1
|
Dai J, Zhu J, Xu Y, Liu X, Zhu D, Xu G, Liu H, Li G. Structural Regulating of Cu-Based Metallic Electrocatalysts for CO 2 to C 2+ Products Conversion. CHEMSUSCHEM 2025; 18:e202402184. [PMID: 39714897 DOI: 10.1002/cssc.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) to highly value-added multi-carbon (C2+) fuels or chemicals is a promising pathway to address environment issues and energy crisis. In the periodic table, Cu as only the candidate can convert CO2 to C2+ products such as C2H4 and C2H5OH due to the suitable absorption energy to reaction intermediate. However, application of Cu is limited for its low activity and poor selectivity. The tandem catalytic strategy can effectively solve the problems caused by single copper catalyst. In tandem catalysis, how to promote the formation, transport, adsorption and coupling of the important intermediate CO is the key issue to improve the selectivity of C2+ products. Regulating the structure of Cu-based bimetallic can effectively promote these processes to Electrochemical CO2RR on account of its synergistic effect, electronic effect and interfacial interaction. In this review, we systematically summarized the relationship between structure of Cu-based bimetallic catalysts with performance of electrochemical CO2RR. More importantly, we reveal that different Cu-based bimetallic structures enhance the activity and selectivity of the catalysts by regulating the processes such as the transport and adsorption of the reaction intermediate CO. Then, we proposed well-effective strategies to rationally design Cu-based metallic catalysts. Finally, we put forward some challenges and opportunities that Cu-based bimetallic catalysts would face in the development of electrochemical CO2RR technology in the future.
Collapse
Affiliation(s)
- Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaoling Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deyu Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guichan Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Liu H, Li Y, Li T, Mu Y, Fang X, Zhang X. Mono-, di- and trimetallic coinage nanoparticles prepared via the Brust-Schiffrin method. Phys Chem Chem Phys 2024; 26:17760-17768. [PMID: 38873765 DOI: 10.1039/d4cp01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The Brust-Schiffrin two-phase method is a facile way to prepare thiolate-protected metal nanoparticles, but its mechanism remains controversial. In this work, we demonstrate the use of the Brust-Schiffrin method based on coordination compound theory. We confirmed that the formation of stable complexes is the driving force for a series chemical reaction in the organic phase. We found that the stable Cu(I)-thiolate complex decreased the half-cell reduction potential of Cu(I)/Cu(0). Thus, when thiol ligands were in excess, thiolate-protected Cu(I) clusters formed rather than Cu(0)-cored nanoparticles. The thiolate-protected metal-hydride nanoclusters were the intermediate between the metal complexes and nanoparticles. The "metallophilic" interactions of the d10 closed-shell electronic configuration of the metal coordination centers were proposed as the driving force for nanocluster and nanoparticle formation. To confirm this mechanism, we synthesized Au, Ag, and Cu monometallic nanoparticles and bi- and trimetallic nanoparticles. We found that although thiolate-protected Cu(I) nanoclusters are not easily reduced, they can combine with Au and/or Ag nanoclusters to form nanoparticles. The proposed mechanism is expected to provide deeper insight into the Brust-Schiffrin method and further extend its application to metals other than Au, Ag and Cu.
Collapse
Affiliation(s)
- Hongmei Liu
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yuting Li
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Tian Li
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yunyun Mu
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiaohui Fang
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xinping Zhang
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
3
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Wen Y, Cheng WH, Wang YR, Shen FC, Lan YQ. Tailoring the Hydrophobic Interface of Core-Shell HKUST-1@Cu 2O Nanocomposites for Efficiently Selective CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307467. [PMID: 37940620 DOI: 10.1002/smll.202307467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Indexed: 11/10/2023]
Abstract
The electrochemical reduction of carbon dioxide (CO2) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@Cu2O/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO2 adsorption and the abundance of active sites contribute to the increased electrocatalytic activity. Furthermore, the hydrophobic interface constructed by the hydrophobic material polytetrafluoroethylene (PTFE) effectively inhibits the occurrence of hydrogen evolution reactions, providing a significant improvement in the efficiency of CO2 electroreduction. The distinctive structures result in the remarkable hydrocarbon fuels generation with high Faraday efficiency (FE) of 67.41%, particularly for ethylene with FE of 46.08% (-1.0 V vs RHE). The superior performance of the catalyst is verified by DFT calculation with lower Gibbs free energy of the intermediate interactions with improved proton migration and selectivity to emerge the polycarbon(C2+) product. In this work, a promising and effective strategy is presented to configure MOF-based materials with tailored hydrophobic interface, high adsorption selectivity and more exposed active sites for enhancing the efficiency of the electroreduction of CO2 to C2+ products with high added value.
Collapse
Affiliation(s)
- Yan Wen
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Wen-Hui Cheng
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Yi-Rong Wang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Feng-Cui Shen
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
5
|
Cousins LS, Creissen CE. Multiscale effects in tandem CO 2 electrolysis to C 2+ products. NANOSCALE 2024; 16:3915-3925. [PMID: 38099592 DOI: 10.1039/d3nr05547g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
CO2 electrolysis is a sustainable technology capable of accelerating global decarbonisation through the production of high-value alternatives to fossil-derived products. CO2 conversion can generate critical multicarbon (C2+) products such as drop-in chemicals ethylene and ethanol, however achieving high selectivity from single-component catalysts is often limited by the competitive formation of C1 products. Tandem catalysis can overcome C2+ selectivity limitations through the incorporation of a component that generates a high concentration of CO, the primary reactant involved in the C-C coupling step to form C2+ products. A wide range of approaches to promote tandem CO2 electrolysis have been presented in recent literature that span atomic-scale manipulation to device-scale engineering. Therefore, an understanding of multiscale effects that contribute to selectivity alterations are required to develop effective tandem systems. In this review, we use relevant examples to highlight the complex and interlinked contributions to selectivity and provide an outlook for future development of tandem CO2 electrolysis systems.
Collapse
Affiliation(s)
- Lewis S Cousins
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Charles E Creissen
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
6
|
Jeong S, Huang C, Levell Z, Skalla RX, Hong W, Escorcia NJ, Losovyj Y, Zhu B, Butrum-Griffith AN, Liu Y, Li CW, Reifsnyder Hickey D, Liu Y, Ye X. Facet-Defined Dilute Metal Alloy Nanorods for Efficient Electroreduction of CO 2 to n-Propanol. J Am Chem Soc 2024; 146:4508-4520. [PMID: 38320122 DOI: 10.1021/jacs.3c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Electroreduction of CO2 into liquid fuels is a compelling strategy for storing intermittent renewable energy. Here, we introduce a family of facet-defined dilute copper alloy nanocrystals as catalysts to improve the electrosynthesis of n-propanol from CO2 and H2O. We show that substituting a dilute amount of weak-CO-binding metals into the Cu(100) surface improves CO2-to-n-propanol activity and selectivity by modifying the electronic structure of catalysts to facilitate C1-C2 coupling while preserving the (100)-like 4-fold Cu ensembles which favor C1-C1 coupling. With the Au0.02Cu0.98 champion catalyst, we achieve an n-propanol Faradaic efficiency of 18.2 ± 0.3% at a low potential of -0.41 V versus the reversible hydrogen electrode and a peak production rate of 16.6 mA·cm-2. This study demonstrates that shape-controlled dilute-metal-alloy nanocrystals represent a new frontier in electrocatalyst design, and precise control of the host and minority metal distributions is crucial for elucidating structure-composition-property relationships and attaining superior catalytic performance.
Collapse
Affiliation(s)
- Soojin Jeong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chuanliang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Zachary Levell
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Wei Hong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Nicole J Escorcia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alex N Butrum-Griffith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Danielle Reifsnyder Hickey
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuanyue Liu
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Rettenmaier C, Herzog A, Casari D, Rüscher M, Jeon HS, Kordus D, Luna ML, Kühl S, Hejral U, Davis EM, Chee SW, Timoshenko J, Alexander DTL, Bergmann A, Cuenya BR. Operando insights into correlating CO coverage and Cu-Au alloying with the selectivity of Au NP-decorated Cu 2O nanocubes during the electrocatalytic CO 2 reduction. EES CATALYSIS 2024; 2:311-323. [PMID: 38222061 PMCID: PMC10782806 DOI: 10.1039/d3ey00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024]
Abstract
Electrochemical reduction of CO2 (CO2RR) is an attractive technology to reintegrate the anthropogenic CO2 back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C2+) producing Cu2O nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied via operando X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, operando high-energy X-ray diffraction as well as quasi in situ X-ray photoelectron spectroscopy. These operando studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CO2RR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C2+ formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CO2RR. This study highlights the importance of site engineering and operando investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.
Collapse
Affiliation(s)
- Clara Rettenmaier
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Daniele Casari
- Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH-1015 Switzerland
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - David Kordus
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Mauricio Lopez Luna
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Stefanie Kühl
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Earl M Davis
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Duncan T L Alexander
- Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH-1015 Switzerland
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
8
|
Wang J, Li F, Li R, Xiang Q, Zhang W, Song C, Tao P, Shang W, Deng T, Zhu H, Wu J. Facile synthesis of supported CuNi nano-clusters as an electrochemical CO 2 reduction catalyst with broad potential range. Chem Commun (Camb) 2023; 59:13731-13734. [PMID: 37909273 DOI: 10.1039/d3cc03758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A nitrogen-doped carbon-supported CuNi bimetallic nanocluster catalyst (CuNi-NC) was first synthesized via a facile ZIF-derived method. With a synergistic effect between Cu and Ni, the catalyst exhibited a maximum FECO of 96.3%. FECO is higher than 90% in a broad potential range of 600 mV, which was ascribed to the controllable pore size distribution. Density functional theory further demonstrated the preferred formation of *COOH in the catalytic process.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Runhua Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qian Xiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai 200240, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Chen PC, Chen C, Yang Y, Maulana AL, Jin J, Feijoo J, Yang P. Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO 2 Reduction. J Am Chem Soc 2023; 145:10116-10125. [PMID: 37115017 DOI: 10.1021/jacs.3c00467] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Silver-copper (AgCu) bimetallic catalysts hold great potential for electrochemical carbon dioxide reduction reaction (CO2RR), which is a promising way to realize the goal of carbon neutrality. Although a wide variety of AgCu catalysts have been developed so far, it is relatively less explored how these AgCu catalysts evolve during CO2RR. The absence of insights into their stability makes the dynamic catalytic sites elusive and hampers the design of AgCu catalysts in a rational manner. Here, we synthesized intermixed and phase-separated AgCu nanoparticles on carbon paper electrodes and investigated their evolution behavior in CO2RR. Our time-sequential electron microscopy and elemental mapping studies show that Cu possesses high mobility in AgCu under CO2RR conditions, which can leach out from the catalysts by migrating to the bimetallic catalyst surface, detaching from the catalysts, and agglomerating as new particles. Besides, Ag and Cu manifest a trend to phase-separate into Cu-rich and Ag-rich grains, regardless of the starting catalyst structure. The composition of the Cu-rich and Ag-rich grains diverges during the reaction and eventually approaches thermodynamic values, i.e., Ag0.88Cu0.12 and Ag0.05Cu0.95. The separation between Ag and Cu has been observed in the bulk and on the surface of the catalysts, highlighting the importance of AgCu phase boundaries for CO2RR. In addition, an operando high-energy-resolution X-ray absorption spectroscopy study confirms the metallic state of Cu in AgCu as the catalytically active sites during CO2RR. Taken together, this work provides a comprehensive understanding of the chemical and structural evolution behavior of AgCu catalysts in CO2RR.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yao Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Miller Institute, University of California, Berkeley, California 94720, United States
| | - Arifin Luthfi Maulana
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julian Feijoo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peidong Yang
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Ma Z, Wan T, Zhang D, Yuwono JA, Tsounis C, Jiang J, Chou YH, Lu X, Kumar PV, Ng YH, Chu D, Toe CY, Han Z, Amal R. Atomically Dispersed Cu Catalysts on Sulfide-Derived Defective Ag Nanowires for Electrochemical CO 2 Reduction. ACS NANO 2023; 17:2387-2398. [PMID: 36727675 DOI: 10.1021/acsnano.2c09473] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-atom catalysts (SACs) have shown potential for achieving an efficient electrochemical CO2 reduction reaction (CO2RR) despite challenges in their synthesis. Here, Ag2S/Ag nanowires provide initial anchoring sites for Cu SACs (Cu/Ag2S/Ag), then Cu/Ag(S) was synthesized by an electrochemical treatment resulting in complete sulfur removal, i.e., Cu SACs on a defective Ag surface. The CO2RR Faradaic efficiency (FECO2RR) of Cu/Ag(S) reaches 93.0% at a CO2RR partial current density (jCO2RR) of 2.9 mA/cm2 under -1.0 V vs RHE, which outperforms sulfur-removed Ag2S/Ag without Cu SACs (Ag(S), 78.5% FECO2RR with 1.8 mA/cm2jCO2RR). At -1.4 V vs RHE, both FECO2RR and jCO2RR over Cu/Ag(S) reached 78.6% and 6.1 mA/cm2, which tripled those over Ag(S), respectively. As revealed by in situ and ex situ characterizations together with theoretical calculations, the interacted Cu SACs and their neighboring defective Ag surface increase microstrain and downshift the d-band center of Cu/Ag(S), thus lowering the energy barrier by ∼0.5 eV for *CO formation, which accounts for the improved CO2RR activity and selectivity toward related products such as CO and C2+ products.
Collapse
Affiliation(s)
| | | | | | - Jodie A Yuwono
- College of Engineering and Computer Science, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | | | | | | | | | | | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | | | - Cui Ying Toe
- School of Engineering, The University of Newcastle, Callaghan, New South Wales2038, Australia
| | | | | |
Collapse
|
12
|
Azenha C, Mateos-Pedrero C, Lagarteira T, Mendes AM. Tuning the selectivity of Cu2O/ZnO catalyst for CO2 electrochemical reduction. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Munirathinam B, Lerch L, Hüne D, Lentz L, Lenk T, Görke M, Garnweitner G, Schlüter N, Kubannek F, Schröder D, Gimpel T. Enhanced Performance of Laser‐Structured Copper Electrodes Towards Electrocatalytic Hydrogenation of Furfural. ChemElectroChem 2022. [DOI: 10.1002/celc.202200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Balakrishnan Munirathinam
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Lukas Lerch
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Dorian Hüne
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| | - Lukas Lentz
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| | - Thorben Lenk
- Institut für Ökologische und Nachhaltige Chemie (IÖNC) Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Marion Görke
- Institute for Particle Technology (iPAT) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
- Battery Lab Factory Braunschweig (BLB) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Nicolas Schlüter
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Fabian Kubannek
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Daniel Schröder
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
- Battery Lab Factory Braunschweig (BLB) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Thomas Gimpel
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| |
Collapse
|
14
|
Zang Y, Wei P, Li H, Gao D, Wang G. Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Han GH, Kim J, Jang S, Kim H, Guo W, Hong S, Shin J, Nam I, Jang HW, Kim SY, Ahn SH. Low-Crystalline AuCuIn Catalyst for Gaseous CO 2 Electrolyzer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104908. [PMID: 35064768 PMCID: PMC8922131 DOI: 10.1002/advs.202104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Despite its importance for the establishment of a carbon-neutral society, the electrochemical reduction of CO2 to value-added products has not been commercialized yet because of its sluggish kinetics and low selectivity. The present work reports the fabrication of a low-crystalline trimetallic (AuCuIn) CO2 electroreduction catalyst and demonstrates its high performance in a gaseous CO2 electrolyzer. The high Faradaic efficiency (FE) of CO formation observed at a low overpotential in a half-cell test is ascribed to the controlled crystallinity and composition of this catalyst as well as to its faster charge transfer, downshifted d-band center, and low oxophilicity. The gaseous CO2 electrolyzer with the optimal catalyst as the cathode exhibits superior cell performance with a high CO FE and production rate, outperforming state-of-the-art analogs. Thus, the obtained results pave the way to the commercialization of CO2 electrolyzers and promote the establishment of a greener society.
Collapse
Affiliation(s)
- Gyeong Ho Han
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Junhyeong Kim
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Seohyeon Jang
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Hyunki Kim
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Wenwu Guo
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Seokjin Hong
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Junhyeop Shin
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Inho Nam
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
- Department of Intelligent Energy and IndustryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and EngineeringResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| |
Collapse
|
16
|
Abstract
Electrocatalytic CO2 reduction (ECR) is an attractive approach to convert atmospheric CO2 to value-added chemicals and fuels. However, this process is still hindered by sluggish CO2 reaction kinetics and the lack of efficient electrocatalysts. Therefore, new strategies for electrocatalyst design should be developed to solve these problems. Two-dimensional (2D) materials possess great potential in ECR because of their unique electronic and structural properties, excellent electrical conductivity, high atomic utilization and high specific surface area. In this review, we summarize the recent progress on 2D electrocatalysts applied in ECR. We first give a brief description of ECR fundamentals and then discuss in detail the development of different types of 2D electrocatalysts for ECR, including metal, graphene-based materials, transition metal dichalcogenides (TMDs), metal–organic frameworks (MOFs), metal oxide nanosheets and 2D materials incorporated with single atoms as single-atom catalysts (SACs). Metals, such as Ag, Cu, Au, Pt and Pd, graphene-based materials, metal-doped nitric carbide, TMDs and MOFs can mostly only produce CO with a Faradic efficiencies (FE) of 80~90%. Particularly, SACs can exhibit FEs of CO higher than 90%. Metal oxides and graphene-based materials can produce HCOOH, but the FEs are generally lower than that of CO. Only Cu-based materials can produce high carbon products such as C2H4 but they have low product selectivity. It was proposed that the design and synthesis of novel 2D materials for ECR should be based on thorough understanding of the reaction mechanism through combined theoretical prediction with experimental study, especially in situ characterization techniques. The gap between laboratory synthesis and large-scale production of 2D materials also needs to be closed for commercial applications.
Collapse
|
17
|
A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat Commun 2022; 13:819. [PMID: 35145110 PMCID: PMC8831533 DOI: 10.1038/s41467-022-28456-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen-doped graphene-supported single atoms convert CO2 to CO, but fail to provide further hydrogenation to methane - a finding attributable to the weak adsorption of CO intermediates. To regulate the adsorption energy, here we investigate the metal-supported single atoms to enable CO2 hydrogenation. We find a copper-supported iron-single-atom catalyst producing a high-rate methane. Density functional theory calculations and in-situ Raman spectroscopy show that the iron atoms attract surrounding intermediates and carry out hydrogenation to generate methane. The catalyst is realized by assembling iron phthalocyanine on the copper surface, followed by in-situ formation of single iron atoms during electrocatalysis, identified using operando X-ray absorption spectroscopy. The copper-supported iron-single-atom catalyst exhibits a CO2-to-methane Faradaic efficiency of 64% and a partial current density of 128 mA cm-2, while the nitrogen-doped graphene-supported one produces only CO. The activity is 32 times higher than a pristine copper under the same conditions of electrolyte and bias.
Collapse
|
18
|
Wang W, Wang X, Wang Y, Jiang B, Song H. Spherical Multishell Hollow Carbon-based Catalyst with Controllable N-Species Content for Oxygen Reduction Reaction in Air-breath Cathode Microbial Fuel Cell. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00528f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spherical micro- and mesoporous carbon-based catalysts are often surprisingly effective at oxygen reduction reaction (ORR). Herein, a self-templated strategy was proposed to fabricate a spherical MOF (S-Terephthalic acid-MOF, S-Co-Ni-PTA-MOF) via...
Collapse
|
19
|
Plaza-Mayoral E, Sebastián-Pascual P, Dalby KN, Jensen KD, Chorkendorff I, Falsig H, Escudero-Escribano M. Preparation of high surface area Cu‐Au bimetallic nanostructured materials by co‐electrodeposition in a deep eutectic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Liao F, Fan X, Shi H, Li Q, Ma M, Zhu W, Lin H, Li Y, Shao M. Boosting electrocatalytic selectivity in carbon dioxide reduction: the fundamental role of dispersing gold nanoparticles on silicon nanowires. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Zhang Z, Liu W, Zhang W, Liu M, Huo S. Interface interaction in CuBi catalysts with tunable product selectivity for electrochemical CO2 reduction reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Song H, Tan YC, Kim B, Ringe S, Oh J. Tunable Product Selectivity in Electrochemical CO 2 Reduction on Well-Mixed Ni-Cu Alloys. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55272-55280. [PMID: 34767344 DOI: 10.1021/acsami.1c19224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrochemical reduction of CO2 on copper-based catalysts has become a promising strategy to mitigate greenhouse gas emissions and gain valuable chemicals and fuels. Unfortunately, however, the generally low product selectivity of the process decreases the industrial competitiveness compared to the established large-scale chemical processes. Here, we present random solid solution Cu1-xNix alloy catalysts that, due to their full miscibility, enable a systematic modulation of adsorption energies. In particular, we find that these catalysts lead to an increase of hydrogen evolution with the Ni content, which correlates with a significant increase of the selectivity for methane formation relative to C2 products such as ethylene and ethanol. From experimental and theoretical insights, we find the increased hydrogen atom coverage to facilitate Langmuir-Hinshelwood-like hydrogenation of surface intermediates, giving an impressive almost 2 orders of magnitude increase in the CH4 to C2H4 + C2H5OH selectivity on Cu0.87Ni0.13 at -300 mA cm-2. This study provides important insights and design concepts for the tunability of product selectivity for electrochemical CO2 reduction that will help to pave the way toward industrially competitive electrocatalyst materials.
Collapse
Affiliation(s)
- Hakhyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ying Chuan Tan
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Beomil Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Stefan Ringe
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Dai S, Huang TH, Liu WI, Hsu CW, Lee SW, Chen TY, Wang YC, Wang JH, Wang KW. Enhanced CO 2 Electrochemical Reduction Performance over Cu@AuCu Catalysts at High Noble Metal Utilization Efficiency. NANO LETTERS 2021; 21:9293-9300. [PMID: 34723555 DOI: 10.1021/acs.nanolett.1c03483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) represents a viable alternative to help close the anthropogenic carbon cycle and convert intermittent electricity from renewable energy sources to chemical energy in the form of value-added chemicals. The development of economic catalysts possessing high faradaic efficiency (FE) and mass activity (MA) toward CO2RR is critical in accelerating CO2 utilization technology. Herein, an elaborate Au-Cu catalyst where an alloyed AuCu shell caps on a Cu core (Cu@AuCu) is developed and evaluated for CO2-to-CO electrochemical conversion. Specific roles of Cu and Au for CO2RR are revealed in the alloyed core-shell structure, respectively, and a compositional-dependent volcano-plot is disclosed for the Cu@AuCu catalysts toward selective CO production. As a result, the Au2-Cu8 alloyed core-shell catalyst (only 17% Au content) achieves an FECO value as high as 94% and an MACO of 439 mA/mgAu at -0.8 V (vs RHE), superior to the values for pure Au, reflecting its high noble metal utilization efficiency.
Collapse
Affiliation(s)
- Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tzu-Hsi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Wei-I Liu
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Chia-Wei Hsu
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng-Wei Lee
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Chen Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
24
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
25
|
Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1120-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Li J, Zitolo A, Garcés-Pineda FA, Asset T, Kodali M, Tang P, Arbiol J, Galán-Mascarós JR, Atanassov P, Zenyuk IV, Sougrati MT, Jaouen F. Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO 2 Electroreduction to CO. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jingkun Li
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L’orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Felipe A. Garcés-Pineda
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona 43007, Spain
| | - Tristan Asset
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | - Mounika Kodali
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | - PengYi Tang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Catalonia, Spain
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona 43007, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Catalonia, Spain
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | - Iryna V. Zenyuk
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | | | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France
| |
Collapse
|
27
|
Talukdar B, Mendiratta S, Huang MH, Kuo CH. Recent Advances in Bimetallic Cu-Based Nanocrystals for Electrocatalytic CO 2 Conversion. Chem Asian J 2021; 16:2168-2184. [PMID: 34184830 DOI: 10.1002/asia.202100583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Indexed: 11/12/2022]
Abstract
An elevated level of anthropogenic CO2 has been the major cause of global warming, and significant efforts are being made around the world towards the development of CO2 capture, storage and reuse technologies. Among various CO2 conversion technologies, electrochemical CO2 reduction (CO2 RR) by nanocrystals is one of the most promising strategies as it is facile, quick, and can be integrated with other renewable energy techniques. Judiciously designed catalytic nanomaterials promise to be the next generation of electrochemical electrodes that offer cutting-edge performance, low energy consumption and aid in reducing overall carbon footprint. In this minireview, we highlight the recent developments related to the bimetallic Cu-based nanocatalysts and discuss their structure-property relationships. We focus on the design principles and parameters required for the enhancement of CO2 conversion efficiency, selectivity, and stability.
Collapse
Affiliation(s)
- Biva Talukdar
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, 11529, Taiwan
| | - Shruti Mendiratta
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Michael H Huang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
28
|
Kim T, Kumar RE, Brock JA, Fullerton EE, Fenning DP. How Strain Alters CO 2 Electroreduction on Model Cu(001) Surfaces. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taewoo Kim
- Chemical Engineering Program, Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rishi E. Kumar
- Materials Science Program, University of California San Diego, La Jolla, California 92093, United States
| | - Jeffrey A. Brock
- Center for Memory and Recording Research, University of California San Diego, La Jolla, California 92093, United States
| | - Eric E. Fullerton
- Center for Memory and Recording Research, University of California San Diego, La Jolla, California 92093, United States
| | - David P. Fenning
- Chemical Engineering Program, Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Materials Science Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Wu L, Kolmeijer KE, Zhang Y, An H, Arnouts S, Bals S, Altantzis T, Hofmann JP, Costa Figueiredo M, Hensen EJM, Weckhuysen BM, van der Stam W. Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO 2 reduction conditions. NANOSCALE 2021; 13:4835-4844. [PMID: 33646213 DOI: 10.1039/d0nr09040a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (<10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu2.5-Ag1 electrodes) and C2 products (maximum of 15.7% for dense Cu1-Ag1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.
Collapse
Affiliation(s)
- Longfei Wu
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Kees E Kolmeijer
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Yue Zhang
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Hongyu An
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Sven Arnouts
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium and Applied Electrochemistry & Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Thomas Altantzis
- Applied Electrochemistry & Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Marta Costa Figueiredo
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Emiel J M Hensen
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Ward van der Stam
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
30
|
Tsuda Y, Gueriba JS, Makino T, Diño WA, Yoshigoe A, Okada M. Interface atom mobility and charge transfer effects on CuO and Cu 2O formation on Cu 3Pd(111) and Cu 3Pt(111). Sci Rep 2021; 11:3906. [PMID: 33589680 PMCID: PMC7884792 DOI: 10.1038/s41598-021-82180-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
We bombarded [Formula: see text] and [Formula: see text] with a 2.3 eV hyperthermal oxygen molecular beam (HOMB) source, and characterized the corresponding (oxide) surfaces with synchrotron-radiation X-ray photoemission spectroscopy (SR-XPS). At [Formula: see text], CuO forms on both [Formula: see text] and [Formula: see text]. When we increase the surface temperature to [Formula: see text], [Formula: see text] also forms on [Formula: see text], but not on [Formula: see text]. For comparison, [Formula: see text] forms even at [Formula: see text] on Cu(111). On [Formula: see text], [Formula: see text] forms only after [Formula: see text], and no oxides can be found at [Formula: see text]. We ascribe this difference in Cu oxide formation to the mobility of the interfacial species (Cu/Pd/Pt) and charge transfer between the surface Cu oxides and subsurface species (Cu/Pd/Pt).
Collapse
Affiliation(s)
- Yasutaka Tsuda
- Department of Chemistry, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Jessiel Siaron Gueriba
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Physics, De La Salle University, 2401 Taft Avenue, Manila, 0922, Philippines
| | - Takamasa Makino
- Department of Chemistry, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Wilson Agerico Diño
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Akitaka Yoshigoe
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Michio Okada
- Department of Chemistry, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
- Institute for Radiation Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
31
|
Timoshenko J, Roldan Cuenya B. In Situ/ Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem Rev 2021; 121:882-961. [PMID: 32986414 PMCID: PMC7844833 DOI: 10.1021/acs.chemrev.0c00396] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/18/2022]
Abstract
During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst's interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
32
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
33
|
Zeng S, Shan S, Lu A, Wang S, Caracciolo DT, Robinson RJ, Shang G, Xue L, Zhao Y, Zhang A, Liu Y, Liu S, Liu Z, Bai F, Wu J, Wang H, Zhong CJ. Copper-alloy catalysts: structural characterization and catalytic synergies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00179e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent progress in the development of copper-alloy catalysts is highlighted, focusing on the structural and mechanistic characterizations of the catalysts in different catalytic reactions, and challenges and opportunities in future research.
Collapse
Affiliation(s)
- Shanghong Zeng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Dominic T. Caracciolo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Richard J. Robinson
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Guojun Shang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Lei Xue
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yuansong Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Aiai Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Shangpeng Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Ze Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Fenghua Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Jinfang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Hong Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, 010051, P.R. China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
34
|
Wang Q, Cai C, Dai M, Fu J, Zhang X, Li H, Zhang H, Chen K, Lin Y, Li H, Hu J, Miyauchi M, Liu M. Recent Advances in Strategies for Improving the Performance of CO
2
Reduction Reaction on Single Atom Catalysts. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiyou Wang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Chao Cai
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Minyang Dai
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 Hunan P. R. China
| | - Junwei Fu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Xiaodong Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Huangjingwei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hang Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Kejun Chen
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Yiyang Lin
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hongmei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Junhua Hu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 Hunan P. R. China
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology Tokyo 152‐8503 Japan
| | - Min Liu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
35
|
Kim J, Song JT, Oh J. Facile electrochemical synthesis of dilute AuCu alloy nanostructures for selective and long-term stable CO2 electrolysis. J Chem Phys 2020; 153:054702. [DOI: 10.1063/5.0009340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Jaehoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jun Tae Song
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (I2CNER), Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
36
|
Tomboc GM, Choi S, Kwon T, Hwang YJ, Lee K. Potential Link between Cu Surface and Selective CO 2 Electroreduction: Perspective on Future Electrocatalyst Designs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908398. [PMID: 32134526 DOI: 10.1002/adma.201908398] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Electrochemical reduction of carbon dioxide (CO2 RR) product distribution has been identified to be dependent on various surface factors, including the Cu facet, morphology, chemical states, doping, etc., which can alter the binding strength of key intermediates such as *CO and *OCCO during reduction. Therefore, in-depth knowledge of the Cu catalyst surface and identification of the active species under reaction conditions aid in designing efficient Cu-based electrocatalysts. This progress report categorizes various Cu-based electrocatalysts into four main groups, namely metallic Cu, Cu alloys, Cu compounds (Cu + non-metal), and supported Cu-based catalysts (Cu supported by carbon, metal oxides, or polymers). The detailed mechanisms for the selective CO2 RR are presented, followed by recent relevant developments on the synthetic procedures for preparing Cu and Cu-based nanoparticles. Herein, the potential link between the Cu surface and CO2 RR performance is highlighted, especially in terms of the chemical states, but other significant factors such as defective sites and roughened morphology of catalysts are equally considered during the discussion of current studies of CO2 RR with Cu-based electrocatalysts to fully understand the origin of the significant enhancement toward C2 formation. This report concludes by providing suggestions for future designs of highly selective and stable Cu-based electrocatalysts for CO2 RR.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Songa Choi
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yun Jeong Hwang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
37
|
Nellaiappan S, Katiyar NK, Kumar R, Parui A, Malviya KD, Pradeep KG, Singh AK, Sharma S, Tiwary CS, Biswas K. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04302] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subramanian Nellaiappan
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
| | - Nirmal Kumar Katiyar
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ritesh Kumar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Arko Parui
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Kirtiman Deo Malviya
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - K. G. Pradeep
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Abhishek K. Singh
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Sudhanshu Sharma
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
| | - Chandra Sekhar Tiwary
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 382355, India
| | - Krishanu Biswas
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
38
|
He J, Lv P, Zhu J, Li H. Selective CO2 reduction to HCOOH on a Pt/In2O3/g-C3N4 multifunctional visible-photocatalyst. RSC Adv 2020; 10:22460-22467. [PMID: 35514578 PMCID: PMC9054712 DOI: 10.1039/d0ra03959d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Selective photocatalytic reduction of CO2 has been regarded as one of the most amazing ways for re-using CO2. However, its application is still limited by the low CO2 conversion efficiency. This work developed a novel Pt/In2O3/g-C3N4 multifunctional catalyst, which exhibited high activity and selectivity to HCOOH during photocatalytic CO2 reduction under visible light irradiation owing to the synergistic effect between photocatalyst, thermocatalyst, and heterojunctions. Both In2O3 and g-C3N4 acted as visible photocatalysts, in which porous g-C3N4 facilitated H2 production from water splitting while the In2O3 nanosheets embedded in g-C3N4 pores favored CO2 fixation and H adsorption onto the Lewis acid sites. Besides, the In2O3/g-C3N4 heterojunctions could efficiently inhibit the photoelectron–hole recombination, leading to enhanced quantum efficiency. The Pt could act as a co-catalyst in H2 production from photocatalytic water splitting and also accelerated electron transfer to inhibit electron–hole recombination and generated a plasma effect. More importantly, the Pt could activate H atoms and CO2 molecules toward the formation of HCOOH. At normal pressure and room temperature, the TON of HCOOH in CO2 conversion was 63.1 μmol g−1 h−1 and could reach up to 736.3 μmol g−1 h−1 at 40 atm. A multifunctional Pt/In2O3/g-C3N4 catalyst exhibited high activity and selectivity to HCOOH during CO2 reduction owing to the synergy between visible-light harvesting, CO2 activation, HER, and photoelectron–hole separation via heterojunctions.![]()
Collapse
Affiliation(s)
- Jiehong He
- Education Ministry Key and International Joint Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Pin Lv
- Education Ministry Key and International Joint Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Jian Zhu
- Education Ministry Key and International Joint Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Hexing Li
- Education Ministry Key and International Joint Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| |
Collapse
|
39
|
Jeon HS, Timoshenko J, Scholten F, Sinev I, Herzog A, Haase FT, Roldan Cuenya B. Operando Insight into the Correlation between the Structure and Composition of CuZn Nanoparticles and Their Selectivity for the Electrochemical CO 2 Reduction. J Am Chem Soc 2019; 141:19879-19887. [PMID: 31762283 PMCID: PMC6923792 DOI: 10.1021/jacs.9b10709] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Bimetallic CuZn catalysts have been recently proposed
as alternatives in order to achieve selectivity control during the
electrochemical reduction of CO2 (CO2RR). However,
fundamental understanding of the underlying reaction mechanism and
parameters determining the CO2RR performance is still missing.
In this study, we have employed size-controlled (∼5 nm) Cu100–xZnx nanoparticles (NPs) supported on carbon to investigate the correlation
between their structure and composition and catalytic performance.
By tuning the concentration of Zn, a drastic increase in CH4 selectivity [∼70% Faradaic efficiency (F.E.)] could be achieved
for Zn contents from 10 to 50, which was accompanied by a suppression
of the H2 production. Samples containing a higher Zn concentration
displayed significantly lower CH4 production and an abrupt
switch in the selectivity to CO. Lack of metal leaching was observed
based on quasi in situ X-ray photoelectron spectroscopy (XPS). Operando X-ray absorption fine structure (XAFS) spectroscopy
measurements revealed that the alloying of Cu atoms with Zn atoms
takes place under reaction conditions and plays a determining role
in the product selectivity. Time-dependent XAFS analysis showed that
the local structure and chemical environment around the Cu atoms continuously
evolve during CO2RR for several hours. In particular, cationic
Zn species initially present were found to get reduced as the reaction
proceeded, leading to the formation of a CuZn alloy (brass). The evolution
of the Cu–Zn interaction with time during CO2RR
was found to be responsible for the change in the selectivity from
CH4 over Cu-ZnO NPs to CO over CuZn alloy NPs. This study
highlights the importance of having access to in depth information
on the interplay between the different atomic species in bimetallic
NP electrocatalysts under operando reaction conditions
in order to understand and ultimately tune their reactivity.
Collapse
Affiliation(s)
- Hyo Sang Jeon
- Department of Interface Science , Fritz-Haber Institute of the Max-Planck Society , 14195 Berlin , Germany
| | - Janis Timoshenko
- Department of Interface Science , Fritz-Haber Institute of the Max-Planck Society , 14195 Berlin , Germany
| | - Fabian Scholten
- Department of Interface Science , Fritz-Haber Institute of the Max-Planck Society , 14195 Berlin , Germany
| | - Ilya Sinev
- Department of Physics , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Antonia Herzog
- Department of Interface Science , Fritz-Haber Institute of the Max-Planck Society , 14195 Berlin , Germany
| | - Felix T Haase
- Department of Interface Science , Fritz-Haber Institute of the Max-Planck Society , 14195 Berlin , Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science , Fritz-Haber Institute of the Max-Planck Society , 14195 Berlin , Germany
| |
Collapse
|
40
|
Lv Y, Ma X, Chai J, Yu H, Zhu M. Face-Centered-Cubic Ag Nanoclusters: Origins and Consequences of the High Structural Regularity Elucidated by Density Functional Theory Calculations. Chemistry 2019; 25:13977-13986. [PMID: 31429505 DOI: 10.1002/chem.201903183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/25/2022]
Abstract
Face-centered-cubic (FCC) silver nanoclusters (NCs) adopting either cubic or half-cubic growth modes have been recently reported, but the origin of these atomic assembly patterns and how they are achieved, which would inform our understanding of larger FCC silver nanomaterials, are both unknown. In this study, the cubic and half-cubic growth modes have been unified based on common structural characteristics, and differentiated depending on the starting blocks (cubic vs. half cubic). In both categories, the silver atoms adopt octahedral Ag6 , linear AgS2 (in projection drawing), or tetrahedral AgS3 P binding modes, and the sulfur atoms adopt T-shaped SAg3 and orthogonal SAg4 modes. An additional T-shaped AgS3 mode is oriented on the surface edge in cubic NCs to complete the cubic framework. Density functional theory calculations indicated that the high structural regularity originates from the strong diffusing capacity of the Ag(5d) and S(3p) orbitals, and the angular momentum distribution of the formed superatomic orbitals. The equatorial orientation of μ4 -S or μ4 -Ag determines whether growth stops or continues. In particular, a density-of-states analysis indicated that the octahedral silver atoms are chemically more reactive than the silver atoms in the AgS3 P motif, regardless of whether the parent NC functions as an electron donor or acceptor.
Collapse
Affiliation(s)
- Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Anhui, 230601, P. R. China
| |
Collapse
|