1
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Zheng Z, Qian X, Bin D, Wang Y, Xu J. Room-temperature synthesis of a methacrylate-derived sulfurized polymer cathode for rechargeable lithium batteries. Chem Commun (Camb) 2025; 61:6486-6489. [PMID: 40178148 DOI: 10.1039/d5cc01709b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We designed and synthesized three methacrylate-derived sulfurized polymer cathodes via a one-step polymerization at room temperature. Among them, the cyclohexyl methacrylate-based sulfurized polymer (SP-2) cathode exhibited both high capacity and stability, enabling stable cycling over a 0-60 °C temperature range.
Collapse
Affiliation(s)
- Zhangyu Zheng
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China.
| | - Xiaofei Qian
- School of Microelectronics, Fudan University, Shanghai 200433, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, P. R. China
| | - Duan Bin
- Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226000, P. R. China
| | - Yanrong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Xu
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China.
| |
Collapse
|
3
|
Ranjeesh KC, Javaregowda BH, Gaber S, Bhauriyal P, Kumar S, Skorjanc T, Finšgar M, Heine T, Krishnamoorthy K, Shetty D. Heteroatom-Synergistic Effect on Anchoring Polysulfides In Chalcone-Linked Nanographene Covalent Organic Frameworks for High-Performance Li─S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415897. [PMID: 39998312 PMCID: PMC12021064 DOI: 10.1002/advs.202415897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Lithium-sulfur (Li─S) batteries are an attractive option for future energy storage devices because they offer higher theoretical specific capacity, energy density, and cost-effectiveness than commercial lithium-ion batteries. However, the practical applications of Li─S batteries are significantly limited by the shuttle effect caused by intermediate lithium polysulfides (LiPSs) and slow redox kinetics. In this study, the molecular engineering of chalcone-linked, sp2-bonded nanographene-type covalent organic frameworks (COFs) as sulfur hosts is reported to enhance interactions with LiPSs, thereby effectively suppressing the shuttle effect. The developed sulfur-hosting cathode material demonstrated outstanding battery performance, surpassing most reported materials by achieving a specific capacity of 1228 mA h g-1 at 0.5C, with 80% retention after 500 cycles and an average Coulombic Efficiency (C.E.) of 99%. Additionally, the mechanisms of sulfur immobilization, the subsequent conversion into lithium polysulfides (LiPSs), and their binding energies with COFs are investigated using density functional theory (DFT) calculations. These findings offer valuable insights into the structure-property relationships essential for developing more efficient sulfur-hosting cathodes.
Collapse
Affiliation(s)
| | | | - Safa Gaber
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Preeti Bhauriyal
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Sushil Kumar
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Tina Skorjanc
- Materials Research LaboratoryUniversity of Nova GoricaVipavska cesta 11cAjdovscina5270Slovenia
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical EngineeringUniversity of MariborSmetanova ulica 17Maribor2000Slovenia
| | - Thomas Heine
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Helmholtz‐Zentrum Dresden‐RossendorfCenter for Advanced Systems Understanding, CASUSUntermarkt 2002826GörlitzGermany
- Department of Chemistry and ibs for NanomedicineYonsei UniversitySeodaemun‐guSeoul120‐749South Korea
| | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR‐National Chemical Laboratory (CSIR‐NCL)Pune411008India
| | - Dinesh Shetty
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University Science & TechnologyAbu DhabiP.O. Box 127788UAE
| |
Collapse
|
4
|
Bao Y, Yue B, Li L, Shao H, Xie Y, Ma Q, Yu W, Wang J, Dong X. LaF 3@SiO 2 yolk-shell heterostructure nanofiber-modified separator enhances the long-cycling performance of lithium-sulfur batteries. J Colloid Interface Sci 2025; 683:358-374. [PMID: 39693875 DOI: 10.1016/j.jcis.2024.12.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
High-energy-density lithium-sulfur (Li-S) cells are identified as one of the most prospective next-generation energy storage appliances owing to their numerous advantages. Nonetheless, their widespread applications are restricted by the unwanted shuttling effect and tardy conversion reaction kinetics of lithium polysulfides (LiPSs). To address these puzzles, we present an innovative strategy for the one-pot synthesis of LaF3@SiO2 yolk-shell heterostructure nanofibers (YSHNFs) through a straightforward uniaxial electrospinning process coupled with fluorination, avoiding the complexities of traditional methods. The specially designed LaF3@SiO2 YSHNFs are utilized as an interlayer to modify a polypropylene (PP) film, creating a LaF3@SiO2/PP separator for long-cycle Li-S batteries. Peculiar "3 + 1" mode anchoring (quadruplex anchoring) and "3 + 1" mode catalysis (quadruplex catalysis) are present in the LaF3@SiO2 YSHNFs, effectively inhibiting the LiPSs shuttling and enhancing their conversion reaction kinetics. Furthermore, the yolk-shell cavity acts as a nanoreactor, advancing the conversion of LiPSs on the LaF3@SiO2 heterostructure. Owing to the strategic design of components and the distinctive structure of LaF3@SiO2 YSHNFs, the combination of the quadruplex anchoring, the quadruplex catalysis, and the nanoreactor collectively contributes to a long-cyclic Li-S battery with high performances. The bare sulfur cathode using the LaF3@SiO2/PP separator exhibits an impressive incipient discharge capacity of 1514 mAh g-1 at 0.2 C and displays a decay rate of only 0.034 % per cycle at 2 C over 600 cycles with a distinguished stability. Density functional theory calculations offer insights into the mechanisms of quadruplex anchoring and catalytic conversion reactions involving the LaF3@SiO2 heterostructure for LiPSs redox process. The strategies for interlayer design, concepts and techniques proposed in this study provide valuable guidance for developing yolk-shell structured materials for advanced long-cyclic Li-S batteries.
Collapse
Affiliation(s)
- Yingying Bao
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Bin Yue
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Lin Li
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Yunrui Xie
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinxian Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiangting Dong
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
5
|
Waentig AL, Li X, Zhao M, Haldar S, Koko P, Paasch S, Mueller A, Alvarez KMG, Auras F, Brunner E, Schneemann A, Huang JQ, Kaskel S, Wang M, Feng X. Electron-deficient two-dimensional poly(arylene vinylene) covalent organic frameworks: efficient synthesis and host-guest interaction. Chem Sci 2025; 16:4152-4158. [PMID: 39906377 PMCID: PMC11788921 DOI: 10.1039/d4sc06903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Crystalline and porous 2D poly(arylene vinylene)s (2D PAVs), i.e. vinylene-linked 2D conjugated covalent organic frameworks, represent promising materials for electronic and electrochemical applications. Chemically robust 2D PAVs with strong electron affinity are highly desirable for effective host-guest charge transfer to achieve enhanced device performance. Herein, we report the efficient synthesis and host-guest interaction of two novel 2D PAVs incorporating electron-deficient bipyrazine units with a N-free 2D PAV as a reference. They are crystalline and chemically robust. Various spectroscopies coupled with theoretical calculations indicate that the abundant N sites boost the electron affinity of 2D PAVs. We test their efficiency in hosting guest sulfur species and find that the electron-deficient materials help to physically confine and stabilize sulfur/polysulfide (e.g., Li2S6) molecules with facilitated intermolecular charge transfer in the porous channels. As a result, using sulfur encapsulated by 2D PAVs as electrode materials, we achieve high specific capacities with excellent capacity retention after 200 charge-discharge cycles for Li-sulfur batteries.
Collapse
Affiliation(s)
- Albrecht L Waentig
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Xiaodong Li
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| | - Meng Zhao
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology Beijing 100081 China
| | - Sattwick Haldar
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Philomene Koko
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Silvia Paasch
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Alina Mueller
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Karen M Garcia Alvarez
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Florian Auras
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Eike Brunner
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Andreas Schneemann
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Jia-Qi Huang
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology Beijing 100081 China
| | - Stefan Kaskel
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Fraunhofer Institute for Material and Beam Technology (IWS) Winterbergstraße 28 01277 Dresden Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen 518055 China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
6
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Petersgasse 16, Graz, A-8010, Austria
| |
Collapse
|
7
|
Tu Y, Li H, Xue Y, Xie W, Chen C, Zhong Y, Lin Z, Cai Z. Fluorine-functionalized covalent organic framework coated solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for monitoring triclosan, triclocarban, and chlorophenols in mice. Talanta 2024; 278:126503. [PMID: 38963976 DOI: 10.1016/j.talanta.2024.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Triclosan (TCS), triclocarban (TCC), and chlorophenols (CPs) are broad-spectrum antibacterials widely used in dermatological and oral hygiene products, which could induce severe liver and intestine injuries. Hence, it is essential to establish a rapid and sensitive method to monitor TCS, TCC, and CPs in various organisms. In this work, fluorine-functionalized covalent organic framework (COF-F) was prepared by using 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tri-aniline and 2,3,5,6-tetrafluoroterephthalaldehyde as two building units and employed as a solid phase microextraction (SPME) probe for the extraction of TCS, TCC and CPs. The COF-F possessed excellent hydrophobicity, a large specific surface area (1354.3 m2 g-1) and high uniform porosity (3.2 nm), which facilitated high selectivity and adsorption properties towards TCS, TCC, and CPs. Therefore, the as-prepared COF-F-SPME in combination with electrospray ionization mass spectrometry has been developed to provide fast and ultrasensitive detection of TCS, TCC, and CPs in biological samples. The established method demonstrated satisfactory linear ranges (0.01-100.00 μg L-1) and low limits of detection (0.003-0.040 μg L-1) for TCS, TCC and CPs. The developed method could be successfully applied to detect TCS, TCC and CPs in the liver and kidney tissues of mice, demonstrating the potential for the detection of chlorinated aromatic pollutants in the biological samples.
Collapse
Affiliation(s)
- Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuandi Xue
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Zhou T, Yuan Y, Xiao L, Ding W, Wang Y, Lv LP. Boosting of Redox-Active Polyimide Porous Organic Polymers with Multi-Walled Carbon Nanotubes towards Pseudocapacitive Energy Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1388. [PMID: 39269050 PMCID: PMC11397463 DOI: 10.3390/nano14171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Redox-active porous organic polymers (POPs) demonstrate significant potential in supercapacitors. However, their intrinsic low electrical conductivity and stacking tendencies often lead to low utilization rates of redox-active sites within their structural units. Herein, polyimide POPs (donated as PMTA) are synthesized in situ on multi-walled carbon nanotubes (MWCNTs) from tetramino-benzoquinone (TABQ) and 1,4,5,8-naphthalene tetracarboxylic dianhydride (PMDA) monomers. The strong π-π stacking interactions drive the PMTA POPs and the MWCNTs together to form a PMTA/MWCNT composite. With the assistance of MWCNTs, the stacking issue and low conductivity of PMTA POPs are well addressed, leading to the obvious activation and enhanced utilization of the redox-active groups in the PMTA POPs. PMTA/MWCNT then achieves a high capacitance of 375.2 F g-1 at 1 A g-1 as compared to the pristine PMTA POPs (5.7 F g-1) and excellent cycling stability of 89.7% after 8000 cycles at 5 A g-1. Cyclic voltammetry (CV) and in situ Fourier-Transform Infrared (FT-IR) results reveal that the electrode reactions involve the reversible structural evolution of carbonyl groups, which are activated to provide rich pseudocapacitance. Asymmetric supercapacitors (ASCs) assembled with PMTA/MWCNTs and activated carbon (AC) offer a high energy density of 15.4 Wh kg-1 at 980.4 W kg-1 and maintain a capacitance retention of 125% after 10,000 cycles at 5 A g-1, indicating their good potential for practical applications.
Collapse
Affiliation(s)
- Tian Zhou
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu Yuan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Luyi Xiao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Wei Ding
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Li-Ping Lv
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
9
|
Xu Y, Gong J, Li Q, Guo X, Wan X, Xu L, Pang H. Covalent organic frameworks and their composites for rechargeable batteries. NANOSCALE 2024; 16:11429-11456. [PMID: 38855977 DOI: 10.1039/d4nr01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.
Collapse
Affiliation(s)
- Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jiayue Gong
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Xin Wan
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Lin Xu
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
10
|
Li HY, Li ZS, Qiu GH, Zhang RR, Wang YR, Wang F, Huang RW, Liu XF, Zang SQ. Viologen-based ionic conjugated mesoporous polymer as the electron conveyer for efficient polysulfide trapping and conversion. Sci Bull (Beijing) 2024; 69:1071-1080. [PMID: 38302332 DOI: 10.1016/j.scib.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
The commercialization of lithium-sulfur (Li-S) batteries has been hindered by the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs). Herein, we reported a viologen-based ionic conjugated mesoporous polymer (TpV-Cl), which acts as the cathode host for modifying Li-S batteries. The viologen component serves as a reversible electron conveyer, leading to a comprehensive enhancement in the adsorption of polysulfides and improved conversion rate of polysulfides during the electrochemical process. As a result, the S@TpV-PS cathode exhibits outstanding cycling performance, achieving 300 cycles at 2.0 C (1 C = 1675 mA g-1) with low decay rate of 0.032% per cycle. Even at a high sulfur loading of 4.0 mg cm-2, S@TpV-PS shows excellent cycling stability with a Coulombic efficiency of up to 98%. These results highlight the significant potential of S@TpV-PS in developing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Shan Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Gang-Hao Qiu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rou-Rou Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Fei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Li M, Wang H, Yan G, Hu Z, Feng Y, Zhang X. Bifunctional Sulfhydryl-Based Polyimides for Highly Active Cathodes of Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38441047 DOI: 10.1021/acsami.3c18930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Sulfhydryl-based polyimides were synthesized by the nucleophilic ring-opening reaction of thiolactone monomers (BPDA-T, ODPA-T, BTDA-T) with polyethylenimine (PEI), and they were coated on carbon nanotubes as host materials (BPTP@CNT, ODTP@CNT, and BTTP@CNT) of the sulfur cathode. BPTP@CNT/S, ODTP@CNT/S, and BTTP@CNT/S as cathode materials not only promote the covalent bonding of sulfur and polysulfide with sulfhydryl-based polyimides but also reduce the shuttle effect of soluble polysulfide in the redox process. Moreover, sulfhydryl-based polyimides can help improve the compatibility and interfacial contact between sulfur and conductive carbon while alleviating the volume expansion of the cathode. In addition, the conductive network of carbon nanotubes improves the electronic conductivity of the cathode materials. The BTTP@CNT/S cathode showed superior stability (the initial capacity was 902 mAh g-1 at 1C, and the capacity retention rate was 88.58% after 500 cycles) and the initial capacity could reach 718 mAh g-1 when the sulfur loading was 4.8 mg cm-2 (electrolyte/sulfur ratio: 10 μL mg-1), which fully proves the feasibility of the large-scale application of sulfhydryl-based polyimide materials.
Collapse
Affiliation(s)
- Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Han Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Zongjie Hu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
12
|
Zhang X, Xue S, Yan Y, Liu S, Ye Q, Zhou F. Mechanochemical Synthesis of Thiadiazole Functionalized COF as Oil-Based Lubricant Additive for Reducing Friction and Wear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4373-4381. [PMID: 38359406 DOI: 10.1021/acs.langmuir.3c03634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In this work, the functionalized covalent organic framework (COF) was prepared via a convenient ball milling process. The aldehyde group terminated COF-F reacted with amino thiadiazole in the ball milling jar under mechanical forces; hence, the thiadiazole functionalized COF-F was obtained and denoted as Thdz@COF-F. The as-prepared Thdz@COF-F serves as an oil-based lubricant additive and exhibits remarkable tribological properties, which can reduce the average friction coefficient of base oil from 0.169 to 0.102 and decrease the wear volume by 87.0%. The antifriction and antiwear performances are mainly due to the repairing effect of Thdz@COF-F nanoparticles and the protective tribo-film that averts the direct contact of friction pairs. In addition, through the ball milling method, triazole and thiazole functionalized COF-F were also prepared and represented good lubrication performance, demonstrating the feasibility of this mechanochemical synthesis method for functionalized COFs.
Collapse
Affiliation(s)
- Xiaozhi Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Shenghua Xue
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Yaojie Yan
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
13
|
Liu X, Ding X, Zheng T, Jin Y, Wang H, Yang X, Yu B, Jiang J. Single Cobalt Ion-Immobilized Covalent Organic Framework for Lithium-Sulfur Batteries with Enhanced Rate Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4741-4750. [PMID: 38239127 DOI: 10.1021/acsami.3c16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covalent organic frameworks (COFs) are notable for their remarkable structure, function designability, and tailorability, as well as stability, and the introduction of "open metal sites" ensures the efficient binding of small molecules and activation of substrates for heterogeneous catalysis and energy storage. Herein, we use the postsynthetic metal sites to catalyze polysulfide conversion and to boost the binding affinity to active matter for lithium-sulfur batteries (LSBs). A dual-pore COF, USTB-27, with hxl topology has been successfully assembled from the imine chemical reaction between 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and [2,2'-bipyridine]-5,5'-diamine. The chelating nitrogen sites of both modules are able to postsynthetically functionalize with single cobalt sites to generate USTB-27-Co. The discharge capacity of the sulfur-loaded S@USTB-27-Co composite in a LSB is 1063, 945, 836, 765, 696, and 644 mA h g-1 at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C, respectively, much superior to that of non-cobalt-functionalized species S@USTB-27. Following the increased current densities, the rate performance of S@USTB-27-Co is much better than that of S@USTB-27. In particular, the capacity retention at 5.0 C has a magnificent increase from 19% for the latter species to 61% for the former one. Moreover, S@USTB-27-Co exhibits a higher specific capacity of 543 mA h g-1 than that of S@USTB-27 (402 mA h g-1) at a current density of 1.0 C after electrochemical cycling for 500 runs. This work illustrates the "open metal sites" strategy to engineer the active chemical component conversion in COF channels as well as their binding strength for specific applications.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Haldar S, Khan AH, De A, Reichmayr F, Morag A, Yu M, Schneemann A, Kaskel S. Fluorinated Benzimidazole-Linked Highly Conjugated Polymer Enabling Covalent Polysulfide Anchoring for Stable Sulfur Batteries. Chemistry 2024; 30:e202302779. [PMID: 37877583 DOI: 10.1002/chem.202302779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Sulfur is one of the most abundant and economical elements in the p-block family and highly redox active, potentially utilizable as a charge-storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal-sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well-known nucleophilic aromatic substitution mechanism (SN Ar), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post-synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so-called polysulfide shuttle effect in the lithium-sulfur (Li-S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum-sulfur (Al-S) battery that is configured with mostly p-block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Fanny Reichmayr
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ahiud Morag
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
15
|
Wang X, Wang Y, Kang Y, Yao B, Peng X. Deep eutectic solvent-infused two-dimensional metal-organic framework membranes as quasi-solid-state electrolytes for wearable micro-supercapacitors. NANOSCALE 2023; 15:15626-15634. [PMID: 37721154 DOI: 10.1039/d3nr03464j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The burgeoning field of miniaturized and portable electronic devices calls for novel advances in micro-energy storage technology. Micro-supercapacitors (MSC) stand at the forefront of this endeavour, yet unlocking their full potential necessitates the exploration of high-performance electrolytes. Herein, we introduce a strategy that leverages flexible metal-organic framework (MOF, CuTCPP) nanosheet-based membranes to construct quasi-solid-state electrolytes (QSSEs) and enhance the ionic conductivity and electrochemical performance of deep eutectic solvent (DES)-based MSCs. Owing to the multiple nanochannel pathways provided by the porous MOF nanosheets, the ionic conductivity of DES within the nanochannels exhibits a 13-fold increment compared with its bulk counterpart. Furthermore, we engineered MSC harnessing the CuTCPP-DES system, whose performance surpasses that reported for most of the ionic liquid and 2D material-based MSCs. The areal-specific capacitance was 81.3 mF cm-2 at a current density of 0.1 mA cm-2, and the energy density was 45.17 μW h cm-2 at a power density of 8.559 mW cm-2. Notably, the performance of MSCs remains consistent and unaffected, even when subjected to bending. These findings contribute to the exploration and potential optimization of the inherent benefits of MOFs, thereby presenting a paradigm shift in nanoconfined systems for microscale energy storage applications.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Yuqi Wang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Yuan Kang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Bing Yao
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
16
|
Jing X, Zhang M, Mu Z, Shao P, Zhu Y, Li J, Wang B, Feng X. Gradient Channel Segmentation in Covalent Organic Framework Membranes with Highly Oriented Nanochannels. J Am Chem Soc 2023; 145:21077-21085. [PMID: 37699243 DOI: 10.1021/jacs.3c07393] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Covalent organic frameworks (COFs) offer an exceptional platform for constructing membrane nanochannels with tunable pore sizes and tailored functionalities, making them promising candidates for separation, catalysis, and sensing applications. However, the synthesis of COF membranes with highly oriented nanochannels remains challenging, and there is a lack of systematic studies on the influence of postsynthetic modification reactions on functionality distribution along the nanochannels. Herein, we introduced a "prenucleation and slow growth" approach to synthesize a COF membrane featuring highly oriented mesoporous channels and a high Brunauer-Emmett-Teller surface area of 2230 m2 g-1. Functional moieties were anchored to the pore walls via "click" reactions and coordinated with Cu ions to serve as segmentation functions. This led to a remarkable H2/CO2 separation performance that surpassed the Robeson upper bound. Moreover, we found that the functionalities distributed along the nanochannels could be influenced by functionality flexibility and postsynthetic reaction rate. This strategy paved the way for the accurate design and construction of COF-based artificial solid-state nanochannels with high orientation and precisely controlled channel environments.
Collapse
Affiliation(s)
- Xuechun Jing
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mengxi Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenjie Mu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jie Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
17
|
Zhang J, Luo D, Xiao H, Zhao H, Ding B, Dou H, Zhang X. Post-synthetic Covalent Organic Framework to Improve the Performance of Solid-State Li + Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34704-34710. [PMID: 37462202 DOI: 10.1021/acsami.3c03643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
As a new class of crystalline materials, covalent organic frameworks (COFs) have long-range ordered channels and feasibility to functionalize. The well-arranged pores make it possible to contain and transport ions. Here, we designed a novel functionalized anionic COF-SS-Li by a post-synthetic method utilizing the Povarov reaction of BDTA-COF, anchoring -SO3- groups to the COF backbone and converting the imine linkage to a more stable quinoline unit. The grafted -SO3- groups and directional channels can promote the lithium-ion transport through a hopping mechanism. As a solid-state lithium-ion electrolyte, COF-SS-Li exhibits the conductivities of 9.63 × 10-5 S cm-1 at 20 °C and 1.28 × 10-4 S cm-1 at 40 °C and a wide electrochemical window of 4.85 V. The assembled Li|COF-SS-Li|Li symmetric cell can cycle stably for 600 h at 0.1 mA cm-2. Also, the Li|COF-SS-Li|LiFePO4 cell delivers an initial capacity of 117 mAh g-1 at 0.1 A g-1 and retains a capacity rate of 56.7% after 500 cycles. The research enriches the solid-state electrolytes for lithium-ion batteries.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Derong Luo
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hong Xiao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Huizi Zhao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
18
|
Haldar S, Schneemann A, Kaskel S. Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. J Am Chem Soc 2023. [PMID: 37307595 DOI: 10.1021/jacs.3c01131] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Redox-active covalent organic frameworks (COFs) have recently emerged as advanced electrodes in polymer batteries. COFs provide ideal molecular precision for understanding redox mechanisms and increasing the theoretical charge-storage capacities. Furthermore, the functional groups on the pore surface of COFs provide highly ordered and easily accessible interaction sites, which can be modeled to establish a synergy between ex situ/in situ mechanism studies and computational methods, permitting the creation of predesigned structure-property relationships. This perspective integrates and categorizes the redox functionalities of COFs, providing a deeper understanding of the mechanistic investigation of guest ion interactions in batteries. Additionally, it highlights the tunable electronic and structural properties that influence the activation of redox reactions in this promising organic electrode material.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Dresden 01277, Germany
| |
Collapse
|
19
|
Khojastehnezhad A, Moeinpour F, Jafari M, Shehab MK, Samih ElDouhaibi A, El-Kaderi HM, Siaj M. Postsynthetic Modification of Core-Shell Magnetic Covalent Organic Frameworks for the Selective Removal of Mercury. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276585 DOI: 10.1021/acsami.3c02914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core-shell magnetic covalent organic framework (COF) materials were prepared, followed by shell material functionalization with different organic ligands, including thiosemicarbazide, through a postsynthetic modification approach. The structures of the prepared samples were characterized with various techniques, including powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), photoinduced force microscopy (PiFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and solid 13C NMR. PXRD and BET studies revealed that the crystalline and porous nature of the functionalized COFs was well maintained after three steps of postsynthetic modification. On the other hand, solid 13C NMR, TGA, and PiFM analyses confirmed the successful functionalization of COF materials with good covalent linkage connectivity. The use of the resulting functionalized magnetic COF for selective and ultrafast adsorption of Hg(II) has been investigated. The observations displayed rapid kinetics with adsorption dynamics conforming to the quasi-second-order kinetic model and the Langmuir adsorption model. Furthermore, this prepared crystalline magnetic material demonstrated a high Langmuir Hg(II) uptake capacity, reaching equilibrium in only 5 min. Thermodynamic calculations proved that the adsorption process is endothermic and spontaneous.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 7915893144, Iran
| | - Maziar Jafari
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Mohammad K Shehab
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ahmad Samih ElDouhaibi
- Department of Chemistry, Lebanese University, College of Science III, Campus Mont Michel, Tripoli 1352, Lebanon
| | - Hani M El-Kaderi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| |
Collapse
|
20
|
Zojer E. Electrostatic Design of the Nanoscale Internal Surfaces of Porous Covalent Organic Frameworks. NANO LETTERS 2023; 23:3558-3564. [PMID: 37014999 PMCID: PMC10141416 DOI: 10.1021/acs.nanolett.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
It is well established that the collective action of assemblies of dipoles determines the electronic structure of surfaces and interfaces. This raises the question, to what extent the controlled arrangement of polar units can be used to also tune the electronic properties of the inner surfaces of materials with nanoscale pores. In the present contribution, state-of-the-art density-functional theory calculations are used to show for the prototypical case of covalent organic frameworks (COFs) that this is indeed possible. Decorating pore walls with assemblies of polar entities bonded to the building blocks of the COF layers triggers a massive change of the electrostatic energy within the pores. This, inevitably, also changes the relative alignment between electronic states in the framework and in guest molecules and is expected to have significant impacts on charge separation in COF heterojunctions, on redox reactions in COFs-based electrodes, and on (photo)catalysis.
Collapse
|
21
|
Haldar S, Bhauriyal P, Ramuglia AR, Khan AH, De Kock S, Hazra A, Bon V, Pastoetter DL, Kirchhoff S, Shupletsov L, De A, Isaacs MA, Feng X, Walter M, Brunner E, Weidinger IM, Heine T, Schneemann A, Kaskel S. Sulfide-Bridged Covalent Quinoxaline Frameworks for Lithium-Organosulfide Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210151. [PMID: 36719245 DOI: 10.1002/adma.202210151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing Li-storage mechanism, which can be considered as a lithium-organosulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to the quinoxaline core enables a redox-mediated reversible cleavage of the sulfursulfur bond and the formation of covalently anchored lithium-sulfide chains or clusters during Li-interactions, accompanied by a marked reduction of Li-polysulfide (Li-PS) dissolution into the electrolyte, a frequent drawback of lithium-sulfur (Li-S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li-ion-organosulfide interactions. Thus, integrating redox-active organic-framework materials with covalently anchored sulfides enables a stable Li-OrS battery mechanism which shows benefits over a typical Li-S battery.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Anthony R Ramuglia
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sunel De Kock
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Dominik L Pastoetter
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sebastian Kirchhoff
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratories, Didcot, OX11 0FA, UK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Inez M Weidinger
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas Heine
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
22
|
Muggli K, Spies L, Bessinger D, Auras F, Bein T. Electrically Conductive Carbazole and Thienoisoindigo-Based COFs Showing Fast and Stable Electrochromism. ACS NANOSCIENCE AU 2023; 3:153-160. [PMID: 37096229 PMCID: PMC10119976 DOI: 10.1021/acsnanoscienceau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 02/19/2023]
Abstract
Thienothiophene thienoisoindigo (ttTII)-based covalent organic frameworks (COFs) have been shown to offer low band gaps and intriguing optical and electrochromic properties. So far, only one tetragonal thienothiophene thienoisoindigo-based COF has been reported showing stable and fast electrochromism and good coloration efficiencies. We have developed two novel COFs using this versatile and nearly linear ttTII building block in a tetragonal and a hexagonal framework geometry to demonstrate their attractive features for optoelectronic applications of thienoisoindigo-based COFs. Both COFs exhibit good electrical conductivities, show promising optical absorption features, are redox-active, and exhibit a strong electrochromic behavior when applying an external electrical stimulus, shifting the optical absorption even farther into the NIR region of the electromagnetic spectrum and achieving absorbance changes of up to 2.5 OD. Cycle-stable cyclic voltammograms with distinct oxidation and reduction waves reveal excellent reversibility and electrochromic switching over 200 cycles and confirm the high stability of the frameworks. Furthermore, high coloration efficiencies in the NIR region and fast switching speeds for coloration/decoloration as fast as 0.75 s/0.37 s for the Cz-ttTII COF and 0.61 s/0.29 s for the TAPB-ttTII COF at 550 nm excitation were observed, outperforming many known electrochromic materials, and offering options for a great variety of applications, such as stimuli-responsive coatings, optical information processing, or thermal control.
Collapse
Affiliation(s)
- Katharina Muggli
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Laura Spies
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
23
|
Sang P, Chen Q, Wang DY, Guo W, Fu Y. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chem Rev 2023; 123:1262-1326. [PMID: 36757873 DOI: 10.1021/acs.chemrev.2c00739] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Lithium-ion batteries have received significant attention over the last decades due to the wide application of portable electronics and increasing deployment of electric vehicles. In order to further enhance the performance of the batteries and overcome the capacity limitations of inorganic electrode materials, it is imperative to explore new cathode and functional materials for rechargeable lithium batteries. Organosulfur materials containing sulfur-sulfur bonds as a kind of promising organic electrode materials have the advantages of high capacities, abundant resources, tunable structures, and environmental benignity. In addition, organosulfur materials have been widely used in almost every aspect of rechargeable batteries because of their multiple functionalities. This review aims to provide a comprehensive overview on the development of organosulfur materials including the synthesis and application as cathode materials, electrolyte additives, electrolytes, binders, active materials in lithium redox flow batteries, and other metal battery systems. We also give an in-depth analysis of structure-property-performance relationship of organosulfur materials, and guidance for the future development of organosulfur materials for next generation rechargeable lithium batteries and beyond.
Collapse
Affiliation(s)
- Pengfei Sang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiliang Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dan-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
24
|
Li WB, Cheng YZ, Yang DH, Liu YW, Han BH. Fluorine-Containing Covalent Organic Frameworks: Synthesis and Application. Macromol Rapid Commun 2022:e2200778. [PMID: 36404104 DOI: 10.1002/marc.202200778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymers that possess ordered structures and eternal pores. Because of their unique structural characteristics and diverse functional groups, COFs have been used in various application fields, such as adsorption, catalysis, separation, ion conduction, and energy storage. Among COFs, the fluorine-containing COFs (fCOFs) have been developed for special applications by virtue of special physical and chemical properties resulting from fluorine element, which is a nonmetallic halogen element and possesses strong electronegativity. In the organic chemistry field, introducing fluorine into chemicals enables those chemicals to exhibit many interesting properties, and fluorine chemistry increasingly plays an important role in the history of chemical development. The introduction of fluorine in COFs can enhance the crystallinity, porosity, and stability of COFs, making COFs having superior performances and some new applications. In this review, the synthesis and application of fCOFs are systematically summarized. The application involves photocatalytic production of hydrogen peroxide, photocatalytic water splitting, electrocatalytic CO2 reduction, adsorption for different substances (H2 , pesticides, per-/polyfluoroalkyl substances, polybrominated diphenyl ethers, bisphenols, and positively charged organic dye molecules), oil-water separation, energy storage (e.g., zinc-ion batteries, lithium-sulfur batteries), and proton conduction. Perspectives of remaining challenges and possible directions for fCOFs are also discussed.
Collapse
Affiliation(s)
- Wen-Bo Li
- Key Laboratory of Applied Chemistry of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan-Zhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yu-Wen Liu
- Key Laboratory of Applied Chemistry of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Xiao J, Li B, Qiang R, Qiu H, Chen J. Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents. ENVIRONMENTAL RESEARCH 2022; 214:113977. [PMID: 36027963 DOI: 10.1016/j.envres.2022.113977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
One of the key factors to obtain a highly pure individual rare earth element (REE) is to prepare adsorbents with high selectivity and adsorption capacity. Covalent organic frameworks (COFs), which encompass a variety of properties, including regular/tunable pore size, high specific surface area and easy functionalization, could be effective as adsorbents for separating rare earth elements (REEs). In this paper, TpPa COFs were successfully synthesized using an eco-friendly deep eutectic solvent (DES) as the reaction medium instead of toxic organic solvents at room temperature. TpPa COFs have a good separation effect on the nine REEs investigated in this work. Among them, the separation factors (β) of Eu/Yb, Eu/Tm and Eu/La are 15.34, 14.70 and 10.78, respectively, indicating that the TpPa COFs have good separation performance. Further discoveries showed that the adsorption and separation mechanism of the TpPa COFs for REEs in this experiment may be due to the coordination of REE ions with O to form a stable structure. This study blazed a trial for a green and facile synthesis strategy of TpPa COFs and expanded its implementation as a solid adsorbent in the separation of REEs.
Collapse
Affiliation(s)
- Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibin Qiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Li Z, Li Q, Hu Z, Hu C, Cui X, Fu Y, Chen Z. Determination of water in organic solvents and raw food products by fluorescence quenching of a crystalline vinyl-functionalized COF. Mikrochim Acta 2022; 189:361. [PMID: 36044086 DOI: 10.1007/s00604-022-05432-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 10/14/2022]
Abstract
Covalent organic frameworks (COFs) with good chemical stability, flexible chemical functionalization, tunable pore sizes, and high specific surface areas have been increasingly employed in the field of fluorescence sensing. In this work, a crystalline vinyl-functionalized COF TzDa-V was facilely prepared through a room-temperature synthetic method via condensation reaction between 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline (Tz) and 2,5-diallyloxyterephthalaldehyde (Da-V). The intermolecular charge transfer (ICT) effect endowed the TzDa-V with fluorescence characteristic, and it was sensitive to trace water and can be quenched due to the disruption of ICT process by water. On this base, the prepared COF TzDa-V with excellent chemical/thermal stability was applied to sensing of trace water in common organic solvents such as DMF, acetone, THF, and ethyl acetate with rapid response (less than 10 s), satisfactory sensing range (0.5-18% water in DMF, 0.5-15% water in acetone, 0.5-16% water in THF, 0.5-5% in ethyl acetate, v/v), and high sensitivity. The limits of detection for water in DMF, acetone, THF, and ethyl acetate were 0.0497%, 0.0590%, 0.0502%, and 0.0766% (v/v), respectively. The proposed probe was successfully used for the detection of trace water in food products such as salt and sugar. The COF TzDa-V would be a good candidate for application in water sensing.
Collapse
Affiliation(s)
- Zhentao Li
- School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Qiaoyan Li
- School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Zhuang Hu
- School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Changjun Hu
- School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Xinyue Cui
- School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Yuanyuan Fu
- School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Zilin Chen
- School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China.
| |
Collapse
|
27
|
Yang L, Huang N. Covalent organic frameworks for applications in lithium batteries. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liting Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
28
|
Haldar S, Wang M, Bhauriyal P, Hazra A, Khan AH, Bon V, Isaacs MA, De A, Shupletsov L, Boenke T, Grothe J, Heine T, Brunner E, Feng X, Dong R, Schneemann A, Kaskel S. Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium-Sulfur Battery Cathodes. J Am Chem Soc 2022; 144:9101-9112. [PMID: 35543441 DOI: 10.1021/jacs.2c02346] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London WC1H 0AJ, U.K.,HarwellXPS, Rutherford Appleton Laboratories, Research Complex at Harwell, Didcot OX11 0FA, U.K
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Tom Boenke
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| | - Julia Grothe
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Thomas Heine
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig Research Branch, Permoser Str. 15, 04316 Leipzig, Germany.,Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany.,Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| |
Collapse
|
29
|
Ding H, Mal A, Wang C. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1494-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Hu Z, Yan G, Zhao J, Zhang X, Feng Y, Qu X, Ben H, Shi J. Covalent organic framework wrapped by graphene oxide as an efficient sulfur host for high performance lithium-sulfur batteries. NANOTECHNOLOGY 2022; 33:225402. [PMID: 35158345 DOI: 10.1088/1361-6528/ac54e0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The practical application of lithium-sulfur battery is seriously limited by the loss of active substances and the deterioration of cycle stability caused by the 'shuttle effect' of lithium polysulfides (LiPSs). In this work, graphene oxide (GO) coated covalent organic framework (COF) compound materials were synthesized as sulfur host material in spray-drying process. The polar groups on COF can efficiently adsorb LiPSs through lithiophilic interaction, which can reduce the 'shuttle effect' caused by soluble LiPSs. Besides, GO in the outer layer can wrap discrete sulfur to reduce the loss of active substances, which further improves the cycle stability of the cathode. The COF@GO/S cathode exhibits a high initial specific capacity of 848.4 mAh g-1and retains a capacity of 601.1 mAh g-1after 500 cycles at 1 C counting with a low capacity fading of 0.058% per cycle.
Collapse
Affiliation(s)
- Zongjie Hu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Jinchen Zhao
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Haijie Ben
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, People's Republic of China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong 226019, Jiangsu Province, People's Republic of China
| |
Collapse
|
31
|
Covalent organic framework membrane reconstructed through intra-pore reaction having tunable performance for molecular separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Shi K, Lin Y, Li J, Xiong Z, Liao J, Liu Q. Fabrication and Porous Architecture of Crosslinked Polyimides for Lithium–Sulfur Batteries and Their Electrochemical Properties. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kaixiang Shi
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongxian Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Li
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhangshi Xiong
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinyun Liao
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
33
|
Troschke E, Oschatz M, Ilic IK. Schiff-bases for sustainable battery and supercapacitor electrodes. EXPLORATION (BEIJING, CHINA) 2021; 1:20210128. [PMID: 37323689 PMCID: PMC10190993 DOI: 10.1002/exp.20210128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
The quest for more efficient ways to store electrical energy prompted the development of different storage devices over the last decades. This includes but is not limited to different battery concepts and supercapacitors. However, modern batteries rely on electrochemical principles that often involve transition metals which can for instance suffer from toxicity or limited availability. More sustainable alternatives are needed. This sparked the search for organic electrode materials. Nevertheless, compared to their inorganic counterparts, organic electrode materials remain less intensely investigated. Besides the often more complicated electrochemical principles, one likely reason for that are the complex synthetic skills required to develop novel organic materials. Here we review materials synthesized by an old and comparably simple reaction from the field of organic chemistry, namely Schiff-base formation. This reaction can often yield materials under relatively mild conditions, making them especially interesting for the formation of sustainable electrodes. The main weakness of Schiff-base materials, susceptibility to hydrolysis, is of limited concern in most of the battery systems as they mostly anyways require water-free conditions. This review gives an overview of some selected nanomaterials obtained from Schiff-base formation as well as their carbonized derivatives which are of interest for energy storage. Firstly, the general chemistry of Schiff-bases is introduced, followed by an in-depth survey of the most important breakthroughs in the formation of organic battery electrodes that involve materials based on Schiff-base reaction. Lastly, an outlook considering the main hurdles as well as future perspectives of this research area is given.
Collapse
Affiliation(s)
- Erik Troschke
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental Chemistry, Friedrich‐Schiller‐University JenaJenaGermany
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental Chemistry, Friedrich‐Schiller‐University JenaJenaGermany
| | - Ivan K. Ilic
- Center for Nano Science and Technology@PoliMiIstituto Italiano di TecnologiaMilanItaly
| |
Collapse
|
34
|
Xu G, Hou L, Liu C, Wang X, Liu L, Li N, Lin JM, Zhao RS. Fabrication of a Magnetic Fluorinated Covalent Organic Framework for the Selective Capture of Benzoylurea Insecticide Residue in Beverages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51535-51545. [PMID: 34672528 DOI: 10.1021/acsami.1c15869] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient capture of benzoylurea insecticide (BU) residue in food is a vital procedure for food safe monitoring. Herein, a core-shell structured magnetic fluorinated covalent organic framework with good magnetic responsiveness and abundant fluorine affinity sites was successfully synthesized, suitable for magnetic solid-phase extraction (MSPE) of BUs. Using a room-temperature synthesis strategy, the magnetic fluorinated covalent organic framework was fabricated by in situ polymerization of 1,3,5-tris(4-aminophenyl) triazine (TAPT) and 2,3,5,6-tetrafluoroterephthaldehyde (TFTA) on the surface of carboxylated Fe3O4 nanoparticles. The competitive adsorption experiment and molecular simulation verified that this magnetic fluorinated covalent organic framework possesses favorable adsorption affinity for BUs. This magnetic fluorinated covalent organic framework could be easily regenerated and reused at least eight times with no reduction of enrichment performance. Combining this magnetic fluorinated covalent organic framework-based MSPE with high-performance liquid chromatography-tandem mass spectrometry, a novel sensitive method for the analysis of BUs was developed. In yellow wine and fruit juice samples, good linear correlations were obtained for BUs in the range of 10-2000 and 20-4000 ng·L-1, respectively. The limit of quantitation of the BUs ranged from 1.4 to 13.3 ng·L-1 in the two beverage matrices. Desirable precision was achieved, with intraday and interday relative standard deviations lower than 11%.
Collapse
Affiliation(s)
- Guiju Xu
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Longfei Hou
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chuqing Liu
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaoli Wang
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lu Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Na Li
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ru-Song Zhao
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
35
|
State of the art two-dimensional covalent organic frameworks: Prospects from rational design and reactions to applications for advanced energy storage technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Li C, Yu G. Controllable Synthesis and Performance Modulation of 2D Covalent-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100918. [PMID: 34288393 DOI: 10.1002/smll.202100918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Covalent-organic frameworks (COFs) are especially interesting and unique as their highly ordered topological structures entirely built from plentiful π-conjugated units through covalent bonds. Arranging tailorable organic building blocks into periodically reticular skeleton bestows predictable lattices and various properties upon COFs in respect of topology diagrams, pore size, properties of channel wall interfaces, etc. Indeed, these peculiar features in terms of crystallinity, conjugation degree, and topology diagrams fundamentally decide the applications of COFs including heterogeneous catalysis, energy conversion, proton conduction, light emission, and optoelectronic devices. Additionally, this research field has attracted widespread attention and is of importance with a major breakthrough in recent year. However, this research field is running with the lack of summaries about tailorable construction of 2D COFs for targeted functionalities. This review first covers some crucial polymeric strategies of preparing COFs, containing boron ester condensation, amine-aldehyde condensation, Knoevenagel condensation, trimerization reaction, Suzuki CC coupling reaction, and hybrid polycondensation. Subsequently, a summary is made of some representative building blocks, and then underlines how the electronic and molecular structures of building blocks can strongly influence the functional performance of COFs. Finally, conclusion and perspectives on 2D COFs for further study are proposed.
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
37
|
Liang R, Samanta J, Shao B, Zhang M, Staples RJ, Chen AD, Tang M, Wu Y, Aprahamian I, Ke C. A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rongran Liang
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Jayanta Samanta
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Baihao Shao
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Mingshi Zhang
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Richard J. Staples
- Department of Chemistry Michigan State University 578 S. Shaw Lane East Lansing MI 48824 USA
| | - Albert D. Chen
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Miao Tang
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Yuyang Wu
- IMSERC Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Ivan Aprahamian
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Chenfeng Ke
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| |
Collapse
|
38
|
Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J Colloid Interface Sci 2021; 608:652-661. [PMID: 34628324 DOI: 10.1016/j.jcis.2021.09.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
The development of functional covalent organic frameworks (COFs) with specific properties is an emerging research field. In the current work, COF-SQ-Ph was synthesized through the aza-Diels-Alder reaction between phenylacetylene and the matrix COF-SQ (triazine-based COF) generated from the organic monomers 2, 4, 6-tris(4-aminophenyl)-1, 3, 5-triazine and 2, 5-dimethoxyterephthalaldehyde in flask. The functionalized COF-SQ-Ph with an extended π-conjugated structure and enhanced structural stability was used as the sulfur loading recipient to prepare sulfur cathodes for lithium-sulfur batteries. Sulfur-impregnated COF-SQ-Ph marked as COF-SQ-Ph-S displayed better cycling stability with a specific capacity of 618 mA h g-1 after 150 cycles due to the lithiophilic interaction between lithium polysulfides and nitrogen atoms from quinoline and triazine moieties in COF-SQ-Ph-S. The functionalization of triazine-based COFs through a cycloaddition reaction in flask could promote the large-scale preparation of tailored COFs and the post-synthesis modification of COF-SQ.
Collapse
|
39
|
Liang R, Samanta J, Shao B, Zhang M, Staples R, Chen A, Tang M, Wu Y, Aprahamian I, Ke C. A Heteromeric Carboxylic-acid-based Single Crystalline Crosslinked Organic Framework. Angew Chem Int Ed Engl 2021; 60:23176-23181. [PMID: 34378288 DOI: 10.1002/anie.202109987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 11/05/2022]
Abstract
The development of large pore single-crystalline covalently linked organic frameworks is critical in revealing the detailed structure-property relationship with substrates. One emergent approach is to photo-crosslink hydrogen-bonded molecular crystals. Introducing complementary hydrogen-bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non-porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non-interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single-crystalline hydrogen-bonded crosslinked organic framework HCOF-101. X-ray diffraction analysis revealed HCOF-101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E-isomerization of the hydrazone took place reversibly within HCOF-101, showcasing the potential use of HCOF-101 for optical information storage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao Tang
- Dartmouth College, Chemistry, UNITED STATES
| | - Yuyang Wu
- Northwestern University, IMSERC, UNITED STATES
| | | | - Chenfeng Ke
- Dartmouth College, Department of Chemistry, 41 College Street, 03755, Hanover, UNITED STATES
| |
Collapse
|
40
|
Zhang T, Liu S, Zhang X, Gao J, Yu H, Ye Q, Liu S, Liu W. Fabrication of Two-Dimensional Functional Covalent Organic Frameworks via the Thiol-Ene "Click" Reaction as Lubricant Additives for Antiwear and Friction Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36213-36220. [PMID: 34291919 DOI: 10.1021/acsami.1c10459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To address the energy wastage problem caused by friction, novel lubricant additives other than the traditional and basic used additives with outstanding performance are urgently needed. A facile and efficient postsynthetic strategy for modification of two-dimensional (2D) covalent organic frameworks (COFs) was proposed to obtain dialkyl dithiophosphate (DDP)-functionalized COFs (DDP@TD-COF) as lubricant additives. The DDP@TD-COF was prepared by amine-aldehyde condensation reaction of the triazine compound and vinyl-functionalized monomers through a solvothermal process to form a vinyl-functionalized 2D COF (TD-COF), followed by covalent bonding of commercial lubricating molecules (DDP) via the UV-induced thiol-ene "click" reaction. The as-obtained DDP@TD-COF with homogeneous distribution of N, P, and S elements exhibits exceptional dispersion stability in the 500SN base oil, which remains stable for over 6 days. With a trace amount addition of 0.05 wt %, superior friction and wear reduction of DDP@TD-COF are observed with the friction coefficient lessened to 0.096 from 0.19, wear volume loss declined by 94.9%, and load carrying ability increased from 150 to 650 N simultaneously. The mechanism studies show that the shear force can induce interlayer slipping during the friction process, and the stripped DDP@TD-COF can get involved in the contacting interface inducing tribo-chemical reactions via N, P, and S elements forming a protective layer on the surfaces. Consequently, the DDP@TD-COF demonstrated remarkable friction diminution and abrasion resistance abilities even with a trace amount addition, and this work provides a dependable and valid route for the design and preparation of functional COF-based nanoadditives.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Sha Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xiaozhi Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jingde Gao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
41
|
Ahmed I, Jhung SH. Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213989] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Lin J, Zhong Y, Tang L, Wang L, Yang M, Xia H. Covalent organic frameworks: From materials design to electrochemical energy storage applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jiamin Lin
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Yiren Zhong
- Department of Chemistry Energy Sciences Institute Yale University Yale Connecticut USA
| | - Lingyu Tang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Liuqi Wang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Mei Yang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Hui Xia
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
43
|
Ortega-Guerrero A, Sahabudeen H, Croy A, Dianat A, Dong R, Feng X, Cuniberti G. Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26411-26420. [PMID: 34034486 DOI: 10.1021/acsami.1c05967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) have attracted attention as versatile active materials in many applications. Recent advances have demonstrated the synthesis of monolayer 2D COF via an air-water interface. However, the interfacial 2D polymerization mechanism has been elusive. In this work, we have used a multiscale modeling strategy to study dimethylmethylene-bridged triphenylamine building blocks confined at the air-water interface to form a 2D COF via Schiff-base reaction. A synergy between the computational investigations and experiments allowed the synthesis of a 2D-COF with one of the linkers considered. Our simulations complement the experimental characterization and show the preference of the building blocks to be at the interface with a favorable orientation for the polymerization. The air-water interface is shown to be a key factor to stabilize a flat conformation when a dimer molecule is considered. The structural and electronic properties of the monolayer COFs based on the two monomers are calculated and show a semiconducting nature with direct bandgaps. Our strategy provides a first step toward the in silico polymerization of 2D COFs at air-water interfaces capturing the initial steps of the synthesis up to the prediction of electronic properties of the 2D material.
Collapse
Affiliation(s)
- Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland
| | - Hafeesudeen Sahabudeen
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow 14513, Germany
| | - Alexander Croy
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Renhao Dong
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
44
|
Garai M, Mahato M, Hong Y, Rozyyev V, Jeong U, Ullah Z, Yavuz CT. Asynchronous Double Schiff Base Formation of Pyrazole Porous Polymers for Selective Pd Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001676. [PMID: 33898165 PMCID: PMC8061357 DOI: 10.1002/advs.202001676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Pyrazole-linked covalent organic polymer is synthesized using an asynchronous double Schiff base from readily available monomers. The one-pot reaction features no metals as a building block or reagent, hence facilitating the structural purity and industrial scalability of the design. Through a single-crystal study on a model compound, the double Schiff base formation is found to follow syn addition, a kinetically favored product, suggesting that reactivity of the amine and carbonyls dictate the order and geometry of the framework building. The highly porous pyrazole polymer COP-214 is chemically resistant in reactive conditions for over two weeks and thermally stable up to 425 °C in air. COP-214 shows well-pronounced gas capture and selectivities, and a high CO2/N2 selectivity of 102. The strongly coordinating pyrazole sites show rapid uptake and quantitative selectivity of Pd (II) over several coordinating metals (especially Pt (II)) at all pH points that are tested, a remarkably rare feature that is best explained by detailed analysis as the size-selective strong coordination of Pd onto pyrazoles. Density functional theory (DFT) calculations show energetically favorable Pd binding between the metal and N-sites of COP-214. The polymer is reusable multiple times without loss of activity, providing great incentives for an industrial prospect.
Collapse
Affiliation(s)
- Mousumi Garai
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Korea
| | - Manmatha Mahato
- Graduate School of Energy, Environment, Water and Sustainability (EEWS)KAISTDaejeon34141Korea
| | - Yeongran Hong
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Korea
| | - Vepa Rozyyev
- Graduate School of Energy, Environment, Water and Sustainability (EEWS)KAISTDaejeon34141Korea
| | - Uiseok Jeong
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Korea
| | - Zakir Ullah
- Department of ChemistryKAISTDaejeon34141Korea
| | - Cafer T. Yavuz
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Korea
- Graduate School of Energy, Environment, Water and Sustainability (EEWS)KAISTDaejeon34141Korea
- Department of ChemistryKAISTDaejeon34141Korea
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955–6900Saudi Arabia
| |
Collapse
|
45
|
Wu J, Liu S, Huang J, Cui Y, Ma P, Wu D, Matyjaszewski K. Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in Lithium–Sulfur Batteries. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinlun Wu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shaohong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Junlong Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yin Cui
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Pengwei Ma
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dingcai Wu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
46
|
Sun M, Ji H, Guan Y, Zhang Y, Zhang X, Jiang X, Qu X, Li J. Nanoscale melamine-based porous organic frameworks as host material for efficient polysulfides chemisorption in lithium-sulfur batteries. NANOTECHNOLOGY 2021; 32:085402. [PMID: 33091887 DOI: 10.1088/1361-6528/abc3e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to improve the electrochemical capacity of lithium-sulfur batteries (LiSBs), it is necessary to introduce the porous organic frameworks with well-defined hetero atom species in cathode. In this work, porous nanomaterials with ultra-high nitrogen containing and adjustable porosity named Schiff-based networks (SNWs) were selected as potential candidate for sulfur host in LiSBs. Two SNW samples have been constructed by reacting melamine with phenyl or biphenyl dialdehydes through microwave-assisted method, respectively. The high BET surface area provided sufficient room to impregnate sulfur and mitigated volume changes during the cycling performance. Besides, the high density and homogeneous distribution of pyridinic-N and aminic-N in SNW nanoparticles can cooperatively form lithium polysulfides (LiPSs) chemisorption via enhanced Li+-N interactions to effectively suppressed the 'shuttle effect'. Attributed to its structural superiorities, SNW/S cathode demonstrates excellent electrochemical performance in LiSBs. In particular, SNW-2/S cathode delivers an excellent cyclability with a specific capacity of 620 mAh · g-1 after 500 cycles at 0.5 C, counting with a low capacity fading of 0.0508% per cycle. This work highlights the importance of rational design for effective LiPSs chemisorption and pioneers a facile strategy for developing suitable sulfur host materials towards high-performance LiSBs.
Collapse
Affiliation(s)
- Miao Sun
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Yani Guan
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yue Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Xiaoxia Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, 8 Guangrong Street, Tianjin 300130, People's Republic of China
| | - Jingde Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
47
|
Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem Soc Rev 2021; 50:120-242. [DOI: 10.1039/d0cs00620c] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.
Collapse
|
48
|
Zheng Y, Wang X, Liu C, Yu B, Li W, Wang H, Sun T, Jiang J. Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO2 fixation to cyclic carbonates. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00163a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Triptycene units in bimetallic salen POPs are envisaged to support the alignment of bimetallic salen macrocycles in side walls of channels for exposing more metal active sites resulting in the high efficiency coupling reaction of epoxides with CO2.
Collapse
Affiliation(s)
- Yingting Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Xiqian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Wenliang Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Tingting Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| |
Collapse
|
49
|
Abstract
Covalent organic frameworks (COFs) are crystalline porous materials constructed from molecular building blocks using diverse linkage chemistries. The image illustrates electron transfer in a COF-based donor–acceptor system. Image by Nanosystems Initiative Munich.
Collapse
Affiliation(s)
- Niklas Keller
- Department of Chemistry and Center for NanoScience (CeNS)
- University of Munich (LMU)
- 81377 Munich
- Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS)
- University of Munich (LMU)
- 81377 Munich
- Germany
| |
Collapse
|
50
|
Chen L, Du J, Zhou W, Shen H, Tan L, Zhou C, Dong L. Microwave-Assisted Solvothermal Synthesis of Covalent Organic Frameworks (COFs) with Stable Superhydrophobicity for Oil/Water Separation. Chem Asian J 2020; 15:3421-3427. [PMID: 32869504 DOI: 10.1002/asia.202000872] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/23/2020] [Indexed: 11/12/2022]
Abstract
COFs were synthesized by a microwave-assisted solvothermal route, with the building blocks containing 1,3,5-tris(4-aminophenyl) benzene and 2,3,5,6-tetra-fluoroterephthalaldehyde (or 1,4-phthalaldehyde). The -F groups introduced into the benzene ring promoted hydrophobicity and stability of the COFs. The universality and long effectiveness of oil adsorption can be realized when applying COFs as adsorbent. The powder also exhibited excellent water-in-oil emulsions separation performance, with the separation efficiency no lower than 99.5%. In this work, the use of microwave solvothermal synthesis of superhydrophobic COFs is potential to replace the conventional synthesis process and more suitable for industrial scale-up production. Furthermore, the findings provide a new strategy for solving the problem of oil spill treatment and industrial water-in-oil emulsions separation by using the emerging 2D COFs.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingcheng Du
- Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Zhou
- Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Huizhen Shen
- Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Luxi Tan
- Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Cailong Zhou
- Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Lichun Dong
- Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|