on the overall performance of CO2 electroreduction by facilitating CO2 adsorption while suppressing the hydrogen evolution at the same time.
Collapse
Affiliation(s)
- Xueping Qin
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| |
Collapse
|
10
|
Hanselman S, Calle-Vallejo F, Koper MTM. Computational description of surface hydride phases on Pt(111) electrodes. J Chem Phys 2023; 158:014703. [PMID: 36610959 DOI: 10.1063/5.0125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Surface platinum hydride structures may exist and play a potentially important role during electrocatalysis and cathodic corrosion of Pt(111). Earlier work on platinum hydrides suggests that Pt may form clusters with multiple equivalents of hydrogen. Here, using thermodynamic methods and density functional theory, we compared several surface hydride structures on Pt(111). The structures contain multiple monolayers of hydrogen in or near the surface Pt layer. The hydrogen in these structures may bind the subsurface or reconstruct the surface both in the set of initial configurations and in the resulting (meta)stable structures. Multilayer stable configurations share one monolayer of subsurface H stacking between the top two Pt layers. The structure containing two monolayers (MLs) of H is formed at -0.29 V vs normal hydrogen electrode, is locally stable with respect to configurations with similar H densities, and binds H neutrally. Structures with 3 and 4 ML H form at -0.36 and -0.44 V, respectively, which correspond reasonably well to the experimental onset potential of cathodic corrosion on Pt(111). For the 3 ML configuration, the top Pt layer is reconstructed by interstitial H atoms to form a well-ordered structure with Pt atoms surrounded by four, five, or six H atoms in roughly square-planar and octahedral coordination patterns. Our work provides insight into the operando surface state during low-potential reduction reactions on Pt(111) and shows a plausible precursor for cathodic corrosion.
Collapse
Affiliation(s)
- Selwyn Hanselman
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, 20018 San Sebastián, Spain
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
11
|
Li H, Liang Y, Ju W, Schneider O, Stimming U. In Situ Monitoring of the Surface Evolution of a Silver Electrode from Polycrystalline to Well-Defined Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14981-14987. [PMID: 36395357 DOI: 10.1021/acs.langmuir.2c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Capturing the surface-structural dynamics of metal electrocatalysts under certain electrochemical environments is intriguingly desired for understanding the behavior of various metal-based electrocatalysts. However, in situ monitoring of the evolution of a polycrystalline metal surface at the interface of electrode-electrolyte solutions at negative/positive potentials with high-resolution scanning tunneling microscopy (STM) is seldom. Here, we use electrochemical STM (EC-STM) for in situ monitoring of the surface evolution process of a silver electrode in both an aqueous sodium hydroxide solution and an ionic liquid of 1-methyl-1-octylpyrrolidinium bis(trifluoromethylsulfonyl) amide driven by negative potentials. We found silver underwent a surface change from a polycrystalline structure to a well-defined surface arrangement in both electrolytes. In NaOH aqueous solution, the silver surface transferred in several minutes at a turning-point potential where hydrogen adsorbed and formed mainly (111) and (100) pits. Controversially, the surface evolution in the ionic liquid was much slower than that in the aqueous solution, and cation adsorption was observed in a wide potential range. The surface evolution of silver is proposed to be linked to the surface adsorbates as well as the formation of their complexes with undercoordinated silver atoms. The results also show that cathodic annealing of polycrystalline silver is a cheap, easy, and reliable way to obtain quasi-ordered crystal surfaces.
Collapse
Affiliation(s)
- Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wenbo Ju
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Oliver Schneider
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Ulrich Stimming
- Department of Physics E19, Technische Universität München, James-Franck-Str.1, Garching b. München 85748, Germany
| |
Collapse
|
12
|
Li G, Liu H, Yang H, Chen X, Ji K, Yang D, Zhang S, Ma X. Tuning product distributions of CO2 electroreduction over copper foil through cathodic corrosion. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wei Q, Wang P, Ma Y, Du K, Yin H, Zhu H, Wang D. The correlation of the nickel (1 1 1) facet with the hydrogen evolution performance of Ni electrodes in alkaline solutions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Yang Y, Shao YT, Lu X, Yang Y, Ko HY, DiStasio RA, DiSalvo FJ, Muller DA, Abruña HD. Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopy. J Am Chem Soc 2022; 144:15698-15708. [PMID: 35976815 DOI: 10.1021/jacs.2c05989] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cathodic corrosion represents an enigmatic electrochemical process in which metallic electrodes corrode under sufficiently reducing potentials. Although discovered by Fritz Haber in the 19th century, only recently has progress been made in beginning to understand the atomistic mechanisms of corroding bulk electrodes. The creation of nanoparticles as the end-product of the corrosion process suggests an additional length scale of complexity. Here, we studied the dynamic evolution of morphology, composition, and crystallographic structural information of nanocrystal corrosion products by analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy (EC-STEM). Our operando/in situ electron microscopy revealed, in real-time, at the nanometer scale, that cathodic corrosion yields significantly higher levels of structural degradation for heterogeneous nanocrystals than bulk electrodes. In particular, the cathodic corrosion of Au nanocubes on bulk Pt electrodes led to the unexpected formation of thermodynamically immiscible Au-Pt alloy nanoparticles. The highly kinetically driven corrosion process is evidenced by the successive anisotropic transition from stable Pt(111) bulk single-crystal surfaces evolving to energetically less-stable (100) and (110) steps. The motifs identified in this microscopy study of cathodic corrosion of nanocrystals are likely to underlie the structural evolution of nanoscale electrocatalysts during many electrochemical reactions under highly reducing potentials, such as CO2 and N2 reduction.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yu-Tsun Shao
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yan Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Hu H, Liu M, Kong Y, Montiel IZ, Hou Y, Rudnev AV, Broekmann P. Size‐dependent Structural Alterations in Ag Nanoparticles During CO2 Electrolysis in a Gas‐fed Zero‐gap Electrolyzer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huifang Hu
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Menglong Liu
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Ying Kong
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | | | - Yuhui Hou
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Alexander V. Rudnev
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern SWITZERLAND
| | - Peter Broekmann
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| |
Collapse
|
16
|
Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling Operando Electrochemical CO 2 Reduction. Chem Rev 2022; 122:11085-11130. [PMID: 35476402 DOI: 10.1021/acs.chemrev.1c00690] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.
Collapse
Affiliation(s)
- Federico Dattila
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ranga Rohit Seemakurthi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
17
|
Evazzade I, Zagalskaya A, Alexandrov V. Revealing Elusive Intermediates of Platinum Cathodic Corrosion through DFT Simulations. J Phys Chem Lett 2022; 13:3047-3052. [PMID: 35352928 DOI: 10.1021/acs.jpclett.1c04187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cathodic corrosion of metals discovered more than 120 years ago remains a poorly understood electrochemical process. It is believed that the corrosion intermediates formed during cathodic polarization are extremely short-lived species because of their high reactivity. Together with the concurrent vigorous hydrogen evolution, this makes it challenging to investigate the reaction mechanism and detect the intermediates experimentally. From a computational standpoint, the process also presents a serious challenge as it occurs at rather low negative potentials in concentrated alkaline solutions. Here, we use density-functional-theory calculations to elucidate the identity of reaction intermediates and their reactivity at the Pt(111)/electrolyte interface. By controlling the electrode potential in an experimentally relevant region through constant Fermi-level molecular dynamics, we reveal the formation of alkali cation-stabilized Pt hydrides as intermediates of cathodic corrosion. The results also suggest that the found Pt anions could discharge at the interface to produce H2 by reacting with either surface-bound hydrogen species or solution water molecules.
Collapse
Affiliation(s)
- Iman Evazzade
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexandra Zagalskaya
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
18
|
Electrochemical synthesis of catalytic materials for energy catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63940-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Zhao X, Tang K, Lee C, Du CF, Yu H, Wang X, Qi W, Ye Q, Yan Q. Promoting the Water-Reduction Kinetics and Alkali Tolerance of MoNi 4 Nanocrystals via a Mo 2 TiC 2 T x Induced Built-In Electric Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107541. [PMID: 35254002 DOI: 10.1002/smll.202107541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Mo-Ni alloy-based electrocatalysts are regarded as promising candidates for the hydrogen evolution reaction (HER), despite their vulnerable stability in alkaline solution that hampers further application. Herein, Mo2 TiC2 Tx MXene, is employed as a support for MoNi4 alloy nanocrystals (NCs) to fabricate a unique nanoflower-like MoNi4 -MXn electrocatalyst. A remarkably strong built-in electric field is established at the interface of two components, which facilitates the electron transfer from Mo2 TiC2 Tx to MoNi4 . Due to the accumulation of electrons at the MoNi4 sites, the adsorption of the catalytic intermediates and ionic species on MoNi4 is affected consequently. As a result, the MoNi4 -MX10 nanohybrid exhibits the lowest overpotential, even lower than 10% Pt/C catalyst at the current density of 10 mA cm-2 in 1 m KOH solution (122.19 vs 129.07 mV, respectively). Furthermore, a lower Tafel slope of 55.88 mV dec-1 is reported as compared to that of the 10% Pt/C (65.64 mV dec-1 ). Additionally, the MoNi4 -MX10 catalyst also displays extraordinary chemical stability in alkaline solution, with an activity loss of only 0.15% per hour over 300 h of operation. This reflects the great potential of using MXene-based interfacial engineering for the synthesis of a highly efficient and stable electrocatalyst.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Kewei Tang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Cheng-Feng Du
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaomei Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Weihong Qi
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Ahsan M, Hossain MM, Almahri A, Rahman MM, Hasnat MA. Optimisation and stability of Rh particles on noble metal films immobilised on H + conducting solid polymer electrolyte in attaining efficient nitrate removal. Chem Asian J 2022; 17:e202200150. [PMID: 35316865 DOI: 10.1002/asia.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
During the electrocatalytic reduction of nitrate, nitrite is often evolved as a product along with ammonia due to the sluggish nitrite to ammonia conversion process compared to the nitrate to nitrite conversion step. Rhodium metal has been proven to enhance nitrite to ammonia conversion rates, yielding ammonia as the only final product. In the present article, we have shown how effectively Rh nanoparticles immobilized on Pt and Pd films deposited on H + conducting Nafion-117 membranes eliminate intermediate nitrite ions during the progress of the nitrate reduction reaction in a flow type reactor. In this research, we also demonstrated the optimization of Rh nanoparticles on the cathode surface to attain effective nitrate reduction along with a reproducibility check. The dissolution of loosely held Rh nanoparticles on the cathodic surface was observed, which tends to redeposit during cathodic electrolysis, causing stable performance. Finally, Tafel analysis was performed to show the relative kinetic feasibility of the Rh modified Pt and Pd electrodes in attaining nitrate reduction reactions in neutral medium.
Collapse
Affiliation(s)
- Mohebul Ahsan
- Shahjalal University of Science and Technology, Chemistry, BANGLADESH
| | | | | | - Mohammed M Rahman
- King Abdulaziz University, Chemistry, Center of Excellence for Advanced Material Researc, King Abdulaziz University, 21589, JEDDAH, SAUDI ARABIA
| | - Mohammad A Hasnat
- Shahjalal University of Science and Technology, Chemistry, Akhalia, 3114, Sylhet, BANGLADESH
| |
Collapse
|
21
|
Perroni PB, Del Colle V, Tremiliosi-Filho G, Varela H. Electro-oxidation of methanol and glucose on preferentially oriented platinum surfaces: the role of oscillatory kinetics. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Elnagar MM, Jacob T, Kibler LA. Cathodic corrosion of Au in aqueous methanolic alkali metal hydroxide electrolytes: Notable role of water. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Timo Jacob
- Institute of Electrochemistry Ulm University Ulm Germany
| | | |
Collapse
|
23
|
Monteiro MCO, Goyal A, Moerland P, Koper MTM. Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media. ACS Catal 2021; 11:14328-14335. [PMID: 34888121 PMCID: PMC8650008 DOI: 10.1021/acscatal.1c04268] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Indexed: 12/03/2022]
Abstract
![]()
In this work, we
study how the cation identity and concentration
alter the kinetics of the hydrogen evolution reaction (HER) on platinum
and gold electrodes. A previous work suggested an inverted activity
trend as a function of alkali metal cation when comparing the performance
of platinum and gold catalysts in alkaline media. We show that weakly
hydrated cations (K+) favor HER on gold only at low overpotentials
(or lower alkalinity), whereas in more alkaline pH (or high overpotentials),
a higher activity is observed using electrolytes containing strongly
hydrated cations (Li+). We find a similar trend for platinum;
however, the inhibition of HER by weakly hydrated cations on platinum
is observed already at lower alkalinity and lower cation concentrations,
suggesting that platinum interacts more strongly with metal cations
than gold. We propose that weakly hydrated cations stabilize the transition
state of the water dissociation step more favorably due to their higher
near-surface concentration in comparison to a strongly hydrated cation
such as Li+. However, at high pH and consequently higher
near-surface cation concentrations, the accumulation of these species
at the outer Helmholtz plane inhibits HER. This is especially pronounced
on platinum, where a change in the rate-determining step is observed
at pH 13 when using a Li+- or K+-containing
electrolyte.
Collapse
Affiliation(s)
- Mariana C. O. Monteiro
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Akansha Goyal
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Pricilla Moerland
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
24
|
Khan MF, Qurashi A. Micro-indented-mechanically-engineered Ni-Fe-Mo-Cu alloying electrocatalyst for oxygen evolution reaction: A cost-effective approach for green hydrogen production. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Raaijman S, Arulmozhi N, Koper MTM. Morphological Stability of Copper Surfaces under Reducing Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48730-48744. [PMID: 34612038 PMCID: PMC8532114 DOI: 10.1021/acsami.1c13989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 05/28/2023]
Abstract
Though copper is a capable electrocatalyst for the CO2 reduction reaction (CO2RR), it rapidly deactivates to produce mostly hydrogen. A current hypothesis as to why this occurs is that potential-induced morphological restructuring takes place, leading to a redistribution of the facets at the interface resulting in a shift in the catalytic activity to favor the hydrogen evolution reaction over CO2RR. Here, we investigate the veracity of this hypothesis by studying the changes in the voltammetry of various copper surfaces, specifically the three principal orientations and a polycrystalline surface, after being subjected to strongly cathodic conditions. The basal planes were chosen as model catalysts, while polycrystalline copper was included as a means of investigating the overall behavior of defect-rich facets with many low coordination steps and kink sites. We found that all surfaces exhibited (perhaps surprisingly) high stability when subjected to strongly cathodic potentials in a concentrated alkaline electrolyte (10 M NaOH). Proof for morphological stability under CO2RR-representative conditions (60 min at -0.75 V in 0.5 M KHCO3) was obtained from identical location scanning electron microscopy, where the mesoscopic morphology for a nanoparticle-covered copper surface was found unchanged to within the instrument accuracy. Observed changes in voltammetry under such conditions, we found, were not indicative of a redistribution of surface sites but of electrode fouling. Besides impurities, we show that (brief) exposure to oxygen or oxidizing conditions (i.e., 1 min) leads to copper exhibiting changing morphology upon cathodic treatment which, we posit, is ultimately the reason why many groups report the evolution of copper morphology during CO2RR: accidental oxidation/reduction cycles.
Collapse
|
26
|
Wirtanen T, Prenzel T, Tessonnier JP, Waldvogel SR. Cathodic Corrosion of Metal Electrodes-How to Prevent It in Electroorganic Synthesis. Chem Rev 2021; 121:10241-10270. [PMID: 34228450 PMCID: PMC8431381 DOI: 10.1021/acs.chemrev.1c00148] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The critical aspects
of the corrosion of metal electrodes in cathodic
reductions are covered. We discuss the involved mechanisms including
alloying with alkali metals, cathodic etching in aqueous and aprotic
media, and formation of metal hydrides and organometallics. Successful
approaches that have been implemented to suppress cathodic corrosion
are reviewed. We present several examples from electroorganic synthesis
where the clever use of alloys instead of soft neat heavy metals and
the application of protective cationic additives have allowed to successfully
exploit these materials as cathodes. Because of the high overpotential
for the hydrogen evolution reaction, such cathodes can contribute
toward more sustainable green synthetic processes. The reported strategies
expand the applications of organic electrosynthesis because a more
negative regime is accessible within protic media and common metal
poisons, e.g., sulfur-containing substrates, are compatible with these
cathodes. The strongly diminished hydrogen evolution side reaction
paves the way for more efficient reductive electroorganic conversions.
Collapse
Affiliation(s)
- Tom Wirtanen
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Prenzel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, 617 Bissell Road, Ames, Iowa 50011-1098, United States.,Center for Biorenewable Chemicals (CBiRC), Ames, Iowa, 50011-1098, United States
| | - Siegfried R Waldvogel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
27
|
Elnagar MM, Hermann JM, Jacob T, Kibler LA. An affordable option to Au single crystals through cathodic corrosion of a wire: Fabrication, electrochemical behavior, and applications in electrocatalysis and spectroscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Nanoscale morphological evolution of monocrystalline Pt surfaces during cathodic corrosion. Proc Natl Acad Sci U S A 2020; 117:32267-32277. [PMID: 33288700 PMCID: PMC7768681 DOI: 10.1073/pnas.2017086117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cathodic corrosion is a relatively unexplored but highly enigmatic electrochemical phenomenon that transforms, roughens, and dissolves metal surfaces under cathodic polarization. We show how cathodic corrosion of a platinum spherical single-crystal electrode in an aqueous alkaline electrolyte leads initially to the formation of etch pits that reflect the local symmetry of the surface and subsequently develop into a growth regime in which self-similar diffusion-limited patterns emerge. These are unique observations that may eventually open the door to controlled surface patterning and nanoparticle preparation. This paper studies the cathodic corrosion of a spherical single crystal of platinum in an aqueous alkaline electrolyte, to map out the detailed facet dependence of the corrosion structures forming during this still largely unexplored electrochemical phenomenon. We find that anisotropic corrosion of the platinum electrode takes place in different stages. Initially, corrosion etch pits are formed, which reflect the local symmetry of the surface: square pits on (100) facets, triangular pits on (111) facets, and rectangular pits on (110) facets. We hypothesize that these etch pits are formed through a ternary metal hydride corrosion intermediate. In contrast to anodic corrosion, the (111) facet corrodes the fastest, and the (110) facet corrodes the slowest. For cathodic corrosion on the (100) facet and on higher-index surfaces close to the (100) plane, the etch pit destabilizes in a second growth stage, by etching faster in the (111) direction, leading to arms in the etch pit, yielding a concave octagon-shaped pit. In a third growth stage, these arms develop side arms, leading to a structure that strongly resembles a self-similar diffusion-limited growth pattern, with strongly preferred growth directions.
Collapse
|
29
|
Hersbach TJP, Ye C, Garcia AC, Koper MTM. Tailoring the Electrocatalytic Activity and Selectivity of Pt(111) through Cathodic Corrosion. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Thomas J. P. Hersbach
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Chunmiao Ye
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Amanda C. Garcia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
30
|
Waegele MM, Gunathunge CM, Li J, Li X. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J Chem Phys 2019; 151:160902. [PMID: 31675864 DOI: 10.1063/1.5124878] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Electrocatalysis is central to the production of renewable fuels and high-value commodity chemicals. The electrolyte and the electrode together determine the catalytic properties of the liquid/solid interface. In particular, the cations of the electrolyte can greatly change the rates and reaction selectivity of many electrocatalytic processes. For this reason, the careful choice of the cation is an essential step in the design of catalytic interfaces with high selectivity for desired high-value products. To make such a judicious choice, it is critical to understand where in the electric double layer the cations reside and the various distinct mechanistic impacts they can have on the electrocatalytic process of interest. In this perspective, we review recent advances in the understanding of the electric double layer with a particular focus on the interfacial distribution of cations and the cations' hydration states in the vicinity of the electrode under various experimental conditions. Furthermore, we summarize the different ways in which cations can alter the rates and selectivity of chemical processes at electrified interfaces and identify possible future areas of research in this field.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Charuni M Gunathunge
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Jingyi Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Xiang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| |
Collapse
|
31
|
Gromov A, Nalivaiko A, Fehn T, Yahya DPM, Osipenkova A, Koleczko A, Knapp S, Teipel U. Cathode plasma electrolysis in diluted potassium hydroxide solutions: Particles formation and energetic estimation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|