1
|
Zuo P, Peng J, Yao Y, Tan W, Cheng L, Zhang J, Lu X. Fabrication of Carbon Dots with Singlet Oxygen Generation and Their Potential Photodynamic Therapy Applications. J Fluoresc 2025; 35:3061-3069. [PMID: 38717650 DOI: 10.1007/s10895-024-03725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/11/2024] [Indexed: 05/23/2025]
Abstract
Due to the unique chemical and biomedical properties of carbon dots (CDs), they have increasingly obtained the attention in many research fields, for example, bioimaging, fluorescence sensing, and drug delivery, etc. Recently, it was found that, under light excitation, CDs can also be exploited as a novel photosensitizer to prepare reactive oxygen species (ROS), which expand their applications in the field of photodynamic therapy for cancer treatment. Nevertheless, the high cost and complex fabrication approach of CDs significantly limit their applications. To address this issue, bottom-up routes usually utilize sustainable and inexpensive carbon precursor as starting materials, employed N,N-dimethylformamide (DMF) or ethanol as an environmental-friendly solvent. Bottom-up approach was energy efficient, and the purification process was relatively simple by dialysis. Therefore, carbon dots (CDs) were facilely fabricated in a one-pot solvothermal process using 1-aminoanthraquinone as a precursor, and their application as photosensitizers for in vitro antitumor cells, especially photodynamic therapy (PDT) was established. Then the photophysical and nanoscale dimensions properties of the fabricated CDs were characterized via TEM, UV-visible, fluorescence, and FT-IR spectroscopy. The synthesized N-doped CDs can easily dissolve in water, possess very low biotoxicity, yellow-light emission (maximum peak at 587 nm). More importantly, PDT studies demonstrated that the obtained CDs possess a high singlet oxygen yield of 35%, and exhibit significant phototoxicity to cancer cells upon 635 nm laser irradiation. These studies highlight that N-doped CDs can be facilely synthesized from only one precursor, and are a potentially novel theranostic agent for in vivo PDT.
Collapse
Affiliation(s)
- Pengli Zuo
- Central Laboratory, Linyi Central Hospital, Yishui County, 17 Jiankang Road, Linyi, 276400, Shandong, China.
| | - Jun Peng
- R&D Centre for Multimodal Nanocontrast Agents of Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Yuyang Yao
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, Jiangsu, China
| | - Wei Tan
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Lan Cheng
- Central Laboratory, Linyi Central Hospital, Yishui County, 17 Jiankang Road, Linyi, 276400, Shandong, China
| | - Jinyu Zhang
- Central Laboratory, Linyi Central Hospital, Yishui County, 17 Jiankang Road, Linyi, 276400, Shandong, China
| | - Xiuhua Lu
- Central Laboratory, Linyi Central Hospital, Yishui County, 17 Jiankang Road, Linyi, 276400, Shandong, China
| |
Collapse
|
2
|
Leite IS, Lyles Z, Sanches EA, Bagnato VS, Vivero-Escoto JL, Inada NM. Protoporphyrin IX loaded polysilsesquioxane nanoparticles: photostability and cellular response to photodynamic therapy. Photodiagnosis Photodyn Ther 2025; 53:104591. [PMID: 40250513 DOI: 10.1016/j.pdpdt.2025.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Photodynamic therapy (PDT) is a non-invasive therapeutic approach used for the treatment of cancer. Several nanoparticulate systems have been currently developed to enhance the phototherapeutic effect associated with PDT. In particular, polysilsesquioxane (PSilQ) nanoparticles are a promising hybrid platform with numerous advantages to be used as a delivery system. PSilQ nanoparticles were prepared to efficiently carry protoporphyrin IX (PpIX) as a PS agent to treat triplet-negative breast cancer. In this report, the photostability performance of this PSilQ platform was evaluated, as well as its PDT effect on breast cancer (MCF-7) and human dermal fibroblasts, neonatal (HDFn) cell lines. The fluorescence life-time results demonstrated that the PpIX molecules are aggregated inside the PSilQ framework. Nevertheless, similar PDT outcome was obtained against MCF-7 cells as compared to PpIX molecules. Moreover, the PSilQ platform reduced the dark toxicity associated with PpIX in HDFn cells. These relevant features make PSilQ nanoparticles an interesting platform for PDT of cancer.
Collapse
Affiliation(s)
- Ilaiáli Souza Leite
- University of São Paulo, São Carlos Institute of Physics, Group of Optics, São Carlos, SP, Brazil
| | - Zachary Lyles
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, USA; Nanoscale Science Program, University of North Carolina Charlotte, Charlotte, NC, USA
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Vanderlei Salvador Bagnato
- University of São Paulo, São Carlos Institute of Physics, Group of Optics, São Carlos, SP, Brazil; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Juan Luis Vivero-Escoto
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, USA; Nanoscale Science Program, University of North Carolina Charlotte, Charlotte, NC, USA; The Center for Biomedical Engineering and Science, University of North Carolina Charlotte, Charlotte, NC, USA.
| | - Natalia Mayumi Inada
- University of São Paulo, São Carlos Institute of Physics, Group of Optics, São Carlos, SP, Brazil; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Nazarenko AS, Shkirdova AO, Orlova EA, Biryukova YK, Vorovitch MF, Kolyasnikova NM, Ishmukhametov AA, Tyurin VS, Zamilatskov IA. Viral-Porphyrin Combo: Photodynamic and Oncolytic Viral Therapy for Potent Glioblastoma Treatment. Int J Mol Sci 2024; 25:12578. [PMID: 39684289 DOI: 10.3390/ijms252312578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Combined viral and photodynamic therapy for oncological diseases has great potential to treat aggressive tumors such as glioblastomas. A conjugate of vesicular stomatitis virus (VSV) with protoporphyrin IX was prepared, and its oncolytic effects were studied and compared to the effects of the individual components. The VSV showed an oncolytic effect on glioblastoma cell lines T98G and LN229 at a virus titer of 105 TCID50/mL. A VSV titer of 104 TCID50/mL was sufficient for neuroblastoma cell death. A study of the effect of VSV in tumor 3D cell modeling found that VSV had a clear viral cytopathic effect on spheroids of T98G and LN229 cells. Conjugation with the porphyrin significantly reduced the viral titer, but when irradiated, lysis of cells was observed. Photodynamic treatment of T98G and LN229 cells and spheroids with protoporphyrin IX as a photosensitizer also had a cytotoxic effect on cells and, to a lesser extent, on the tumoroids, as complete cell death was not achieved for the tumoroids. The combination therapy, which involved sequential photodynamic therapy using protoporphyrin IX as a photosensitizer and treatment with VSV, was shown to significantly enhance efficacy, resulting in complete cell death of both T98G and LN229 cells and tumoroids. The combination treatment allowed for the use of a lower viral titer (103-104 TCID50/mL) and a lower porphyrin concentration (0.5 μg/mL) to achieve a significant cytotoxic effect. As a result, the implementation of this combination therapy would likely lead to fewer side effects from the treatment. This study clearly demonstrated the excellent perspectives of combination therapy for the treatment of highly aggressive tumors such as glioblastomas.
Collapse
Affiliation(s)
- Alina S Nazarenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Alena O Shkirdova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina A Orlova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Yulia K Biryukova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Mikhail F Vorovitch
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Nadezhda M Kolyasnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Aydar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Vladimir S Tyurin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ilya A Zamilatskov
- Chair of Chemistry, The Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia
| |
Collapse
|
4
|
Zhang Y, Yu Y, Yang Y, Wang Y, Yu C. Engineered Silica Nanoparticles for Nucleic Acid Delivery. SMALL METHODS 2024; 8:e2300812. [PMID: 37906035 DOI: 10.1002/smtd.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Indexed: 11/02/2023]
Abstract
The development of nucleic acid-based drugs holds great promise for therapeutic applications, but their effective delivery into cells is hindered by poor cellular membrane permeability and inherent instability. To overcome these challenges, delivery vehicles are required to protect and deliver nucleic acids efficiently. Silica nanoparticles (SiNPs) have emerged as promising nanovectors and recently bioregulators for gene delivery due to their unique advantages. In this review, a summary of recent advancements in the design of SiNPs for nucleic acid delivery and their applications is provided, mainly according to the specific type of nucleic acids. First, the structural characteristics and working mechanisms of various types of nucleic acids are introduced and classified according to their functions. Subsequently, for each nucleic acid type, the use of SiNPs for enhancing delivery performance and their biomedical applications are summarized. The tailored design of SiNPs for selected type of nucleic acid delivery will be highlighted considering the characteristics of nucleic acids. Lastly, the limitations in current research and personal perspectives on future directions in this field are presented. It is expected this opportune review will provide insights into a burgeoning research area for the development of next-generation SiNP-based nucleic acid delivery systems.
Collapse
Affiliation(s)
- Yue Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yingjie Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
5
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
6
|
Li X, Chandler M, Avila YI, Arroyo-Becker SI, Patriarche G, Vargas-Berenguel A, Casas-Solvas JM, Afonin KA, Gref R. Nanoscale metal-organic frameworks for the delivery of nucleic acids to cancer cells. Int J Pharm X 2023; 5:100161. [PMID: 36817971 PMCID: PMC9931914 DOI: 10.1016/j.ijpx.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/31/2023] Open
Abstract
Therapeutic nucleic acids (TNAs) are gaining increasing interest in the treatment of severe diseases including viral infections, inherited disorders, and cancers. However, the efficacy of intracellularly functioning TNAs is also reliant upon their delivery into the cellular environment, as unmodified nucleic acids are unable to cross the cell membrane mainly due to charge repulsion. Here we show that TNAs can be effectively delivered into the cellular environment using engineered nanoscale metal-organic frameworks (nanoMOFs), with the additional ability to tailor which cells receive the therapeutic cargo determined by the functional moieties grafted onto the nanoMOF's surface. This study paves the way to integrate the highly ordered programmable nucleic acids into larger-scale functionalized nanoassemblies.
Collapse
Affiliation(s)
- Xue Li
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yelixza I. Avila
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Sandra I. Arroyo-Becker
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Antonio Vargas-Berenguel
- Department of Chemistry and Physics, University of Almería, Ctra de Sacramento s/n, 04120 Almería, Spain
| | - Juan M. Casas-Solvas
- Department of Chemistry and Physics, University of Almería, Ctra de Sacramento s/n, 04120 Almería, Spain
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
7
|
Vadarevu H, Sorinolu AJ, Munir M, Vivero-Escoto JL. Autophagy Regulation Using Multimodal Chlorin e6-Loaded Polysilsesquioxane Nanoparticles to Improve Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15051548. [PMID: 37242794 DOI: 10.3390/pharmaceutics15051548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer noninvasive technique that relies on the generation of reactive oxygen species (ROS). Unfortunately, PDT still has many limitations, including the resistance developed by cancer cells to the cytotoxic effect of ROS. Autophagy, which is a stress response mechanism, has been reported as a cellular pathway that reduces cell death following PDT. Recent studies have demonstrated that PDT in combination with other therapies can eliminate anticancer resistance. However, combination therapy is usually challenged by the differences in the pharmacokinetics of the drugs. Nanomaterials are excellent delivery systems for the efficient codelivery of two or more therapeutic agents. In this work, we report on the use of polysilsesquioxane (PSilQ) nanoparticles for the codelivery of chlorin-e6 (Ce6) and an autophagy inhibitor for early- or late-stage autophagy. Our results, obtained from a reactive oxygen species (ROS) generation assay and apoptosis and autophagy flux analyses, demonstrate that the reduced autophagy flux mediated by the combination approach afforded an increase in the phototherapeutic efficacy of Ce6-PSilQ nanoparticles. We envision that the promising results in the use of multimodal Ce6-PSilQ material as a codelivery system against cancer pave the way for its future application with other clinically relevant combinations.
Collapse
Affiliation(s)
- Hemapriyadarshini Vadarevu
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Adeola Julian Sorinolu
- Civil and Environmental Engineering Department, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Mariya Munir
- Civil and Environmental Engineering Department, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Klotz K, Radwan Y, Chakrabarti K. Dissecting Functional Biological Interactions Using Modular RNA Nanoparticles. Molecules 2022; 28:228. [PMID: 36615420 PMCID: PMC9821959 DOI: 10.3390/molecules28010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid nanoparticles (NANPs) are an exciting and innovative technology in the context of both basic and biomedical research. Made of DNA, RNA, or their chemical analogs, NANPs are programmed for carrying out specific functions within human cells. NANPs are at the forefront of preventing, detecting, and treating disease. Their nucleic acid composition lends them biocompatibility that provides their cargo with enhanced opportunity for coordinated delivery. Of course, the NANP system of targeting specific cells and tissues is not without its disadvantages. Accumulation of NANPs outside of the target tissue and the potential for off-target effects of NANP-mediated cargo delivery present challenges to research and medical professionals and these challenges must be effectively addressed to provide safe treatment to patients. Importantly, development of NANPs with regulated biological activities and immunorecognition becomes a promising route for developing versatile nucleic acid therapeutics. In a basic research context, NANPs can assist investigators in fine-tuning the structure-function relationship of final formulations and in this review, we explore the practical applications of NANPs in laboratory and clinical settings and discuss how we can use established nucleic acid research techniques to design effective NANPs.
Collapse
Affiliation(s)
- Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Yasmine Radwan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
9
|
Sorinolu AJ, Godakhindi V, Siano P, Vivero-Escoto JL, Munir M. Influence of silver ion release on the inactivation of antibiotic resistant bacteria using light-activated silver nanoparticles. MATERIALS ADVANCES 2022; 3:9090-9102. [PMID: 36545324 PMCID: PMC9743134 DOI: 10.1039/d2ma00711h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The widespread increase in antibiotic resistance (AR), in an extensive range of microorganisms, demands the development of alternative antimicrobials with novel non-specific low-mutation bacterial targets. Silver nanoparticles (AgNPs) and photosensitizers (PSs) are promising antimicrobial agents with broad-spectrum activity and low tendency for antimicrobial resistance development. Herein, we investigated the light-mediated oxidation of AgNPs for accelerated release of Ag+ in the antibacterial synergy of PS-AgNP conjugates using protoporphyrin IX (PpIX) as a PS. Also, the influence of polyethyleneimine (PEI) coated AgNPs in promoting antibacterial activity was examined. We synthesized, characterized and tested the antimicrobial effect of three nanoparticles: AgNPs, PpIX-AgNPs, and PEI-PpIX-AgNPs against a methicillin-resistant Staphylococcus aureus strain (MRSA) and a wild-type multidrug resistant (MDR) E. coli. PpIX-AgNPs were the most effective material achieving >7 log inactivation of MRSA and MDR E. coli. The order of bacterial log inactivation was PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs. This order correlates with the trend of Ag+ concentration released by the NPs (PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs). Our study confirms a synergistic effect between PpIX and AgNPs in the inactivation of AR pathogens with about 10-fold increase in inactivation of ARB relative to AgNPs only. The concentration of Ag+ released from NPs determined the log inactivation of MRSA and MDR E. coli more than either the phototoxic effect or the electrostatic interaction promoted by surface charge of nanoparticles with bacteria cells. All NPs showed negligible cytotoxicity to mammalian cells at the bacterial inhibitory concentration after 24 h exposure. These observations confirm the crucial role of optimized Ag+ release for enhanced performance of AgNP-based antimicrobials against AR pathogens.
Collapse
Affiliation(s)
- Adeola Julian Sorinolu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-1623
| | - Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-5239
- Nanoscale Science Program, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Paolo Siano
- Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-5239
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-5239
- Nanoscale Science Program, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Mariya Munir
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-1623
| |
Collapse
|
10
|
Marinho MAG, Marques MDS, Cordeiro MF, de Moraes Vaz Batista Filgueira D, Horn AP. Combination of Curcumin and Photodynamic Therapy Based on the Use of Red Light or Near-Infrared Radiation in Cancer: a Systematic Review. Anticancer Agents Med Chem 2022; 22:2985-2997. [PMID: 35469576 DOI: 10.2174/1871520622666220425093657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a therapeutic intervention that can be applied to the treatment of cancer. The interaction between a photosensitizer (PS), ideal wavelength radiation and tissue molecular oxygen, triggers a series of photochemical reactions that are responsible for the production of reactive oxygen species. These highly reactive species can decrease proliferation and induce tumor cell death. The search for PS of natural origin extracted from plants becomes relevant, as they have photoactivation capacity, preferentially targeting tumor cells and because they do not present any or little toxicity to healthy cells. OBJECTIVE Our work aimed to carry out a qualitative systematic review to investigate the effects of curcumin (CUR), a molecule considered as PS of natural origin, on PDT, using red light or near infrared radiation, in tumor models. METHODS A systematic search was performed in three databases (PubMed, Scopus, and Web of Science) using the PICOT method, retrieving a total of 1,373 occurrences. At the end of the peer screening, using inclusion, exclusion, and eligibility criteria, 25 eligible articles were included in this systematic review. RESULTS CUR, whether in its free state, associated with metal complexes or other PS, and in a nanocarrier system, was considered a relevant PS for PDT using red light or near-infrared against tumoral models in vitro and in vivo, acting by increasing cytotoxicity, inhibiting proliferation, inducing cell death mainly by apoptosis, and changing oxidative parameters. CONCLUSION The results found in this systematic review suggest the potential use of CUR as a PS of natural origin to be applied in PDT against many neoplasms, encouraging further search in the field of PDT against cancer and serving as an investigative basis for upcoming pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Marcelo Augusto Germani Marinho
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| | - Magno da Silva Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina-UNOESC, Joaçaba, SC, 89600-000, Brasil
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| |
Collapse
|
11
|
Omidi Y, Mobasher M, Castejon A, Mahmoudi M. Recent advances in nanoscale targeted therapy of HER2-positive breast cancer. J Drug Target 2022; 30:687-708. [PMID: 35321601 DOI: 10.1080/1061186x.2022.2055045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Breast cancer is the second leading cause of death among women with high mortality rates worldwide. The exceptionally fast rate of metastasis, the emergence of drug-resistant mechanisms, and the occurrence of inadvertent side effects by cytotoxic chemotherapies often make conventional chemotherapy and immunotherapy treatments ineffective. Similar to other solid tumors, breast cancer can develop unique cellular and molecular characteristics forming an atypical permissive tumor microenvironment (TME). Due to the unique features of TME, cancer cells can further proliferate and coadapt with the stromal cells and evade immunosurveillance. aberrantly abundantly express various pieces of molecular machinery (the so-called oncomarkers) in favor of their survival, progression, metastasis, and further invasion. Such overexpressed oncomarkers can be exploited in the targeted therapy of cancer. Among breast cancer oncomarkers, epidermal growth factor receptors, particularly HER2, are considered as clinically valid molecular targets not only for the thorough diagnosis but also for the targeted therapy of the disease using different conventional and advanced nanoscale treatment modalities. This review aims to elaborate on the recent advances in the targeted therapy of HER2-positive breast cancer, and discuss various types of multifunctional nanomedicines/theranostics, and antibody-/aptamer-drug conjugates.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Maha Mobasher
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana Castejon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Morteza Mahmoudi
- Department of Radiology, College of Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Shokooh MK, Emami F, Duwa R, Jeong JH, Yook S. Triple-negative breast cancer treatment meets nanoparticles: Current status and future direction. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
14
|
Dias CJ, Helguero L, Faustino MAF. Current Photoactive Molecules for Targeted Therapy of Triple-Negative Breast Cancer. Molecules 2021; 26:7654. [PMID: 34946732 PMCID: PMC8709347 DOI: 10.3390/molecules26247654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is the second leading cause of death worldwide; therefore, there is an urgent need to find safe and effective therapies. Triple-negative breast cancer (TNBC) is diagnosed in ca. 15-20% of BC and is extremely aggressive resulting in reduced survival rate, which is mainly due to the low therapeutic efficacy of available treatments. Photodynamic therapy (PDT) is an interesting therapeutic approach in the treatment of cancer; the photosensitizers with good absorption in the therapeutic window, combined with their specific targeting of cancer cells, have received particular interest. This review aims to revisit the latest developments on chlorin-based photoactive molecules for targeted therapy in TNBC. Photodynamic therapy, alone or combined with other therapies (such as chemotherapy or photothermal therapy), has potential to be a safe and a promising approach against TNBC.
Collapse
Affiliation(s)
- Cristina J. Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luisa Helguero
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | | |
Collapse
|
15
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
16
|
Loman-Cortes P, Binte Huq T, Vivero-Escoto JL. Use of Polyhedral Oligomeric Silsesquioxane (POSS) in Drug Delivery, Photodynamic Therapy and Bioimaging. Molecules 2021; 26:molecules26216453. [PMID: 34770861 PMCID: PMC8588151 DOI: 10.3390/molecules26216453] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/18/2023] Open
Abstract
Polyhedral oligomeric silsesquioxanes (POSS) have attracted considerable attention in the design of novel organic-inorganic hybrid materials with high performance capabilities. Features such as their well-defined nanoscale structure, chemical tunability, and biocompatibility make POSS an ideal building block to fabricate hybrid materials for biomedical applications. This review highlights recent advances in the application of POSS-based hybrid materials, with particular emphasis on drug delivery, photodynamic therapy and bioimaging. The design and synthesis of POSS-based materials is described, along with the current methods for controlling their chemical functionalization for biomedical applications. We summarize the advantages of using POSS for several drug delivery applications. We also describe the current progress on using POSS-based materials to improve photodynamic therapies. The use of POSS for delivery of contrast agents or as a passivating agent for nanoprobes is also summarized. We envision that POSS-based hybrid materials have great potential for a variety of biomedical applications including drug delivery, photodynamic therapy and bioimaging.
Collapse
Affiliation(s)
- Paula Loman-Cortes
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (P.L.-C.); (T.B.H.)
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Tamanna Binte Huq
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (P.L.-C.); (T.B.H.)
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Juan L. Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (P.L.-C.); (T.B.H.)
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Correspondence: ; Tel.: +1-704-687-5239
| |
Collapse
|
17
|
Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. SMALL METHODS 2021; 5:e2100402. [PMID: 34514087 PMCID: PMC8420172 DOI: 10.1002/smtd.202100402] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Indexed: 05/07/2023]
Abstract
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Pawel Nakielski
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Anna Liguori
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
| | - Francesca Petronella
- Institute of Crystallography CNR‐ICNational Research Council of ItalyVia Salaria Km 29.300Monterotondo – Rome00015Italy
| | - Dario Presutti
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Qiusheng Wang
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Luciano De Sio
- Department of Medico‐Surgical Sciences and BiotechnologiesResearch Center for BiophotonicsSapienza University of RomeCorso della Repubblica 79Latina04100Italy
- CNR‐Lab. LicrylInstitute NANOTECArcavacata di Rende87036Italy
| | - Chiara Gualandi
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials TechnologyCIRI‐MAMUniversity of BolognaViale Risorgimento 2Bologna40136Italy
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Filippo Pierini
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| |
Collapse
|
18
|
Light-Activated Protoporphyrin IX-Based Polysilsesquioxane Nanoparticles Induce Ferroptosis in Melanoma Cells. NANOMATERIALS 2021; 11:nano11092324. [PMID: 34578640 PMCID: PMC8470003 DOI: 10.3390/nano11092324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023]
Abstract
The use of nanoparticle-based materials to improve the efficacy of photodynamic therapy (PDT) to treat cancer has been a burgeoning field of research in recent years. Polysilsesquioxane (PSilQ) nanoparticles with remarkable features, such as high loading of photosensitizers, biodegradability, surface tunability, and biocompatibility, have been used for the treatment of cancer in vitro and in vivo using PDT. The PSilQ platform typically shows an enhanced PDT performance following a cell death mechanism similar to the parent photosensitizer. Ferroptosis is a new cell death mechanism recently associated with PDT that has not been investigated using PSilQ nanoparticles. Herein, we synthesized a protoporphyrin IX (PpIX)-based PSilQ platform (PpIX-PSilQ NPs) to study the cell death pathways, with special focus on ferroptosis, during PDT in vitro. Our data obtained from different assays that analyzed Annexin V binding, glutathione peroxidase activity, and lipid peroxidation demonstrate that the cell death in PDT using PpIX-PSilQ NPs is regulated by apoptosis and ferroptosis. These results can provide alternative approaches in designing PDT strategies to enhance therapeutic response in conditions stymied by apoptosis resistance.
Collapse
|
19
|
Hu J, Jiang Q, Shi T, Lin X, Zhao Y, Wang X, Liu X. In Situ Generated and Amplified Oxidative Stress with Metallo‐Nanodrug Assembly for Metastatic Cancer Therapy with High Specificity and Efficacy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jialing Hu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Qunying Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Tianhui Shi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xue Lin
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yun Zhao
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiuyuan Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
20
|
Johnson MB, Chandler M, Afonin KA. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Deliv Rev 2021; 173:427-438. [PMID: 33857556 PMCID: PMC8178219 DOI: 10.1016/j.addr.2021.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
21
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Johnson MB, Halman JR, Miller DK, Cooper JS, Khisamutdinov E, Marriott I, Afonin KA. The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification. Nucleic Acids Res 2020; 48:11785-11798. [PMID: 33091133 PMCID: PMC7672449 DOI: 10.1093/nar/gkaa908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleic acid nanoparticles (NANPs) have become powerful new platforms as therapeutic and diagnostic tools due to the innate biological ability of nucleic acids to identify target molecules or silence genes involved in disease pathways. However, the clinical application of NANPs has been limited by factors such as chemical instability, inefficient intracellular delivery, and the triggering of detrimental inflammatory responses following innate immune recognition of nucleic acids. Here, we have studied the effects of altering the chemical composition of a circumscribed panel of NANPs that share the same connectivity, shape, size, charge and sequences. We show that replacing RNA strands with either DNA or chemical analogs increases the enzymatic and thermodynamic stability of NANPs. Furthermore, we have found that such composition changes affect delivery efficiency and determine subcellular localization, effects that could permit the targeted delivery of NANP-based therapeutics and diagnostics. Importantly, we have determined that altering NANP composition can dictate the degree and mechanisms by which cell immune responses are initiated. While RNA NANPs trigger both TLR7 and RIG-I mediated cytokine and interferon production, DNA NANPs stimulate minimal immune activation. Importantly, incorporation of 2'F modifications abrogates RNA NANP activation of TLR7 but permits RIG-I dependent immune responses. Furthermore, 2'F modifications of DNA NANPs significantly enhances RIG-I mediated production of both proinflammatory cytokines and interferons. Collectively this indicates that off-target effects may be reduced and/or desirable immune responses evoked based upon NANPs modifications. Together, our studies show that NANP composition provides a simple way of controlling the immunostimulatory potential, and physicochemical and delivery characteristics, of such platforms.
Collapse
Affiliation(s)
- Morgan Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Daniel K Miller
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Joseph S Cooper
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | | | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
23
|
Evaluation of Polyhedral Oligomeric Silsesquioxane Porphyrin Derivatives on Photodynamic Therapy. Molecules 2020; 25:molecules25214965. [PMID: 33120986 PMCID: PMC7662523 DOI: 10.3390/molecules25214965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is a promising scaffold to be used as delivery system. POSS can modify the properties of photosensitizers to enhance their efficacy toward photodynamic therapy (PDT). In this work, we designed, synthesized and characterized five different POSS porphyrin (POSSPs 1–5) derivatives containing hydrophobic (1–3) and hydrophilic (4 and 5) functional groups. In general, all the POSSPs showed a better singlet oxygen quantum yield than the parent porphyrins due to the steric hindrance from the POSS unique structure. POSSPs 1 and 3 containing isobutyl groups showed better PDT performance in cancer cells at lower concentrations than POSSPs 4 and 5. However; at higher concentrations, the POSSP4 containing hydrophilic groups has an enhanced PDT efficiency as compared with the parent porphyrin. We envision that the chemical tunability of POSSs can be used as a promising option to improve the delivery and performance of photosensitizers.
Collapse
|
24
|
Selective uptake and modulation of nanometal surface energy transfer from quantum dot to Au nanoparticle across lipid bilayer of liposomes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Ma LL, Tang Q, Liu MX, Liu XY, Liu JY, Lu ZL, Gao YG, Wang R. [12]aneN 3-Based Gemini-Type Amphiphiles with Two-Photon Absorption Properties for Enhanced Nonviral Gene Delivery and Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40094-40107. [PMID: 32805811 DOI: 10.1021/acsami.0c10718] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although a plethora of nonviral gene vectors have been developed for potential gene therapy, imageable gemini surfactants with stimuli-responsiveness and high transfection efficiency are still scarce for gene delivery. Herein, three gemini amphiphiles (DEDPP-4/8/12) consisting of an aggregation-induced emission (AIE) central fluorophore: 5,6-diphenylpyrazine-2,3-diester (DEDPP), decorated with triazole-[12]aneN3 as the hydrophilic moiety and alkyl chains of various lengths as the hydrophobic moiety, were designed and synthesized for trackable gene delivery via optical imaging. All three amphiphiles exhibited ultralow critical micelle concentrations (CMCs) (up to 3.40 × 10-6 M), prominent two-photon absorption properties, and solvatochromic fluorescence. Gel electrophoresis assays demonstrated that the migration of plasmid DNA was completely retarded after condensation with these gemini amphiphiles at low concentrations (up to 10 μM). In addition, the ester bond in these amphiphiles may facilitate vector degradation and DNA release, in response to esterase and the acidic environment inside cells. Upon self-assembly with DOPE to form liposomes, DEDPP-8/DOPE achieved the best transfection efficiency in four cell lines, and the transfection efficiency of DEDPP-8/DOPE in HeLa cell lines was 23.5-fold higher than that of Lipo2000, which is unusually high for small organic molecule-based nonviral vectors. Furthermore, excellent transfection efficiency of DEDPP-8/DOPE was obtained in the presence of serum, and the red fluorescence protein (RFP) gene was successfully transfected in zebrafish embryos. Both one- and two-photon fluorescence imaging clearly demonstrated the delivery process of plasmid DNA. This study demonstrated that gemini-type amphiphiles composed of a two-photon fluorophore core conjugated with triazole-[12]aneN3 via an ester bond afforded an unprecedentedly high transfection efficiency with excellent biocompatibility, which may provide new insights for the design and development of multifunctional nonviral gene vectors for imageable gene delivery.
Collapse
Affiliation(s)
- Le-Le Ma
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Quan Tang
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming-Xuan Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin-Yu Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 9990078, China
| |
Collapse
|
26
|
Juneja R, Vadarevu H, Halman J, Tarannum M, Rackley L, Dobbs J, Marquez J, Chandler M, Afonin K, Vivero-Escoto JL. Combination of Nucleic Acid and Mesoporous Silica Nanoparticles: Optimization and Therapeutic Performance In Vitro. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38873-38886. [PMID: 32805923 PMCID: PMC7748385 DOI: 10.1021/acsami.0c07106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Programmable nucleic acid nanoparticles (NANPs) with precisely controlled functional compositions can regulate the conditional activation of various biological pathways and responses in human cells. However, the intracellular delivery of NANPs alone is hindered by their susceptibility to nuclease activity and inefficient crossing of biological membranes. In this work, we optimized the internalization and therapeutic performance of several representative NANPs delivered with mesoporous silica nanoparticles (MSNPs) tailored for efficient electrostatic association with NANPs. We compared the immunostimulatory properties of different NA-MS-NP complexes formed with globular, planar, and fibrous NANPs and demonstrated the maximum immunostimulation for globular NANPs. As a proof of concept, we assessed the specific gene silencing by NA-MS-NP complexes functionalized with siRNA targeting green fluorescent protein expressed in triple-negative human breast cancer cells. We showed that the fibrous NANPs have the highest silencing efficiency when compared to globular or planar counterparts. Finally, we confirmed the multimodal ability of MSNPs to co-deliver a chemotherapy drug, doxorubicin, and NANPs targeting apoptosis regulator gene BCL2 in triple-negative breast cancer and melanoma cell lines. Overall, the combination of NANPs and MSNPs may become a new promising approach to efficiently treat cancer and other diseases via the simultaneous targeting of various pathways.
Collapse
Affiliation(s)
- Ridhima Juneja
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Hemapriyadarshini Vadarevu
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Justin Halman
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Lauren Rackley
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jacob Dobbs
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jose Marquez
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Morgan Chandler
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill Afonin
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
27
|
Chandler M, Panigaj M, Rolband LA, Afonin KA. Challenges to optimizing RNA nanostructures for large scale production and controlled therapeutic properties. Nanomedicine (Lond) 2020; 15:1331-1340. [PMID: 32452262 PMCID: PMC7304434 DOI: 10.2217/nnm-2020-0034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acids have been utilized to construct an expansive collection of nanoarchitectures varying in design, physicochemical properties, cellular processing and biomedical applications. However, the broader therapeutic adaptation of nucleic acid nanoassemblies in general, and RNA-based nanoparticles in particular, have faced several challenges in moving towards (pre)clinical settings. For one, the large-batch synthesis of nucleic acids is still under development, with multi-stranded and chemically modified assemblies requiring greater production capacity while maintaining consistent medical-grade outputs. Furthermore, the unknown immunostimulation by these nanomaterials poses additional challenges, necessary to be overcome for optimizing future development of clinically approved RNA nanoparticles.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Martin Panigaj
- Institute of Biology & Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Lewis A Rolband
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
28
|
He Y, Shao L, Usman I, Hu Y, Pan A, Liang S, Xu H. A pH-responsive dissociable mesoporous silica-based nanoplatform enabling efficient dual-drug co-delivery and rapid clearance for cancer therapy. Biomater Sci 2020; 8:3418-3429. [PMID: 32405634 DOI: 10.1039/d0bm00204f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The balance between tumor accumulation and renal clearance has severely limited the efficacy of mesoporous silica-based drug nanocarriers in cancer therapy. Herein, a pH-responsive dissociable mesoporous silica-based nanoplatform with efficient dual-drug co-delivery, tumor accumulation and rapid clearance for cancer therapy is achieved by adjusting the wetting of the mesoporous silica surface. At pH 7.4, the synthesized spiropyran- and fluorinated silane-modified ultrasmall mesoporous silica nanoparticles (SP-FS-USMSN) self-assemble to form larger nanoclusters (denoted as SP-FS-USMSN cluster) via hydrophobic interactions, which can effectively co-deliver anticancer drugs, doxorubicin hydrochloride (Dox) and curcumin (Cur), based on the mesopores within SP-FS-USMSN and the voids among the stacked SP-FS-USMSN. At pH 4.5-5.5, the conformational conversion of spiropyran from a "closed" state to an "open" state causes the wetting of the SP-FS-USMSN surface, leading to the dissociation of the SP-FS-USMSN cluster for drug release and renal clearance. The in vitro and in vivo studies demonstrate that the Cur and Dox co-loaded SP-FS-USMSN cluster (Cur-Dox/SP-FS-USMSN cluster) possesses great combined cytotoxicity, and can accumulate into tumor tissue by its large size-favored EPR effect and potently suppress tumor growth in HepG2-xenografted mice. This research demonstrates that the SP-FS-USMSN cluster may be a promising drug delivery system for cancer therapy and lays the foundation for practical mesoporous silica-based nanomedicine designs in the future.
Collapse
Affiliation(s)
- Yongju He
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lyles ZK, Tarannum M, Mena C, Inada NM, Bagnato VS, Vivero‐Escoto JL. Biodegradable Silica‐Based Nanoparticles with Improved and Safe Delivery of Protoporphyrin IX for the In Vivo Photodynamic Therapy of Breast Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zachary K. Lyles
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
- Nanoscale Science Program University of North Carolina Charlotte Charlotte NC 28223 USA
| | - Mubin Tarannum
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
- Nanoscale Science Program University of North Carolina Charlotte Charlotte NC 28223 USA
| | - Cayli Mena
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
| | - Natalia M. Inada
- University of São Paulo São Carlos Institute of Physics Group of Optics São Carlos São Paulo 13566‐590 Brazil
| | - Vanderlei S. Bagnato
- University of São Paulo São Carlos Institute of Physics Group of Optics São Carlos São Paulo 13566‐590 Brazil
| | - Juan L. Vivero‐Escoto
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
- Center for Biomedical Engineering and Science University of North Carolina Charlotte Charlotte NC 28223 USA
| |
Collapse
|
30
|
Nie X, Jiang C, Wu S, Chen W, Lv P, Wang Q, Liu J, Narh C, Cao X, Ghiladi RA, Wei Q. Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111864. [PMID: 32247250 DOI: 10.1016/j.jphotobiol.2020.111864] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/07/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
Carbon nanomaterials have increasingly gained the attention of the nano-, photo- and biomedical communities owing to their unique photophysical properties. Here, we facilely synthesized carbon quantum dots (CQDs) in a one-pot solvothermal reaction, and demonstrated their utility as photosensitizers for in vitro antibacterial photodynamic inactivation (aPDI). The bottom-up synthesis employed inexpensive and sustainable starting materials (citric acid), used ethanol as an environmentally-friendly solvent, was relatively energy efficient, produced minimal waste, and purification was accomplished simply by filtration. The CQDs were characterized by both physical (TEM, X-ray diffraction) and spectroscopic (UV-visible, fluorescence, and ATR-FTIR) methods, which together confirmed their nanoscale dimensions and photophysical properties. aPDI studies demonstrated detection limit inactivation (99.9999 + %) of Gram-negative Escherichia coli 8099 and Gram-positive Staphylococcus aureus ATCC-6538 upon visible light illumination (λ ≥ 420 nm, 65 ± 5 mW/cm2; 60 min). Post-illumination SEM images of the bacteria incubated with the CQDs showed perforated and fragmented cell membranes consistent with damage from reactive oxygen species (ROS), and mechanistic studies revealed that the bacteria were inactivated by singlet oxygen, with no discernable roles for other ROS (e.g., superoxide or hydroxyl radicals). These findings demonstrated that CQDs can be facilely prepared, operate via a Type II mechanism, and are effective photosensitizers for in vitro aPDI.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wangbingfei Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingyan Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Christopher Narh
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiuming Cao
- Jiangsu Sunshine Group Co., Ltd., Jiangyin 214122, China
| | - Reza A Ghiladi
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
31
|
Fang H, Chen J, Lin L, Liu F, Tian H, Chen X. A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by H 2O 2-Responsive Gene Delivery System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47785-47797. [PMID: 31773940 DOI: 10.1021/acsami.9b18144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing an efficient in vivo gene delivery system has always been extremely challenging. Herein, a highly efficient H2O2-responsive in vivo polycationic gene delivery system is developed for the first time. The efficient vector PLL-RT (i.e., polylysine grafted with p-tosyl-l-arginine) is used to mediate plasmid DNA (pDNA) delivery, and H2O2-responsive thioketal dipropanedioic acid-modified dextran (TDPAD) is used as a shielding system for effectively coating vector/pDNA polyplexes. The constructed gene delivery system exhibits a prolonged circulatory half-life in vivo and accelerates the accumulation of vector/DNA polyplexes in tumor tissue by the enhanced permeability and retention (EPR) effect. Moreover, this gene delivery system exhibits highly efficient and synergistic antitumor effects through a strategy of killing three birds with one stone. First, upon the arrival of TDPAD/PLL-RT/pDNA [abbreviated as T(PD)] at the tumor site by the EPR effect, TDPAD reacts with excess H2O2 in tumor tissue, contributing to the detachment of TDPAD, and PLL-RT then mediates the enhanced endocytosis of pDNA encoding shVEGF and significantly downregulates the expression of vascular endothelial growth factor (VEGF) in tumor tissue, exhibiting an outstanding antitumor effect. Second, the H2O2 consumption by TDPAD significantly decreases the H2O2 level in tumor tissue, which synergistically suppresses tumor growth. Third, small-molecule product mercaptopropionic acid, generated by the reaction of TDPAD with H2O2, can induce cancer cell apoptosis and exert pronounced antitumor efficacy. This polycationic gene delivery system shows negligible toxicity in vitro and in vivo. This strategy provides an ideal platform for constructing an efficient in vivo gene delivery system and has bright prospects for cancer therapy.
Collapse
Affiliation(s)
- Huapan Fang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Feng Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| |
Collapse
|
32
|
Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2019; 69:279-292. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | - Ameeduzzafar
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | | | | | - Fahad A Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Natural Product Drug Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Aslam
- Statistics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.
| |
Collapse
|
33
|
Dobrovolskaia MA. Nucleic Acid Nanoparticles at a Crossroads of Vaccines and Immunotherapies. Molecules 2019; 24:molecules24244620. [PMID: 31861154 PMCID: PMC6943637 DOI: 10.3390/molecules24244620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vaccines and immunotherapies involve a variety of technologies and act through different mechanisms to achieve a common goal, which is to optimize the immune response against an antigen. The antigen could be a molecule expressed on a pathogen (e.g., a disease-causing bacterium, a virus or another microorganism), abnormal or damaged host cells (e.g., cancer cells), environmental agent (e.g., nicotine from a tobacco smoke), or an allergen (e.g., pollen or food protein). Immunogenic vaccines and therapies optimize the immune response to improve the eradication of the pathogen or damaged cells. In contrast, tolerogenic vaccines and therapies retrain or blunt the immune response to antigens, which are recognized by the immune system as harmful to the host. To optimize the immune response to either improve the immunogenicity or induce tolerance, researchers employ different routes of administration, antigen-delivery systems, and adjuvants. Nanocarriers and adjuvants are of particular interest to the fields of vaccines and immunotherapy as they allow for targeted delivery of the antigens and direct the immune response against these antigens in desirable direction (i.e., to either enhance immunogenicity or induce tolerance). Recently, nanoparticles gained particular attention as antigen carriers and adjuvants. This review focuses on a particular subclass of nanoparticles, which are made of nucleic acids, so-called nucleic acid nanoparticles or NANPs. Immunological properties of these novel materials and considerations for their clinical translation are discussed.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
34
|
Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today 2019; 24:2181-2191. [DOI: 10.1016/j.drudis.2019.09.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022]
|
35
|
Oliver RC, Rolband LA, Hutchinson-Lundy AM, Afonin KA, Krueger JK. Small-Angle Scattering as a Structural Probe for Nucleic Acid Nanoparticles (NANPs) in a Dynamic Solution Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E681. [PMID: 31052508 PMCID: PMC6566709 DOI: 10.3390/nano9050681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Nucleic acid-based technologies are an emerging research focus area for pharmacological and biological studies because they are biocompatible and can be designed to produce a variety of scaffolds at the nanometer scale. The use of nucleic acids (ribonucleic acid (RNA) and/or deoxyribonucleic acid (DNA)) as building materials in programming the assemblies and their further functionalization has recently established a new exciting field of RNA and DNA nanotechnology, which have both already produced a variety of different functional nanostructures and nanodevices. It is evident that the resultant architectures require detailed structural and functional characterization and that a variety of technical approaches must be employed to promote the development of the emerging fields. Small-angle X-ray and neutron scattering (SAS) are structural characterization techniques that are well placed to determine the conformation of nucleic acid nanoparticles (NANPs) under varying solution conditions, thus allowing for the optimization of their design. SAS experiments provide information on the overall shapes and particle dimensions of macromolecules and are ideal for following conformational changes of the molecular ensemble as it behaves in solution. In addition, the inherent differences in the neutron scattering of nucleic acids, lipids, and proteins, as well as the different neutron scattering properties of the isotopes of hydrogen, combined with the ability to uniformly label biological macromolecules with deuterium, allow one to characterize the conformations and relative dispositions of the individual components within an assembly of biomolecules. This article will review the application of SAS methods and provide a summary of their successful utilization in the emerging field of NANP technology to date, as well as share our vision on its use in complementing a broad suite of structural characterization tools with some simulated results that have never been shared before.
Collapse
Affiliation(s)
- Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Lewis A Rolband
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | | - Kirill A Afonin
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | |
Collapse
|
36
|
Chandler M, Afonin KA. Smart-Responsive Nucleic Acid Nanoparticles (NANPs) with the Potential to Modulate Immune Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E611. [PMID: 31013847 PMCID: PMC6523571 DOI: 10.3390/nano9040611] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Nucleic acids are programmable and biocompatible polymers that have beneficial uses in nanotechnology with broad applications in biosensing and therapeutics. In some cases, however, the development of the latter has been impeded by the unknown immunostimulatory properties of nucleic acid-based materials, as well as a lack of functional dynamicity due to stagnant structural design. Recent research advancements have explored these obstacles in tandem via the assembly of three-dimensional, planar, and fibrous cognate nucleic acid-based nanoparticles, called NANPs, for the conditional activation of embedded and otherwise quiescent functions. Furthermore, a library of the most representative NANPs was extensively analyzed in human peripheral blood mononuclear cells (PBMCs), and the links between the programmable architectural and physicochemical parameters of NANPs and their immunomodulatory properties have been established. This overview will cover the recent development of design principles that allow for fine-tuning of both the physicochemical and immunostimulatory properties of dynamic NANPs and discuss the potential impacts of these novel strategies.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|