1
|
Feng Y, Li Z, Song L, Zhang S, Chen B, Wang G, Yang K, Lu Y, Zhu R. A ZIF-8-based dual-modal smart responsive nanoplatform for overcoming radiotherapy resistance in advanced tumors. NANOSCALE 2025; 17:12134-12148. [PMID: 40298942 DOI: 10.1039/d5nr01093d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Radiation therapy is one of the core means of tumor treatment, playing an irreplaceable role in local control and radical treatment. However, radiotherapy resistance is one of the major challenges in current clinical practice. Tumor cells have a strong ability to repair DNA damage, which can effectively resist DNA double-strand breaks caused by X-rays, thus weakening the killing effect of radiotherapy. In addition, the complexity of the tumor microenvironment (TME) will further reduce the sensitivity of radiotherapy, leading to poor treatment results. With the rapid development of nanotechnology, the use of multi-modal combined therapy nanoplatforms has gradually become a new strategy to overcome radiotherapy resistance. These nanoplatforms achieve synergies by integrating multiple therapeutic approaches, such as radiation sensitization, photothermal therapy and chemotherapy. In this study, we utilized ZIF-8, a type of metal-organic framework, to simultaneously load ICG and rapamycin for X-ray sensitization and combined photothermal therapy. In this formulation, rapamycin enhances tumor cells' sensitivity to radiotherapy by inhibiting the mTOR signaling pathway, increasing DNA damage, regulating the cell cycle, and stimulating the STING pathway, which amplifies the tumor immune response. Meanwhile, ICG, as a photosensitizer, effectively converts light energy into heat, achieving tumor photothermal ablation. The modified drug-delivery system becomes a tumor-microenvironment-responsive smart carrier, increasing tumor cell uptake, prolonging retention at the tumor site, and achieving targeted drug delivery. It releases drugs in the specific tumor microenvironment, enhancing photothermal and radiotherapy sensitization effects. The results show that the smart dual-loaded nanoplatform effectively combines photothermal therapy and external-beam sensitization, reshapes the immunosuppressive tumor microenvironment and significantly inhibits tumor proliferation in the HepG2 subcutaneous xenograft model, demonstrating marked antitumor activity and good biosafety.
Collapse
Affiliation(s)
- Yi Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zijing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Luqi Song
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Shu Zhang
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radio-Toxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China
| | - Bin Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yan Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Singh A, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23289-23300. [PMID: 39453730 PMCID: PMC11542184 DOI: 10.1021/acs.langmuir.4c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/27/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of Gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi
N. Singh
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Meishan Wu
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Tiffany T. Ye
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Gholami A, Mohkam M, Soleimanian S, Sadraeian M, Lauto A. Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. MICROSYSTEMS & NANOENGINEERING 2024; 10:113. [PMID: 39166136 PMCID: PMC11333603 DOI: 10.1038/s41378-024-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 08/22/2024]
Abstract
Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.
Collapse
Affiliation(s)
- Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| |
Collapse
|
4
|
Singh AN, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.570829. [PMID: 39229024 PMCID: PMC11370475 DOI: 10.1101/2023.12.11.570829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Meishan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Tiffany T. Ye
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
5
|
Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater 2024; 13:e2400514. [PMID: 38652681 DOI: 10.1002/adhm.202400514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Haifeng Yang
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
6
|
Ma J, Ding L, Peng X, Jiang L, Liu G. Recent Advances of Engineered Cell Membrane-Based Nanotherapeutics to Combat Inflammatory Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308646. [PMID: 38334202 DOI: 10.1002/smll.202308646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/20/2024] [Indexed: 02/10/2024]
Abstract
An immune reaction known as inflammation serves as a shield from external danger signals, but an overactive immune system may additionally lead to tissue damage and even a variety of inflammatory disorders. By inheriting biological functionalities and serving as both a therapeutic medication and a drug carrier, cell membrane-based nanotherapeutics offer the potential to treat inflammatory disorders. To further strengthen the anti-inflammatory benefits of natural cell membranes, researchers alter and optimize the membranes using engineering methods. This review focuses on engineered cell membrane-based nanotherapeutics (ECMNs) and their application in treating inflammation-related diseases. Specifically, this article discusses the methods of engineering cell membranes for inflammatory diseases and examines the progress of ECMNs in inflammation-targeted therapy, inflammation-neutralizing therapy, and inflammation-immunomodulatory therapy. Additionally, the article looks into the perspectives and challenges of ECMNs in inflammatory treatment and offers suggestions as well as guidance to encourage further investigations and implementations in this area.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linyu Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
7
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024; 305:122463. [PMID: 38232643 DOI: 10.1016/j.biomaterials.2023.122463] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.
Collapse
Affiliation(s)
- Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yangyue Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Hui Ren
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, 310022, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Bi Y, Chen J, Li Q, Li Y, Zhang L, Zhida L, Yuan F, Zhang R. Tumor-derived extracellular vesicle drug delivery system for chemo-photothermal-immune combination cancer treatment. iScience 2024; 27:108833. [PMID: 38333709 PMCID: PMC10850737 DOI: 10.1016/j.isci.2024.108833] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Tumor extracellular vesicles (EVs) demonstrate considerable promise for medication delivery and tumor targeting owing to their natural long-term blood circulation and tissue targeting capabilities. We extracted EVs from mouse breast cancer cell 4T1 using UV stimulation and differential centrifugation. To create a new nano-drug delivery system, the vesicle delivery system (EPM) loaded with melanin and paclitaxel albumin (PA), the collected EVs were repeatedly compressed on a 200 nm porous polycarbonate membrane with melanin and PA. Our findings suggest that EPM is readily absorbed by breast cancer and dendritic cells. EPM generates significant photoacoustic signals and photothermal effects when exposed to near-infrared light and can enhance the infiltration of CD8+ T cells in mouse tumor tissues. EPM is more cytotoxic than PA in in vivo and in vitro investigations. The efficacy of EPM in clinical transformation when paired with chemotherapy/photothermal/immunotherapy treatment is demonstrated in this study.
Collapse
Affiliation(s)
- Yanghui Bi
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Jieya Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Qing Li
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Yan Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Liu Zhida
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Fajia Yuan
- Shanxi Jinzhong Health School, Jinzhong 030600, P.R. China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People’s Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, P.R. China
| |
Collapse
|
9
|
Zeng H, Yan G, Zheng R, Wang X. Cancer Cell Membrane-Biomimetic Nanoparticles Based on Gelatin and Mitoxantrone for Synergetic Chemo-Photothermal Therapy of Metastatic Breast Cancer. ACS Biomater Sci Eng 2024; 10:875-889. [PMID: 38284758 DOI: 10.1021/acsbiomaterials.3c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The purpose of this paper is to develop a cancer cell membrane biomimetic nanodrug delivery system (NDDS) to achieve an enhanced chemo-photothermal synergistic antitumor effect. The biomimetic NDDSs are composed of mitoxantrone (MIT)-loaded gelatin nanoparticles and IR820-encapsulated 4T1 cancer cell membrane-derived vesicles. The biomimetic NDDS displayed excellent stability and photothermal conversion efficiency. Compared to naked nanoparticles, the cell membrane-coated nanoparticles improved 4T1 cell uptake through homologous targeting and effectively reduced internalization of macrophages. In vivo photothermal imaging results further showed that the NDDS could be enriched at the tumor site for 48 h and could raise the temperature of the tumor area to 60 °C within 5 min under 808 nm laser irradiation. Finally, NDDS successfully inhibited primary tumor growth (over 89% inhibition) and significantly inhibited lung metastasis. This study may provide a new strategy for personalized chemotherapy-photothermal combination therapy of metastatic breast cancer using tumor cell membranes from cancer patients as drug carriers.
Collapse
Affiliation(s)
- Huihui Zeng
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu Medical College, Bengbu 233004, Anhui Province, PR China
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, PR China
| | - Guoqing Yan
- School of Life Science, Anhui University, Hefei 230601, Anhui, PR China
| | - Rongsheng Zheng
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, PR China
| | - Xin Wang
- School of Life Science, Anhui University, Hefei 230601, Anhui, PR China
| |
Collapse
|
10
|
Zhao P, Hu J, Feng Y, Wu F, Tan C, Chen X, Liu M. Cu 3-xP nanocrystals filled halloysite nanotubes for chemodynamic therapy of breast cancer. J Colloid Interface Sci 2024; 655:736-747. [PMID: 37976747 DOI: 10.1016/j.jcis.2023.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Copper-based Fenton-like agents have the ability to convert weakly oxidizing H2O2 into highly oxidizing hydroxyl radicals (·OH) at tumor sites during chemodynamic therapy (CDT). In this study, the interfacial attraction properties between the negatively charged OCP- in sodium phosphathynolate (NaOCP) and the positively charged environment inside the lumen of halloysite nanotubes (HNTs) were utilized to synthesize Cu3-xP nanoparticles in situ within the HNTs. The study investigated the chemical composition, morphology, and structure of Cu3-x P@HNTs. The results indicated uniform distribution of Cu3-xP particles measuring 3-5 nm within HNTs' lumen. Experiments conducted internally and externally to cells confirmed the catalytic capability of Cu3-xP@HNTs to oxidize H2O2 to ·OH. Furthermore, CP@H-CM was synthesized by enclosing Cu3-xP@HNTs in a cancer cell membrane, which selectively targets cancer cells. The experiments revealed the cytotoxicity of CP@H-CM on 4T1 cells. Additionally, the antitumor efficacy of CP@H-CM was evaluated in vivo through tumor recurrence experiments in mice. Moreover, the efficacy of CP@H-CM in repressing tumor growth was enhanced by incorporating infrared laser, indicating a synergistic photodynamic treatment for breast cancer. This study presents an efficacious and viable therapeutic approach to inhibit postoperative tumor reappearance. The implications of this approach are promising, particularly in the domain of tumor treatment and metastasis.
Collapse
Affiliation(s)
- Puxiang Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jiaojiao Hu
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Feng Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Cuiying Tan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
11
|
Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res 2023; 11:104. [PMID: 38037114 PMCID: PMC10690996 DOI: 10.1186/s40364-023-00534-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhi Pang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Man-Man Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan Gao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Gu
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Jiang X, Wu L, Zhang M, Zhang T, Chen C, Wu Y, Yin C, Gao J. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery. J Control Release 2023; 361:510-533. [PMID: 37567505 DOI: 10.1016/j.jconrel.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Chemotherapeutic drugs have been found to activate the immune response against tumors by inducing immunogenic cell death, in addition to their direct cytotoxic effects toward tumors, therefore broadening the application of chemotherapy in tumor immunotherapy. The combination of other therapeutic strategies, such as phototherapy or radiotherapy, could further strengthen the therapeutic effects of immunotherapy. Nanostructures can facilitate multimodal tumor therapy by integrating various active agents and combining multiple types of therapeutics in a single nanostructure. Biomembrane nanostructures (e.g., exosomes and cell membrane-derived nanostructures), characterized by superior biocompatibility, intrinsic targeting ability, intelligent responsiveness and immune-modulating properties, could realize superior chemoimmunotherapy and represent next-generation nanostructures for tumor immunotherapy. This review summarizes recent advances in biomembrane nanostructures in tumor chemoimmunotherapy and highlights different types of engineering approaches and therapeutic mechanisms. A series of engineering strategies for combining different biomembrane nanostructures, including liposomes, exosomes, cell membranes and bacterial membranes, are summarized. The combination strategy can greatly enhance the targeting, intelligence and functionality of biomembrane nanostructures for chemoimmunotherapy, thereby serving as a stronger tumor therapeutic method. The challenges associated with the clinical translation of biomembrane nanostructures for chemoimmunotherapy and their future perspectives are also discussed.
Collapse
Affiliation(s)
- Xianghe Jiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Wang J, Sun B, Sun L, Niu X, Li L, Xu ZP. "Trojan horse" nanoparticle-delivered cancer cell membrane vaccines to enhance cancer immunotherapy by overcoming immune-escape. Biomater Sci 2023; 11:2020-2032. [PMID: 36601679 DOI: 10.1039/d2bm01432g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer cell membranes (CCMs) have emerged as advanced cancer treatment vaccines to boost the immune response against cancer and have shown great potential in cancer immunotherapy. However, the CCM vaccine confronts the challenges of a weak and short immune response, ascribed to the immune escape and low accumulation of the CCM in antigen presentation cells (APCs). To overcome these shortcomings, we devised a "Trojan horse" CCM nano-vaccine delivered by layered double hydroxide (LDH) nanoparticles with mannose targeting and bovine serum albumin (BSA) coating to overcome the immune escape challenge, efficiently boosting the immune response to cancer cells. This "Trojan horse" CCM nano-vaccine, named LGCMB, is constructed by assembling the CCM antigen on CpG-LDH (LG), followed by mannose-BSA coating for the APC target and BSA coating to mask immune-escape protein on the CCM. The in vitro cellular uptake and maturation data have clearly shown that the BSA coating strategy with mannose as a "Trojan horse" efficiently targeted APCs (macrophages and DCs) and effectively inhibited the immune escape of the CCM, competently stimulating the APC maturation. Moreover, LGCMB can migrate to the draining lymph nodes (LNs) and trigger tumor-specific CD8+ T cell responses in vivo. As expected, the LGCMB nano-vaccine significantly suppressed tumor growth in vivo, showing great potential as a precision cancer vaccine.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Xueming Niu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Cardellini J, Ridolfi A, Donati M, Giampietro V, Severi M, Brucale M, Valle F, Bergese P, Montis C, Caselli L, Berti D. Probing the coverage of nanoparticles by biomimetic membranes through nanoplasmonics. J Colloid Interface Sci 2023; 640:100-109. [PMID: 36842416 DOI: 10.1016/j.jcis.2023.02.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Although promising for biomedicine, the clinical translation of inorganic nanoparticles (NPs) is limited by low biocompatibility and stability in biological fluids. A common strategy to circumvent this drawback consists in disguising the active inorganic core with a lipid bilayer coating, reminiscent of the structure of the cell membrane to redefine the chemical and biological identity of NPs. While recent reports introduced membrane-coating procedures for NPs, a robust and accessible method to quantify the integrity of the bilayer coverage is not yet available. To fill this gap, we prepared SiO2 nanoparticles (SiO2NPs) with different membrane coverage degrees and monitored their interaction with AuNPs by combining microscopic, scattering, and optical techniques. The membrane-coating on SiO2NPs induces spontaneous clustering of AuNPs, whose extent depends on the coating integrity. Remarkably, we discovered a linear correlation between the membrane coverage and a spectral descriptor for the AuNPs' plasmonic resonance, spanning a wide range of coating yields. These results provide a fast and cost-effective assay to monitor the compatibilization of NPs with biological environments, essential for bench tests and scale-up. In addition, we introduce a robust and scalable method to prepare SiO2NPs/AuNPs hybrids through spontaneous self-assembly, with a high-fidelity structural control mediated by a lipid bilayer.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Andrea Ridolfi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands(1)
| | - Melissa Donati
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | | | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Marco Brucale
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Francesco Valle
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Paolo Bergese
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Florence, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden(1).
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
15
|
Li S, Dong S, Wu J, Lv X, Yang N, Wei Q, Wang C, Chen J. Surgically Derived Cancer Cell Membrane-Coated R837-Loaded Poly(2-Oxazoline) Nanoparticles for Prostate Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7878-7886. [PMID: 36738473 PMCID: PMC9940722 DOI: 10.1021/acsami.2c22363] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cancer cell membranes (CCMs) are widely used as sources of tumor-associated antigens (TAAs) for the development of cancer vaccines. To improve the CCM-associated cancer vaccine efficiency, personalized cancer vaccines and effective delivery systems are required. In this study, we employed surgically harvested cancer tissues to prepare personalized CCMs for use as TAAs. Thioglycolic-acid-grafted poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline-co-2-butenyl-2-oxazoline) (PMBEOx-COOH) was synthesized to load imiquimod (R837) efficiently. The personalized CCMs were then coated onto R837-loaded PMBEOx-COOH nanoparticles (POxTA NPs/R837) to obtain surgically derived CCM-coated POxTA NPs (SCNPs/R837). SCNPs/R837 efficiently travelled to the draining lymph nodes and were taken up and presented by plasmacytoid dendritic cells to elicit enhanced antitumor immune responses. When combined with programmed cell death-1 antibodies, SCNPs/R837 exhibited high efficiency corresponding to antitumor progression. Therefore, SCNP/R837 might represent a promising personalized cancer vaccine with significant potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Shengxian Li
- Department
of Urology, The First Hospital of Jilin
University, Changchun130021, P. R. China
- Department
of Urology, The Affiliated Hospital of Qingdao
University, Qingdao266003, P.R. China
| | - Si Dong
- College
of Chemistry, Northeast Normal University, Changchun130024, P.R. China
| | - Jing Wu
- Laboratory
for Tumor Immunology, The First Hospital
of Jilin University, Changchun130061, P.R. China
| | - Xinping Lv
- Laboratory
for Tumor Immunology, The First Hospital
of Jilin University, Changchun130061, P.R. China
| | - Ning Yang
- Laboratory
for Tumor Immunology, The First Hospital
of Jilin University, Changchun130061, P.R. China
| | - Qiuyu Wei
- Laboratory
for Tumor Immunology, The First Hospital
of Jilin University, Changchun130061, P.R. China
| | - Chunxi Wang
- Department
of Urology, The First Hospital of Jilin
University, Changchun130021, P. R. China
| | - Jingtao Chen
- Laboratory
for Tumor Immunology, The First Hospital
of Jilin University, Changchun130061, P.R. China
| |
Collapse
|
16
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Jiang Q, Xie M, Chen R, Yan F, Ye C, Li Q, Xu S, Wu W, Jia Y, Shen P, Ruan J. Cancer cell membrane-wrapped nanoparticles for cancer immunotherapy: A review of current developments. Front Immunol 2022; 13:973601. [PMID: 36105816 PMCID: PMC9464807 DOI: 10.3389/fimmu.2022.973601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
Background As the forefront of nanomedicine, bionic nanotechnology has been widely used for drug delivery in order to obtain better efficacy but less toxicity for cancer treatments. With the rise of immunotherapy, the combination of nanotechnology and immunotherapy will play a greater potential of anti-tumor therapy. Due to its advantage of homologous targeting and antigen library from source cells, cancer cell membrane (CCM)-wrapped nanoparticles (CCNPs) has become an emerging topic in the field of immunotherapy. Key scientific concepts of review CCNP strategies include targeting or modulating the tumor immune microenvironment and combination therapy with immune checkpoint inhibitors and cancer vaccines. This review summarizes the current developments in CCNPs for cancer immunotherapy and provides insight into the challenges of transferring this technology from the laboratory to the clinic as well as the potential future of this technology. Conclusion This review described CCNPs have enormous potential in cancer immunotherapy, but there are still challenges in terms of translating their effects in vitro to the clinical setting. We believe that these challenges can be addressed in the future with a focus on individualized treatment with CCNPs as well as CCNPs combined with other effective treatments.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Mixue Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Feifei Yan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Peng Shen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| |
Collapse
|
18
|
Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022; 15:ph15070876. [PMID: 35890175 PMCID: PMC9318328 DOI: 10.3390/ph15070876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-derived membrane vesicles (TDMVs) are non-invasive, chemotactic, easily obtained characteristics and contain various tumor-borne substances, such as nucleic acid and proteins. The unique properties of tumor cells and membranes make them widely used in drug loading, membrane fusion and vaccines. In particular, personalized vectors prepared using the editable properties of cells can help in the design of personalized vaccines. This review focuses on recent research on TDMV technology and its application in personalized immunotherapy. We elucidate the strengths and challenges of TDMVs to promote their application from theory to clinical practice.
Collapse
Affiliation(s)
- Jiabin Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
- Correspondence:
| |
Collapse
|
19
|
Ling J, Chang Y, Yuan Z, Chen Q, He L, Chen T. Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27651-27665. [PMID: 35675569 DOI: 10.1021/acsami.2c05533] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid glycolysis of tumor cells produces excessive lactate to trigger acidification of the tumor microenvironment (TME), leading to the formation of immunosuppressive TME and tumor-associated macrophage (TAM) dysfunction. Therefore, reprogramming TAMs by depleting lactate with nanodrugs is expected to serve as an effective means of tumor-targeted immunotherapy. Herein, we report the use of lactic acid dehydrogenase (LDH)-mimicking SnSe nanosheets (SnSe NSs) loaded with a carbonic anhydrase IX (CAIX) inhibitor to reconstruct an acidic and immunosuppressive TME. As expected, this nanosystem could reprogram the TAM to achieve M1 macrophage activation and could also restore the potent tumor-killing activity of macrophages while switching their metabolic mode from mitochondrial oxidative phosphorylation to glycolysis. In addition, the repolarizing effect of SnSe NSs on macrophages was validated in a coculture model of bone marrow-derived macrophages, in three patient-derived malignant pleural effusion and in vivo mouse model. This study proposes a feasible therapeutic strategy for depleting lactate and thus ameliorating acidic TME employing Se-containing nanosheets, which could further amply the effects of TAM-based antitumor immunotherapy.
Collapse
Affiliation(s)
- Jiabao Ling
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yanzhou Chang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhongwen Yuan
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Qi Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Wu M, Chen T, Wang L, Akakuru OU, Ma X, Xu J, Hu J, Chen J, Fang Q, Wu A, Li Q. The strategy of precise targeting and in situ oxygenating for enhanced triple-negative breast cancer chemophototherapy. NANOSCALE 2022; 14:8349-8361. [PMID: 35635070 DOI: 10.1039/d2nr00985d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The absence of effective therapeutic targets and tumor hypoxia are the main causes of failure in the treatment of triple-negative breast cancer (TNBC). Biomimetic nanotechnology and tumor microenvironment (TME) responsiveness bring hope and opportunity to address this problem. Here, we develop a core membrane nanoplatform (HM/D-I-BL) using hollow mesoporous manganese dioxide (HM) coated with a biomimetic cancer cell membrane for enhanced chemotherapy/phototherapy via the strategy of precise drug delivery and hypoxia amelioration. Cancer cell membrane modification endows HM/D-I-BL with excellent homologous targeting and immune escape performance. Cellular uptake and fluorescence imaging studies confirmed that HM/D-I-BL can be accurately delivered to tumor sites. HM/D-I-BL also features efficient in situ O2 generation in tumors upon laser irradiation, and subsequently enhanced chemotherapy/phototherapy, pointing to its usefulness as a TME-responsive nanozyme to alleviate tumor hypoxia in the presence of H2O2. In addition, HM/D-I-BL showed good fluorescence and magnetic resonance imaging performances, which offers a reliable multimodal image-guided combination tumor therapy for precision theranostics in the future. In general, this intelligent biomimetic nanoplatform with its homotypic tumor targeting, in situ alleviation of tumor hypoxia and synergetic chemophototherapy would open up a new dimension for the precision treatment of TNBC.
Collapse
Affiliation(s)
- Manxiang Wu
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315100, China.
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Lianfu Wang
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315100, China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Jinshan Xu
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315100, China.
| | - Jiapeng Hu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qianlan Fang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Qiang Li
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315100, China.
| |
Collapse
|
21
|
Xie YJ, Huang M, Li D, Hou JC, Liang HH, Nasim AA, Huang JM, Xie C, Leung ELH, Fan XX. Bacteria-based nanodrug for anticancer therapy. Pharmacol Res 2022; 182:106282. [PMID: 35662630 DOI: 10.1016/j.phrs.2022.106282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Bacteria-based immunotherapy has become a promising strategy to induce innate and adaptive responses for fighting cancer. The advantages of bacteriolytic tumor therapy mainly lie in stimulation of innate immunity and colonization of some bacteria targeting the tumor microenvironment (TME). These bacteria have cytotoxic proteins and immune modulating factors that can effectively restrain tumor growth. However, cancer is a multifactorial disease and single therapy is typically unable to eradicate tumors. Rapid progress has been made in combining bacteria with nanotechnology. Using the nanomolecular properties of bacterial products for tumor treatment preserves many features from the original bacteria while providing some unique advantages. Nano-bacterial therapy can enhance permeability and retention of drugs, increase the tolerability of the targeted drugs, promote the release of immune cell mediators, and induce immunogenic cell death pathways. In addition, combining nano-bacterial mediated antitumor therapeutic systems with modern therapy is an effective strategy for overcoming existing barriers in antitumor treatment and can achieve satisfactory therapeutic efficacy. Overall, exploring the immune antitumor characteristics of adjuvant clinical treatment with bacteria can provide potential efficacious treatment strategies for combatting cancer.
Collapse
Affiliation(s)
- Ya-Jia Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dan Li
- Beijing Wante'er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Jin-Cai Hou
- Beijing Wante'er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Hai-Hai Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ju-Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chun Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
22
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
23
|
|
24
|
Rao SQ, Zhang RY, Chen R, Gao YJ, Gao L, Yang ZQ. Nanoarchitectonics for enhanced antibacterial activity with Lactobacillus buchneri S-layer proteins-coated silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128029. [PMID: 34942455 DOI: 10.1016/j.jhazmat.2021.128029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Various multi-drug-resistant microorganisms have appeared while a single antibacterial agent is increasingly no longer adequate for dealing with these resistant microorganisms. Herein, commercially purchased 50 nm-average-diameter silver nanoparticles (AgNPs) and Lactobacillus buchneri-isolated surface-layer proteins (SLPs) as a capping agent were used to fabricate a hybrid antibacterial agent (SLP-AgNPs) with enhanced antibacterial activity, and the possible synergistic antibacterial mechanism was explored. Characterization results revealed that SLP-AgNPs were uniformly surrounded by protein corona provided from SLP, and the formulations were mainly mediated by the electrostatic interactions and hydrogen bonding, which was evidenced by the results of Fourier transform infrared spectroscopy. According to the antibacterial tests, the minimum inhibitory concentration of SLP-AgNPs against Salmonella enterica (0.010 mg/mL) and Staphylococcus aureus (0.005 mg/mL) was 5-10 times lower than that of bare AgNPs, and while SLP-AgNPs showed a higher antibiofilm activity. Furthermore, bacterial cells exposed to SLP-AgNPs exhibited higher cell membrane permeability and stronger inhibition of respiratory-chain dehydrogenase activity, resulting in more severe cell death compared with bare AgNPs. The synergistic effect of SLP on AgNPs was probably carried out by enhanced function of adhesion to bacteria and antibacterial ability of SLP and SLP's supramolecular lattice structure on the sustained release of silver ion.
Collapse
Affiliation(s)
- Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China; Postdoctoral Mobile Station of Biology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ru-Yi Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Rui Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
25
|
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.
Collapse
|
26
|
Ji Z, Xu J, Li M, Wang H, Xu B, Yang Y, Hu Y. The Mechanisms of Immune-chemotherapy with Nanocomplex Codelivery of pTRP-2 and Adjuvant of Paclitaxel against Melanoma. Drug Dev Ind Pharm 2022; 47:1744-1752. [PMID: 35193436 DOI: 10.1080/03639045.2022.2045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Melanoma accounts for the highest proportion of all skin cancer deaths. Immune-chemotherapy has transformed anti-melanoma therapy and is a preferred first-line combination strategy for melanoma. We previously prepared dendritic cells (DCs) targeting the nanocomplex paclitaxel (PTX)-encapsulated sulfobutylether-β-cyclodextrin (SBE)/mannosylated N,N,N-trimethyl chitosan (mTMC)/DNA (PTX/SBE-DNA/Man-TMC) for the co-delivery of pTRP-2 DNA and adjuvant PTX. The nanocomplex PTX/SBE-DNA/Man-TMC promoted DC maturation and antigen presentation and spur potent anti-melanoma immunity. However, the mechanism by which PTX/SBE-DNA/Man-TMC regulates the biological functions of DCs and T lymphocytes is unknown. Therefore, we explored the underlying signaling pathways and mixed leukocyte reactions, resulting in enhanced T cell-mediated anti-tumor immunity. Interleukin-12 secretion from nanocomplex-pulsed mouse bone marrow-derived dendritic cells was inhibited by treatment with Toll-like receptor 4 (TLR-4), nuclear factor kappa-B (NF-κB), and a specific blocker of p38 mitogen-activated protein kinase (MAPK). The results revealed that TLR-4, NF-κB, and MAPK signaling pathways were essential anti-tumor immune responses regulation factors. Furthermore, mixed leukocytes pulsed with PTX/SBE-DNA/Man-TMC induced tumor cell apoptosis and arrested the cell cycle in G0/G1, significantly promoting the synergy. Thus, we concluded that the mechanism driving the PTX/SBE-DNA/Man-TMC immune-chemotherapy synergistic effect was multifactorial.
Collapse
Affiliation(s)
- Zhonghua Ji
- Pharmacy, Zhejiang pharmaceutical college, Ningbo, Zhejiang, People's republic of China
| | - Jiaojiao Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China
| | - Min Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China
| | - Hui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's republic of China
| | - Yunxu Yang
- Pharmacy, Zhejiang pharmaceutical college, Ningbo, Zhejiang, People's republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China.,Pharmacy, Zhejiang pharmaceutical college, Ningbo, Zhejiang, People's republic of China
| |
Collapse
|
27
|
Cell Membrane-Cloaked Nanotherapeutics for Targeted Drug Delivery. Int J Mol Sci 2022; 23:ijms23042223. [PMID: 35216342 PMCID: PMC8879543 DOI: 10.3390/ijms23042223] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cell membrane cloaking technique is bioinspired nanotechnology that takes advantage of naturally derived design cues for surface modification of nanoparticles. Unlike modification with synthetic materials, cell membranes can replicate complex physicochemical properties and biomimetic functions of the parent cell source. This technique indeed has the potential to greatly augment existing nanotherapeutic platforms. Here, we provide a comprehensive overview of engineered cell membrane-based nanotherapeutics for targeted drug delivery and biomedical applications and discuss the challenges and opportunities of cell membrane cloaking techniques for clinical translation.
Collapse
|
28
|
Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm Sin B 2022; 12:3233-3254. [PMID: 35967284 PMCID: PMC9366230 DOI: 10.1016/j.apsb.2022.02.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/14/2021] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy can effectively inhibit cancer progression by activating the autoimmune system, with low toxicity and high effectiveness. Some of cancer immunotherapy had positive effects on clinical cancer treatment. However, cancer immunotherapy is still restricted by cancer heterogeneity, immune cell disability, tumor immunosuppressive microenvironment and systemic immune toxicity. Cell membrane-coated nanoparticles (CMCNs) inherit abundant source cell-relevant functions, including “self” markers, cross-talking with the immune system, biological targeting, and homing to specific regions. These enable them to possess preferred characteristics, including better biological compatibility, weak immunogenicity, immune escaping, a prolonged circulation, and tumor targeting. Therefore, they are applied to precisely deliver drugs and promote the effect of cancer immunotherapy. In the review, we summarize the latest researches of biomimetic CMCNs for cancer immunotherapy, outline the existing specific cancer immune therapies, explore the unique functions and molecular mechanisms of various cell membrane-coated nanoparticles, and analyze the challenges which CMCNs face in clinical translation.
Collapse
|
29
|
Tian XX, Liu YT, Li Y, Qiu XY, Zhang WH, Young DJ, Chen Q. ZIF-8 with cationic defects toward efficient 125I2 uptake for in vitro radiotherapy of colon cancer. Chem Commun (Camb) 2022; 58:6942-6945. [DOI: 10.1039/d1cc07304d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing 2,3-dimethyl-1H-imidazol-3-ium iodide (Dmim) as a monodentate ligand during the preparation of ZIF-8 yields ZIF-8+(50) and ZIF-8+(38) with cationic ‘missing linker’ defects. ZIF-8+(38) adsorbs 125I2 and the resulting radioactive host-guest...
Collapse
|
30
|
ADIYOGA R, ARIEF II, BUDIMAN C, ABIDIN Z. In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.87221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
32
|
Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021; 178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer involves a collection of diseases with a common trait - dysregulation in cell proliferation. At present, traditional therapeutic strategies against cancer have limitations in tackling various tumors in clinical settings. These include chemotherapeutic resistance and the inability to overcome intrinsic physiological barriers to drug delivery. Nanomaterials have presented promising strategies for tumor treatment in recent years. Nanotheranostics combine therapeutic and bioimaging functionalities at the single nanoparticle level and have experienced tremendous growth over the past few years. This review highlights recent developments of advanced nanomaterials and nanotheranostics in three main directions: stimulus-responsive nanomaterials, nanocarriers targeting the tumor microenvironment, and emerging nanomaterials that integrate with phototherapies and immunotherapies. We also discuss the cytotoxicity and outlook of next-generation nanomaterials towards clinical implementation.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| | - Yi-Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
33
|
Chen M, Cui Y, Hao W, Fan Y, Zhang J, Liu Q, Jiang M, Yang Y, Wang Y, Gao C. Ligand-modified homologous targeted cancer cell membrane biomimetic nanostructured lipid carriers for glioma therapy. Drug Deliv 2021; 28:2241-2255. [PMID: 34668811 PMCID: PMC8530486 DOI: 10.1080/10717544.2021.1992038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The main treatment measure currently used for glioma treatment is chemotherapy; the biological barrier of solid tumors hinders the deep penetration of nanomedicines and limits anticancer therapy. Furthermore, the poor solubility of many chemotherapeutic drugs limits the efficacy of antitumor drugs. Therefore, improving the solubility of chemotherapeutic agents and drug delivery to tumor tissues through the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) are major challenges in glioma treatment. Nanostructured lipid carriers (NLCs) have high drug loading capacity, high stability, and high in vivo safety; moreover, they can effectively improve the solubility of insoluble drugs. Therefore, in this study, we used solvent volatilization and ultrasonic melting methods to prepare dihydroartemisinin nanostructured lipid carrier (DHA-NLC). We further used the glioma C6 cancer cell (CC) membrane to encapsulate DHA-NLC owing to the homologous targeting mechanism of the CC membrane; however, the targeting ability of the CC membrane was weak. We accordingly used targeting ligands for modification, and developed a bionanostructured lipid carrier with BBB and BBTB penetration and tumor targeting abilities. The results showed that DHA-loaded NGR/CCNLC (asparagine-glycine-arginine, NGR) was highly targeted, could penetrate the BBB and BBTB, and showed good anti-tumor effects both in vitro and in vivo, which could effectively prolong the survival time of tumor-bearing mice. Thus, the use of DHA-loaded NGR/CCNLC is an effective strategy for glioma treatment and has the potential to treat glioma.
Collapse
Affiliation(s)
- Mengyu Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuexin Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wenyan Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Yueyue Fan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Jingqiu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qianqian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mingrui Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| |
Collapse
|
34
|
Liu C, Zheng J, Ou X, Han Y. Anti-cancer Substances and Safety of Lactic Acid Bacteria in Clinical Treatment. Front Microbiol 2021; 12:722052. [PMID: 34721321 PMCID: PMC8548880 DOI: 10.3389/fmicb.2021.722052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are a kind of Gram-positive bacteria which can colonize in the biological gastrointestinal tract and play a variety of probiotic roles. LAB have a wide range of applications in industry, animal husbandry, planting, food safety, and medical science fields. Previous studies on LAB have typically concentrated on their effects on improving the digestion and absorption of the gastrointestinal tract, regulating the balance of the microflora, and inhibiting the production and accumulation of toxic substances. The resistance of LAB to cancer is a topic of growing interest and relevance. This paper provided a summary of bio-active substances of LAB when they act against cancer, as well as the safety of LAB in clinical cancer treatment. Moreover, this paper further discussed several possible directions for future research and the potential application of LAB as anti-cancer therapy.
Collapse
Affiliation(s)
- Chaoran Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiaqi Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xuan Ou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:9118. [PMID: 34502028 PMCID: PMC8431379 DOI: 10.3390/ijms22179118] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| |
Collapse
|
36
|
Dou L, Meng X, Yang H, Dong H. Advances in technology and applications of nanoimmunotherapy for cancer. Biomark Res 2021; 9:63. [PMID: 34419164 PMCID: PMC8379775 DOI: 10.1186/s40364-021-00321-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Host-tumor immune interactions play critical roles in the natural history of tumors, including oncogenesis, progress and metastasis. On the one hand, neoantigens have the potential to drive a tumor-specific immune response. In tumors, immunogenic cell death (ICD) triggered by various inducers can initiate a strong host anti-immune response. On the other hand, the tolerogenic tumor immune microenvironment suppresses host immune responses that eradicate tumor cells and impair the effect of tumor therapy. Therefore, a deeper understanding and more effective manipulation of the intricate host-tumor immune interaction involving the host, tumor cells and the corresponding tumor immune microenvironment are required. Despite the encouraging breakthroughs resulting from tumor immunotherapy, no single strategy has elicited sufficient or sustained antitumor immune responses in most patients with specific malignancies due to limited activation of specific antitumor immune responses and inadequate remodeling of the tolerogenic tumor immune microenvironment. However, nanotechnology provides a unique paradigm to simultaneously tackle all these challenges, including effective “targeted” delivery of tumor antigens, sustained ICD mediation, and “cold” tumor microenvironment remodeling. In this review, we focus on several key concepts in host-tumor immune interactions and discuss the corresponding therapeutic strategy based on the application of nanoparticles.
Collapse
Affiliation(s)
- Lei Dou
- Department of Gerontology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiangdan Meng
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, China. .,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
37
|
Le QV, Lee J, Lee H, Shim G, Oh YK. Cell membrane-derived vesicles for delivery of therapeutic agents. Acta Pharm Sin B 2021; 11:2096-2113. [PMID: 34522579 PMCID: PMC8424219 DOI: 10.1016/j.apsb.2021.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Cell membranes have recently emerged as a new source of materials for molecular delivery systems. Cell membranes have been extruded or sonicated to make nanoscale vesicles. Unlike synthetic lipid or polymeric nanoparticles, cell membrane-derived vesicles have a unique multicomponent feature, comprising lipids, proteins, and carbohydrates. Because cell membrane-derived vesicles contain the intrinsic functionalities and signaling networks of their parent cells, they can overcome various obstacles encountered in vivo. Moreover, the different natural combinations of membranes from various cell sources expand the range of cell membrane-derived vesicles, creating an entirely new category of drug-delivery systems. Cell membrane-derived vesicles can carry therapeutic agents within their interior or can coat the surfaces of drug-loaded core nanoparticles. Cell membranes typically come from single cell sources, including red blood cells, platelets, immune cells, stem cells, and cancer cells. However, recent studies have reported hybrid sources from two different types of cells. This review will summarize approaches for manufacturing cell membrane-derived vesicles and treatment applications of various types of cell membrane-derived drug-delivery systems, and discuss challenges and future directions.
Collapse
Key Words
- Blood cells
- CAR-T, chimeric antigen receptor-engineered T cell
- CRISPR, clustered regularly interspaced short palindromic repeats
- CXCR4, C-X-C chemokine receptor type 4
- Cancer cells
- Cell membrane-derived vesicles
- DC, dendritic cell
- Drug-delivery systems
- Immune cells
- Manufacturing
- Membrane engineering
- NF-κB, nuclear factor kappa B
- NIR, near infrared
- PEG, polyethylene glycol
- PLGA, poly(lactic-co-glycolic acid)
- RBC, red blood cell
- Stem cells
- TCR, T-cell receptor
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
Collapse
Affiliation(s)
- Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hobin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Zhao Y, Li A, Jiang L, Gu Y, Liu J. Hybrid Membrane-Coated Biomimetic Nanoparticles (HM@BNPs): A Multifunctional Nanomaterial for Biomedical Applications. Biomacromolecules 2021; 22:3149-3167. [PMID: 34225451 DOI: 10.1021/acs.biomac.1c00440] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of nanoparticles in the diagnosis and treatment of diseases has undergone different developmental stages, but phagocytosis and nonspecific distribution have been the main factors restricting the transformation of nanobased drugs into clinical practice. In the past decade, the design of membrane-coated nanoparticles has gained increasing attention. It is hoped that the combination of the cell membrane's natural biological properties and the functional integration of synthetic nanoparticle systems can compensate for the shortage of traditional nanoparticles. The membrane coating gives the nanoparticles unique biological functions such as immune evasion and targeting capability. However, when the encapsulation of monotypic membranes does not meet the diverse demands of biomedicine, the combination of different cell membranes may offer more possibilities. In this review, the composition, preparation, and advantages of biomimetic nanoparticles coated with hybrid cell membranes are summarized, and the applications of hybrid membrane-coated biomimetic nanoparticles (HM@BNPs) in drug delivery, phototherapy, liquid biopsy, tumor vaccines, immune therapy, and detoxification are reviewed. Finally, the current challenges and opportunities with regard to HM@BNPs are discussed.
Collapse
Affiliation(s)
- Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
39
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
40
|
Liu X, Wu M, Wang M, Duan Y, Phan C, Qi G, Tang G, Liu B. Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy. MATERIALS HORIZONS 2021; 8:1454-1460. [PMID: 34846453 DOI: 10.1039/d0mh01582b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A living therapeutic system based on attenuated Salmonella was developed via metabolic engineering using an aggregation-induced emission (AIE) photosensitizer MA. The engineered bacteria could localize in the tumor tissues and continue to colonize and express exogenous genes. Under light irradiation, the encoded VEGFR2 gene was released and expressed in tumor tissues, which can suppress angiogenesis induced by a T cell-mediated autoimmune response and inhibit tumor growth.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun L, Xiong Z, Shen F, Wang Z, Liu Z. Biological membrane derived nanomedicines for cancer therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9943-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021; 16:042001. [PMID: 33601351 DOI: 10.1088/1748-605x/abe7b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy has emerged as a novel cancer treatment over the last decade, however, efficacious responses to mono-immunotherapy have only been achieved in a relatively small portion of patients whereas combinational immunotherapies often lead to concurrent side effects. It has been proved that the tumor microenvironment (TME) is responsible for tumor immune escape and the ultimate treatment failure. Recently, there has been remarkable progress in both the understanding of the TME and the applications of nanotechnological strategies, and reviewing the emerging immune-regulatory nanosystems may provide valuable information for specifically modulating the TME at different immune stages. In this review, we focus on comprehending the recently-proposed T-cell-based tumor classification and identifying the most promising targets for different tumor phenotypes, and then summarizing the nanotechnological strategies to best target corresponding immune-related factors. For future precise personalized immunotherapy, tailor-made TME modulation strategies conducted by well-designed nanosystems to alleviate the suppressive TME and then promote anti-tumor immune responses will significantly benefit the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Xinyi Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Contributed equally to this review
| | - Xiaoyan Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Contributed equally to this review
| | - Qing Gu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, People's Republic of China
- Author to whom any corresponding should be addressed
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Author to whom any corresponding should be addressed
| |
Collapse
|
43
|
Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan W, Mingfeng Q. Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2002081. [PMID: 33586322 DOI: 10.1002/adhm.202002081] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy will significantly impact the standard of care in cancer treatment. Recent advances in nanotechnology can improve the efficacy of cancer immunotherapy. However, concerns regarding efficiency of cancer nanomedicine, complex tumor microenvironment, patient heterogeneity, and systemic immunotoxicity drive interest in more novel approaches to be developed. For this purpose, biomimetic nanoparticles are developed to make innovative changes in the delivery and biodistribution of immunotherapeutics. Biomimetic nanoparticles have several advantages that can advance the clinical efficacy of cancer immunotherapy. Thus there is a greater push toward the utilization of biomimetic nanotechnology for developing effective cancer immunotherapeutics that demonstrate increased specificity and potency. The recent works and state-of-the-art strategies for anti-tumor immunotherapeutics are highlighted here, and particular emphasis has been given to the applications of cell-derived biomimetic nanotechnology for cancer immunotherapy.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hajra Zafar
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shulei Zhang
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zul Kamal
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal Dir (Upper) Khyber Pakhtunkhwa 18000 Pakistan
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei‐En Yuan
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qiu Mingfeng
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
44
|
Zhang M, Cheng S, Jin Y, Zhang N, Wang Y. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin Transl Med 2021; 11:e292. [PMID: 33635002 PMCID: PMC7819108 DOI: 10.1002/ctm2.292] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, cell membrane camouflaging technology has emerged as an important strategy of nanomedicine, and the modification on the membranes is also a promising approach to enhance the properties of the nanoparticles, such as cancer targeting, immune evasion, and phototherapy sensitivity. Indeed, diversified approaches have been exploited to re-engineer the membranes of nanoparticles in several studies. In this review, first we discuss direct modification strategy of cell membrane camouflaged nanoparticles (CM-NP) via noncovalent, covalent, and enzyme-involved methods. Second, we explore how the membranes of CM-NPs can be re-engineered at the cellular level using strategies such as genetic engineering and membranes fusion. Due to the innate biological properties and excellent biocompatibility, the functionalized cell membrane-camouflaged nanoparticles have been widely applied in the fields of drug delivery, imaging, detoxification, detection, and photoactivatable therapy.
Collapse
Affiliation(s)
- Minghai Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Nan Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
- Shanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| |
Collapse
|
45
|
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huang Wen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Konstantin Tamarov
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Emilia Happonen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Vesa‐Pekka Lehto
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Wujun Xu
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
46
|
Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shuangqian Yan
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zichao Luo
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zhenglin Li
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Jun Tao
- The Second Affiliated Hospital of Nanchang University 1 Minde Road Nanchang 330000 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University No. 17, Section 3, Renmin South Rd. Chengdu 610041 P. R. China
| | - Xiaogang Liu
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 P. R. China
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| |
Collapse
|
47
|
Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angew Chem Int Ed Engl 2020; 59:17332-17343. [PMID: 32297434 DOI: 10.1002/anie.202002780] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shuangqian Yan
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zichao Luo
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zhenglin Li
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Jun Tao
- The Second Affiliated Hospital of Nanchang University 1 Minde Road Nanchang 330000 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University No. 17, Section 3, Renmin South Rd. Chengdu 610041 P. R. China
| | - Xiaogang Liu
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 P. R. China
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| |
Collapse
|
48
|
Mu W, Chu Q, Liu Y, Zhang N. A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. NANO-MICRO LETTERS 2020; 12:142. [PMID: 34138136 PMCID: PMC7770879 DOI: 10.1007/s40820-020-00482-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/11/2020] [Indexed: 05/11/2023]
Abstract
Although notable progress has been made on novel cancer treatments, the overall survival rate and therapeutic effects are still unsatisfactory for cancer patients. Chemoimmunotherapy, combining chemotherapeutics and immunotherapeutic drugs, has emerged as a promising approach for cancer treatment, with the advantages of cooperating two kinds of treatment mechanism, reducing the dosage of the drug and enhancing therapeutic effect. Moreover, nano-based drug delivery system (NDDS) was applied to encapsulate chemotherapeutic agents and exhibited outstanding properties such as targeted delivery, tumor microenvironment response and site-specific release. Several nanocarriers have been approved in clinical cancer chemotherapy and showed significant improvement in therapeutic efficiency compared with traditional formulations, such as liposomes (Doxil®, Lipusu®), nanoparticles (Abraxane®) and micelles (Genexol-PM®). The applications of NDDS to chemoimmunotherapy would be a powerful strategy for future cancer treatment, which could greatly enhance the therapeutic efficacy, reduce the side effects and optimize the clinical outcomes of cancer patients. Herein, the current approaches of cancer immunotherapy and chemoimmunotherapy were discussed, and recent advances of NDDS applied for chemoimmunotherapy were further reviewed.
Collapse
Affiliation(s)
- Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Qihui Chu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
49
|
Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Chen Q, Huang G, Wu W, Wang J, Hu J, Mao J, Chu PK, Bai H, Tang G. A Hybrid Eukaryotic-Prokaryotic Nanoplatform with Photothermal Modality for Enhanced Antitumor Vaccination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908185. [PMID: 32108390 DOI: 10.1002/adma.201908185] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Indexed: 05/19/2023]
Abstract
Cytomembrane-derived nanoplatforms are an effective biomimetic strategy in cancer therapy. To improve their functionality and expandability for enhanced vaccination, a eukaryotic-prokaryotic vesicle (EPV) nanoplatform is designed and constructed by fusing melanoma cytomembrane vesicles (CMVs) and attenuated Salmonella outer membrane vesicles (OMVs). Inheriting the virtues of the parent components, the EPV integrates melanoma antigens with natural adjuvants for robust immunotherapy and can be readily functionalized with complementary therapeutics. In vivo prophylactic testing reveals that the EPV nanoformulation can be utilized as a prevention vaccine to stimulate the immune system and trigger the antitumor immune response, combating tumorigenesis. In the melanoma model, the poly(lactic-co-glycolic acid)-indocyanine green (ICG) moiety (PI)-implanted EPV (PI@EPV) in conjunction with localized photothermal therapy with durable immune inhibition shows synergetic antitumor effects as a therapeutic vaccine. The eukaryotic-prokaryotic fusion strategy provides new perspectives for the design of tumor-immunogenic, self-adjuvanting, and expandable vaccine platforms.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Guojun Huang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Wangteng Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- School of Medicine, Zhejiang University, Hangzhou, 310019, China
| | - Jianwei Wang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jiawei Hu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jianming Mao
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongzhen Bai
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| |
Collapse
|