1
|
Mao Y, Li W, Tan Z, Feng J, Song Y, Zhang L, Fang Y, Qiao ZA. The Fabrication of Mesoporous Palladium-Boron Alloy by a Dual-Force-Driven Self-Assembly Strategy for Enhancing the Electrocatalytic Formic Acid Oxidation Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502276. [PMID: 40195920 DOI: 10.1002/smll.202502276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Pd-based catalysts are considered promising for the formic acid oxidation reaction (FAOR), whereas the toxic effect of poisoning intermediates greatly affects the stability and activity of the catalysts. Herein, a dual-force-driven self-assembly strategy is developed to synthesize mesoporous palladium-boron (meso-Pd-B) alloy using cationic polymer polyethyleneimine (PEI) as a pore-forming agent. In this strategy, PEI can interact with the Pd metal precursor via electrostatic and coordination interactions and self-assemble into stable organic-inorganic composites. Dimethylamine borane as a reducing agent together with boric acid enables the alloying of Pd with B, and the Pd-B alloy with mesoporous structure is obtained driven by dual forces. The strategy can be generalized to synthesize other mesoporous metal-B alloys (e.g., Pt-B, Ag-B, Ir-B, Ru-B, and Rh-B). The resultant meso-Pd-B alloy exhibits remarkable catalytic performance (1310 mA mg-1) in FAOR. Combined experimental results and density functional theory calculations indicate that the enhanced activity can be attributed to the electronic effect resulting from the alloying of Pd and B, which weakens the binding strength of toxic substances on the surface of the Pd catalyst. And the favorable mesoporous structure allows the catalyst to expose more catalytic active sites and accelerates the substance transfer efficiency.
Collapse
Affiliation(s)
- Yumeng Mao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Wei Li
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Zhengwen Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Jiyuan Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Youxing Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Li Y, Yao MS, He Y, Du S. Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges. NANO-MICRO LETTERS 2025; 17:148. [PMID: 39960581 PMCID: PMC11832879 DOI: 10.1007/s40820-025-01648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025]
Abstract
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport. They have been expected to be a future power source for portable electronic devices. The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application, which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes. Here, we provide a comprehensive review of the progress around this technology, in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale, to catalyst design at the nanoscale, electrode structure at the micro scale and design at the millimeter scale, and finally to device fabrication at the meter scale. The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted. Finally, perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology.
Collapse
Affiliation(s)
- Yang Li
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ming-Shui Yao
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanping He
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650504, People's Republic of China.
| | - Shangfeng Du
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Mao X, Ou M, Zhao W, Shi M, Zheng L. Enhanced durability of Pd/CeO 2-C via metal-support interaction for oxygen reduction reaction. NANOTECHNOLOGY 2024; 35:475701. [PMID: 39173656 DOI: 10.1088/1361-6528/ad726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
It is a challenge to improve the long-term durability of Pd-based electrocatalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, Pd/CeO2-C-T (T= 800 °C, 900 °C and 1000 °C) hybrid catalysts with metal-support interaction are prepared from Ce-based metal organic framework precursor. Abundant tiny CeO2nanoclusters are produced to form nanorod structures with uniformly distributed carbon through a calcination process. Meanwhile, both carbon and CeO2nanoclusters have good contact with the following deposited surfactant-free Pd nanoclusters. Benefited from the large specific surface area, good conductivity and structure integrity, Pd/CeO2-C-900 exhibits the best electrocatalytic ORR performance: onset potential of 0.968 V and half-wave potential of 0.857 V, outperforming those obtained on Pd/C counterpart. In addition, the half-wave potential only shifts 7 mV after 6000 cycles of accelerated durability testing, demonstrating robust durability.
Collapse
Affiliation(s)
- Xinbiao Mao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Mingyu Ou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Wenjun Zhao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Meiqin Shi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Lingxia Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Li S, Ajmal S, Zhou X, Lu M, Li X, Sun Z, Liu S, Zhu M, Li P. Mixed-Dimensional Partial Dealloyed PtCuBi/C as High-Performance Electrocatalysts for Methanol Oxidation with Enhanced CO Tolerance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309226. [PMID: 38126680 DOI: 10.1002/smll.202309226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the COads, and oxophilic metal Bi facilitates the OHads, thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mgPt -1 for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.
Collapse
Affiliation(s)
- Sichen Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Sara Ajmal
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xiaoxing Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Maoni Lu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xinghao Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
5
|
Gul S, Nasim F, Iqbal W, Waseem A, Nadeem MA. High performance electrochemical CO 2 reduction over Pd decorated cobalt containing nitrogen doped carbon. RSC Adv 2024; 14:13017-13026. [PMID: 38655488 PMCID: PMC11036173 DOI: 10.1039/d4ra01641f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Efficient electrocatalytic CO2 reduction reaction (eCO2RR) to various products, such as carbon monoxide (CO), is crucial for mitigating greenhouse gas emissions and enabling renewable energy storage. In this article, we introduce Pd nanoparticles which are deposited over in-house synthesized nitrogen doped tubular carbon (NC) whose ends are blocked with cobalt oxide (CoOx). This composite material is denoted as Pd@CoOx/NC. Among the series of synthesized electrocatalysts, the optimum ratio (Pd@CoOx/NC1) within this category exhibits exceptional performance, manifesting an 81% faradaic efficiency (FE) for CO generation which was quantitatively measured using a gas chromatograph. This remarkable efficiency can be attributed to several scientific factors. Firstly, the presence of Pd nanoparticles provides active sites for CO2 reduction. Secondly, the NC offer enhanced electrical conductivity and facilitate charge transfer during the reaction. Thirdly, the CoOx capping at the ends of the NC serves to stabilize the catalyst, favoring the formation of CO. The remarkable selectivity of the catalyst is further confirmed by the qualitative CO detection method using PdCl2 strips. Pd@CoOx/NC1 exhibits a high current density of 55 mA cm-2 and a low overpotential of 251 mV, outperforming Pd decorated multiwalled carbon nanotubes (Pd@MWCNTs) which shows a higher overpotential of 481 mV. Pd@CoOx/NC1 shows long-term stability at different potentials and rapid reaction kinetics. These findings highlight Pd@CoOx/NC1 as promising CO2 reduction catalysts, with implications for sustainable energy conversion techniques.
Collapse
Affiliation(s)
- Shayan Gul
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Fatima Nasim
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Waheed Iqbal
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Amir Waseem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
- Pakistan Academy of Sciences 3-Constitution Avenue Sector G-5/2 Islamabad Pakistan
| |
Collapse
|
6
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
7
|
Sofian M, Nasim F, Ali H, Nadeem MA. Pronounced effect of yttrium oxide on the activity of Pd/rGO electrocatalyst for formic acid oxidation reaction. RSC Adv 2023; 13:14306-14316. [PMID: 37197672 PMCID: PMC10184137 DOI: 10.1039/d3ra01929b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
A highly efficient and stable electrocatalyst comprised of yttrium oxide (Y2O3) and palladium nanoparticles has been synthesized via a sodium borohydride reduction approach. The molar ratio of Pd and Y was varied to fabricate various electrocatalysts and the oxidation reaction of formic acid was checked. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) are used to characterize the synthesized catalysts. Among the synthesized catalysts (PdyYx/rGO), the optimized catalyst i.e., Pd6Y4/rGO exhibits the highest current density (106 mA cm-2) and lowest onset potential compared to Pd/rGO (28.1 mA cm-2) and benchmark Pd/C (21.7 mA cm-2). The addition of Y2O3 to the rGO surface results in electrochemically active sites due to the improved geometric structure and bifunctional components. The electrochemically active surface area 119.4 m2 g-1 is calculated for Pd6Y4/rGO, which is ∼1.108, ∼1.24, ∼1.47 and 1.55 times larger than Pd4Y6/rGO, Pd2Y8/rGO, Pd/C and Pd/rGO, respectively. The redesigned Pd structures on Y2O3-promoted rGO give exceptional stability and enhanced resistance to CO poisoning. The outstanding electrocatalytic performance of the Pd6Y4/rGO electrocatalyst is ascribed to uniform dispersion of small size palladium nanoparticles which is possibly due to the presence of yttrium oxide.
Collapse
Affiliation(s)
- Muhammad Sofian
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Fatima Nasim
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Hassan Ali
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
- Pakistan Academy of Sciences 3-Constitution Avenue Sector G-5/2 Islamabad Pakistan
| |
Collapse
|
8
|
Zhang G, Wang Y, Ma Y, Zhang H, Zheng Y. Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches. Molecules 2023; 28:molecules28093670. [PMID: 37175080 PMCID: PMC10180118 DOI: 10.3390/molecules28093670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The formic acid oxidation reaction (FAOR) represents an important class of small organic molecule oxidation and is central to the practical application of fuel cells. In this study, we report the fabrication of Ir(IV)-doped PdAg alloy nanodendrites with sub-5 nm branches via stepwise synthesis in which the precursors of Pd and Ag were co-reduced, followed by the addition of IrCl3 to conduct an in situ galvanic replacement reaction. When serving as the electrocatalyst for the FAOR in an acidic medium, Ir(IV) doping unambiguously enhanced the activity of PdAg alloy nanodendrites and improved the reaction kinetics and long-term stability. In particular, the carbon-supported PdAgIr nanodendrites exhibited a prominent mass activity with a value of 1.09 A mgPd-1, which is almost 2.0 times and 2.7 times that of their PdAg and Pd counterparts, and far superior to that of commercial Pt/C. As confirmed by the means of the DFT simulations, this improved electrocatalytic performance stems from the reduced overall barrier in the oxidation of formic acid into CO2 during the FAOR and successful d-band tuning, together with the stabilization of Pd atoms. The current study opens a new avenue for engineering Pd-based trimetallic nanocrystals with versatile control over the morphology and composition, shedding light on the design of advanced fuel cell electrocatalysts.
Collapse
Affiliation(s)
- Gongguo Zhang
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| | - Yingying Wang
- Health Management Department, Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Haifeng Zhang
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| | - Yiqun Zheng
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| |
Collapse
|
9
|
Huang S, Li J, Wang X, Kang Y, Zhao Y, Wang H, Zhang P, Zhang L, Zhao C. Boosting the Electrocatalytic Formic Acid Oxidation Activity via P-PdAuAg Quaternary Alloying. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36916029 DOI: 10.1021/acsami.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct formic acid fuel cells (DFAFCs) are considered promising sustainable power sources due to their high energy density, nonflammability, and low fuel crossover. However, serious CO poisoning and activity attenuation of the anodic formic acid oxidation reaction (FAOR) greatly restrict the output and durability of DFAFCs. Inspired by the specific relationship between the composition, type, and property of alloys, in this work, we synthesize a series of hybrid substitutional/interstitial quaternary alloys P-PdAuAg by means of a novel polyphosphide route to address these issues. Due to the simultaneous interstitial P-doping and metal (Au, Ag, Pd) co-reduction, the P-PdAuAg quaternary alloy obtained is only 3 nm in diameter with abundant defects. It not only achieves a new high mass activity of 8.08 A mgPd-1 (6.78 A mgcatalyst-1) but also maintains high stability in the high potential range and harsh reaction conditions. Both the activity and anti-poisoning ability are far exceeding those of the currently reported FAOR catalysts. Detailed density functional theory (DFT) calculations reveal that the superb electrochemical performances originate from the shift of the d-band center of Pd as a result of the synergistic electronic/ligand effects between Pd, Au, Ag, and P. The introduction of interstitial P inhibits the occurrence of an indirect reaction pathway on Pd, while Au and Ag suppress the adsorption of CO and optimize the sequential dehydrogenation steps, leading to boosted reaction kinetics and CO tolerance. This work pioneered a facile way for the synthesis of Pd-based substitutional/interstitial hybrid alloys, providing a promising means of further improving the performance of alloying catalysts.
Collapse
Affiliation(s)
- Shuke Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Xiaosha Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yongshuai Kang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yongjian Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Hu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| |
Collapse
|
10
|
Vdovenkov F, Bedova E, Kozaderov O. Phase Transformation during the Selective Dissolution of a Cu 85Pd 15 Alloy: Nucleation Kinetics and Contribution to Electrocatalytic Activity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1606. [PMID: 36837236 PMCID: PMC9966359 DOI: 10.3390/ma16041606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
This study determined the critical parameters for the morphological development of the electrode surface (the critical potential and the critical charge) during anodic selective dissolution of a Cu-Pd alloy with a volume concentration of 15 at.% palladium. When the critical values were exceeded, a phase transition occurred with the formation of palladium's own phase. Chronoamperometry aided in the determination of the partial rates of copper ionization and phase transformation of palladium under overcritical selective dissolution conditions. The study determined that the formation of a new palladium phase is controlled by a surface diffusion of the ad-atom to the growing three-dimensional nucleus under instantaneous activation of the nucleation centres. We also identified the role of this process in the formation of the electrocatalytic activity of the anodically modified alloy during electro-oxidation of formic acid. This study demonstrated that HCOOH is only oxidated at a relatively high rate on the surface of the Cu85Pd15 alloy, which is subjected to selective dissolution under overcritical conditions. This can be explained by the fact that during selective dissolution of the alloy, a pure palladium phase is formed on its highly developed surface which has prominent catalytic activity towards the electro-oxidation of formic acid. The rate of electro-oxidation of HCOOH on the surface of the anodically modified alloy increased with the growth of the potential and the charge of selective dissolution, which can be used to obtain an electrode palladium electrocatalyst with a set level of electrocatalytic activity towards the anodic oxidation of formic acid.
Collapse
|
11
|
Castilla-Amorós L, Schouwink P, Oveisi E, Okatenko V, Buonsanti R. Tailoring Morphology and Elemental Distribution of Cu-In Nanocrystals via Galvanic Replacement. J Am Chem Soc 2022; 144:18286-18295. [PMID: 36173602 DOI: 10.1021/jacs.2c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The compositional and structural diversity of bimetallic nanocrystals (NCs) provides a superior tunability of their physico-chemical properties, making them attractive for a variety of applications, including sensing and catalysis. Nevertheless, the manipulation of the properties-determining features of bimetallic NCs still remains a challenge, especially when moving away from noble metals. In this work, we explore the galvanic replacement reaction (GRR) of In NCs and a copper molecular precursor to obtain Cu-In bimetallic NCs with an unprecedented variety of morphologies and distribution of the two metals. We obtain spherical Cu11In9 intermetallic and patchy phase-segregated Cu-In NCs, as well as dimer-like Cu-Cu11In9 and Cu-In NCs. In particular, we find that segregation of the two metals occurs as the GRR progresses with time or with a higher copper precursor concentration. We discover size-dependent reaction kinetics, with the smaller In NCs undergoing a slower transition across the different Cu-In configurations. We compare the obtained results with the bulk Cu-In phase diagram and, interestingly, find that the bigger In NCs stabilize the bulk-like Cu-Cu11In9 configuration before their complete segregation into Cu-In NCs. Finally, we also prove the utility of the new family of Cu-In NCs as model catalysts to elucidate the impact of the metal elemental distribution on the selectivity of these bimetallics toward the electrochemical CO2 reduction reaction. Generally, we demonstrate that the GRR is a powerful synthetic approach beyond noble metal-containing bimetallic structures, yet that the current knowledge on this reaction is challenged when oxophilic and poorly miscible metal pairs are used.
Collapse
Affiliation(s)
- Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Pascal Schouwink
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Emad Oveisi
- Interdisciplinary Center for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
12
|
Ying J, Lenaerts S, Symes MD, Yang X. Hierarchical Design in Nanoporous Metals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106117. [PMID: 35900062 PMCID: PMC9507373 DOI: 10.1002/advs.202106117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Indexed: 05/28/2023]
Abstract
Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and TechnologySun Yat‐sen University (SYSU)Zhuhai519082P. R. China
| | - Silvia Lenaerts
- Research Group of Sustainable Energy and Air Purification (DuEL), Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Mark D. Symes
- WestCHEM, School of ChemistryUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
13
|
Orzari LO, Assumpção MHMT, Nandenha J, Neto AO, Junior LHM, Bergamini M, Janegitz BC. Pd, Ag and Bi carbon-supported electrocatalysts as electrochemical multifunctional materials for ethanol oxidation and dopamine determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Chen M, Liu Y, Song T, Wei R, Zhuang X, Yang Y, Liang H. Intermetallic
PdCd
core promoting
CO
tolerance of Pd shell for electrocatalytic formic acid oxidation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming‐Xi Chen
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yue Liu
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Tian‐Wei Song
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Rui‐Lin Wei
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Xiao‐Dong Zhuang
- The Meso‐Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan RD Shanghai 200240 China
| | - Yao‐Yue Yang
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Hai‐Wei Liang
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
16
|
Luo G, Hu S, Niu D, Sun S, Zhang X. Well-designed internal electric field from nano-ferroelectrics promotes formic acid oxidation on Pd. NANOSCALE 2022; 14:6007-6020. [PMID: 35274645 DOI: 10.1039/d1nr05777d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pd-Based catalysts are considered the most efficient catalysts in direct formic acid fuel cells. However, the poisoning and dissolution of Pd in acidic systems limit its commercialization. Here, we propose an all-in-one solution for the anti-dissolution and anti-poisoning properties of palladium. A novel structured catalyst, Pd nanoparticles embedded in a carbon layer internally decorated with tourmaline nanoparticles (TNPs), is proposed for formic acid oxidation (FAO). The internal electric field strength of the catalysts is readily regulated by controlling the amount of TNPs. Remarkably, the prepared catalyst exhibits as high as 3.9 times mass activity (905 A g-1) compared with the commercial Pd/C catalyst. The significant improvement in the electrocatalytic performance of the catalyst is mainly due to the polarized electric field of TNPs causing charge transfer from Pd to tourmaline, which weakens the O-H bond of HCOOH and the bond between Pd and COad. Another advantage brought by the internal polarized electric field is that it facilitates water dissociation to produce OHad, thereby improving the anti-poisoning ability of the catalyst in acidic media. Moreover, the firmly anchored Pd nanoparticles can avoid dissolution and agglomeration during long-term use. 80.2% mass activity remained after the accelerated durability test.
Collapse
Affiliation(s)
- Guoming Luo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongfang Niu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
17
|
Manikanta Kumar M, Raj CR. Heteroatom-Doped Carbon-Encapsulated FeP Nanostructure: A Multifunctional Electrocatalyst for Zinc-Air Battery and Water Electrolyzer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15176-15186. [PMID: 35344334 DOI: 10.1021/acsami.1c24918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rational design and synthesis of efficient multifunctional electrocatalysts for renewable energy technologies is of significant interest. Herein, we demonstrate a novel approach for the synthesis of a nitrogen and phosphorus dual-doped mesoporous carbon-encapsulated iron phosphide (FeP@NPC) nanostructure and its multifunctional electrocatalytic activity toward an oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction for zinc-air battery (ZAB) and alkaline water-splitting applications. FeP@NPC is obtained by the carbothermal reduction of the precursor complex [Fe(bpy)3](PF6)2 in the presence of melamine without any traditional phosphidating agent. The PF6- counteranion is used for the phosphidation of Fe. FeP@NPC obtained at 900 °C (FeP@NPC-900) exhibits excellent bifunctional oxygen electrocatalytic performance with a very low potential gap (ΔE = E1/2ORR - Ej10OER) of 670 mV. The ZAB device delivers a peak power density of 190.15 mW cm-2 (iR-corrected), specific capacity of 785 mA h gZn-1, and energy density of 706.5 Wh kgZn-1 at 50 mA cm-2. The ZAB exhibits excellent charge-discharge cycling stability for over 35 h with negligible voltaic efficiency loss (0.9%). Three CR2032 coin-cell-based ZABs made of an FeP@NPC-900 air cathode connected in series power 81 LEDs for 15 min. FeP@NPC-900 also has promising electrocatalytic activity toward water splitting in acidic as well as in alkaline pH. The benchmark current density of 10 mA cm-2 is achieved with a two-electrode alkaline water electrolyzer at a cell voltage of 1.65 V. ZAB-powered water electrolyzer is made by integrating two rechargeable ZABs connected in series with the two-electrode water electrolyzer. The ZAB powers the electrolyzer for 24 h without a significant loss in the open-circuit voltage. The catalyst retains its initial structural integrity even after continuous water electrolysis for 24 h.
Collapse
Affiliation(s)
- Mopidevi Manikanta Kumar
- Functional Materials and Electrochemistry Lab, Department of Chemistry, IIT Kharagpur, Kharagpur 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, IIT Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
18
|
Kundu A, Mallick S, Ghora S, Raj CR. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40172-40199. [PMID: 34424683 DOI: 10.1021/acsami.1c08462] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical reduction of oxygen to water and the evolution of oxygen from water are two important electrode reactions extensively studied for the development of electrochemical energy conversion and storage technologies based on oxygen electrocatalysis. The development of an inexpensive, highly active, and durable nonprecious-metal-based oxygen electrocatalyst is indispensable for emerging energy technologies, including anion exchange membrane fuel cells, metal-air batteries (MABs), water electrolyzers, etc. The activity of an oxygen electrocatalyst largely decides the overall energy storage performance of these devices. Although the catalytic activities of Pt and Ru/Ir-based catalysts toward an oxygen reduction reaction (ORR) and an oxygen evolution reaction (OER) are known, the high cost and lack of durability limit their extensive use for practical applications. This review article highlights the oxygen electrocatalytic activity of the emerging non-Pt and non-Ru/Ir oxygen electrocatalysts including transition-metal-based random alloys, intermetallics, metal-coordinated nitrogen-doped carbon (M-N-C), and transition metal phosphides, nitrides, etc., for the development of an air-breathing electrode for aqueous primary and secondary zinc-air batteries (ZABs). Rational surface and chemical engineering of these electrocatalysts is required to achieve the desired oxygen electrocatalytic activity. The surface engineering increases the number of active sites, whereas the chemical engineering enhances the intrinsic activity of the catalyst. The encapsulation or integration of the active catalyst with undoped or heteroatom-doped carbon nanostructures affords an enhanced durability to the active catalyst. In many cases, the synergistic effect between the heteroatom-doped carbon matrix and the active catalyst plays an important role in controlling the catalytic activity. The ORR activity of these catalysts is evaluated in terms of onset potential, number of electrons transferred, limiting current density, and durability. The bifunctional oxygen electrocatalytic activity and ZAB performance, on the other hand, are measured in terms of potential gap between the ORR and OER, ΔE = Ej10OER - E1/2ORR, specific capacity, peak power density, open circuit voltage, voltaic efficiency, and charge-discharge cycling stability. The nonprecious metal electrocatalyst-based ZABs are very promising and they deliver high power density, specific capacity, and round-trip efficiency. The active site for oxygen electrocatalysis and challenges associated with carbon support is briefly addressed. Despite the considerable progress made with the emerging electrocatalysts in recent years, several issues are yet to be addressed to achieve the commercial potential of rechargeable ZAB for practical applications.
Collapse
Affiliation(s)
- Aniruddha Kundu
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Mallick
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Santanu Ghora
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
19
|
Electrochemical preparation of porous ZnCuNi by electrodeposition in ethaline deep eutectic solvent followed by anodic or cathodic dealloying in alkaline aqueous solutions for higher nitrate reduction activity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
21
|
Goswami C, Saikia H, Jyoti Borah B, Jyoti Kalita M, Tada K, Tanaka S, Bharali P. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway. J Colloid Interface Sci 2021; 587:446-456. [PMID: 33383434 DOI: 10.1016/j.jcis.2020.11.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Tuning composition of Pd-based bimetallic electrocatalysts of high stability and durability is of great importance in energy-related reactions. This study reports the remarkable electrocatalytic performance of carbon-supported bimetallic Pd-Cu alloy nanoparticles (NPs) towards formic acid oxidation (FAO) and oxygen reduction reaction (ORR). Among various bimetallic compositions, Pd3Cu/C alloy NPs exhibits the best FAO and ORR activity. During FAO reaction, Pd3Cu/C alloy NPs exhibits a peak with a current density of 28.33 mA cm-2 and a potential of 0.2 V (vs. Ag/AgCl) which is higher than that of the other PdCu compositions and standard 20 wt% Pd/C catalyst. Meanwhile, the onset potential (-0.09 V), half-wave potential (-0.18 V), limiting current density at 1600 rpm (-4.9 mA cm-2) and Tafel slope (64 mV dec-1) values of Pd3Cu/C alloy NPs validate its superiority over the conventional 20 wt% Pt/C catalyst for ORR. Experimental and DFT studies have confirmed that the enhanced activity can be attributed to the electronic effect that arises after Cu alloying which causes a downshift of Pd d-band center and structural effect that produces highly dispersed NPs over the carbon matrix with high electrochemically active surface area.
Collapse
Affiliation(s)
- Chiranjita Goswami
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Himadri Saikia
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India; Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785 006, Assam, India
| | - Biraj Jyoti Borah
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Manash Jyoti Kalita
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Kohei Tada
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Shingo Tanaka
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Pankaj Bharali
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India.
| |
Collapse
|
22
|
PdAg Nanoparticles with Different Sizes: Facile One‐Step Synthesis and High Electrocatalytic Activity for Formic Acid Oxidation. Chem Asian J 2020; 16:34-38. [DOI: 10.1002/asia.202001253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/11/2022]
|
23
|
High Active PdSn Binary Alloyed Catalysts Supported on B and N Codoped Graphene for Formic Acid Electro-Oxidation. Catalysts 2020. [DOI: 10.3390/catal10070751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A series of PdSn binary catalysts with varied molar ratios of Pd to Sn are synthesized on B and N dual-doped graphene supporting materials. The catalysts are characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Formic acid electro-oxidation reaction is performed on these catalysts, and the results reveal that the optimal proportion of Pd:Sn is 3:1. X-ray photoelectron spectroscopy (XPS) measurements show that when compared with 3Pd1Sn/graphene, B and N co-doping into the graphene sheet can tune the electronic structure of graphene, favoring the formation of small-sized metallic nanoparticles with good dispersion. On the other hand, when compared with the monometallic counterparts, the incorporation of Sn can generate oxygenated species that help to remove the intermediates, exposing more active Pd sites. Moreover, the electrochemical tests illustrate that 3Pd1Sn/BN-G catalyst with a moderate amount of Sn exhibits the best catalytic activity and stability on formic acid electro-oxidation, owing to the synergistic effect of the Sn doping and the B, N co-doping graphene substrate.
Collapse
|
24
|
Luo LM, Zhan W, Zhang RH, Hu QY, Guo YF, Zhou XW. Enhanced catalytic activity and stability of CoAuPd nanocatalysts by combining methods of heat treatment and dealloying. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Shen Y, Zhang S, Liao F, Sun J, Dang Q, Shao M, Kang Z. Pd Nanoparticles with Twin Structures on F‐Doped Graphene for Formic Acid Oxidation. ChemCatChem 2019. [DOI: 10.1002/cctc.201901260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuwei Shen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Shanshan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Jianping Sun
- Testing and Analysis Center of Soochow UniversitySoochow University Suzhou 215123 P. R. China
| | - Qian Dang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
26
|
Song T, Gao F, Jin L, Zhang Y, Wang C, Li S, Chen C, Du Y. From bimetallic PdCu nanowires to ternary PdCu-SnO 2 nanowires: Interface control for efficient ethanol electrooxidation. J Colloid Interface Sci 2019; 560:802-810. [PMID: 31711664 DOI: 10.1016/j.jcis.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
At present, although a large number of palladium-based nanowire electrocatalysts have been prepared, there are few reports on nanowires containing rich metal oxides. Herein, porous PdCu alloy nanowires and PdCu-SnO2 nanowires were prepared by using a galvanic displacement synthesis method. Due to their one-dimensional structure, rough surfaces with non-homogeneous edges, electronic effect, and the advanced PdCu/SnO2 interface of the as-synthesized PdCu-SnO2 nanowire catalysts, they exhibited a mass activity of 7770.0 mA mg-1 towards ethanol oxidation, which was 7.6-fold higher than that of Pd/C catalysts (1025.0 mA mg-1). In addition, they behaved strong durability upon chronoamperometry and continuous cyclic voltammetry tests. The electrochemical measurements demonstrated that SnO2 was introduced into the PdCu/SnO2 interface, which promoted the oxidation of ethanol at a lower potential and accelerated the oxidation of Pd-COads via SnO2-OHads to regenerate the active sites. This research highlights the significance of introducing metal oxides into the nanostructure interface, and the performance of Pd-containing catalysts towards ethanol oxidation reaction was greatly improved.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Zheng H, Matseke MS, Munonde TS. The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis. ULTRASONICS SONOCHEMISTRY 2019; 57:166-171. [PMID: 31208611 DOI: 10.1016/j.ultsonch.2019.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Over the past decades, there were a few reports on the use of sonochemical method to prepare noble metals catalysts for fuel cells. However, the synthetic processes were conducted under high frequency (200 kHz)/long reaction time in most cases. In this work, Pd and PdxPt nanoparticles were prepared by sonochemical method under low frequency (20 kHz) in a shorter time (20-40 mins). In the first time, a sequentialsonochemical synthesis was explored to achieve a core/shell structure of PdxPt nanoparticles. Consequently, the unique core-shell structure was formed with two shells surrounding the Pd core. The Pd core was firstly grown. In the second step, the Pd2+ ion existing in the Pd core reduced simultaneously with Pt4+ ion in the solution as the first layer of PdPt alloy. Further, the Pt layer was formed subsequently. The Pd-based catalysts exhibited a superior ORR selective activity and exceptional methanol-tolerance property compared with the commercial Pt/C catalyst. In 0.5 M CH3OH + 0.5MH2SO4 solution, the best performance was achieved on Pd3Pt/C catalyst with increased overpotential of 24 mV. However, overpotentials was increased 174 mV on commercial Pt/C catalyst. The excellent performance of the Pd3Pt/C catalyst is ascribed to its combination of preferable growth of the Pd (1 1 1) plane, small particle size (∼4 nm), unique core/shell structure as well as the electronic effects between Pd and Pt. These results have demonstrated that the sequential ultrasonic synthesis is an effective method for the synthesis of binary/trinary catalysts in a green approach.
Collapse
Affiliation(s)
- Haitao Zheng
- Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa.
| | - Mphoma S Matseke
- Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa; University of Johannesburg, PO Box 524, Johannesburg 2006, South Africa
| | - Tshimangadzo S Munonde
- Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa; University of Johannesburg, PO Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
28
|
Zhang Y, Gao F, Wang C, Shiraishi Y, Du Y. Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30880-30886. [PMID: 31368299 DOI: 10.1021/acsami.9b09110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Caiqin Wang
- College of Science , Nanjing Forestry University , 159 Longpan Road , Nanjing 210037 , P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| |
Collapse
|