1
|
Ali H, Orooji Y, Alzahrani AYA, Hassan HMA, Ajmal Z, Yue D, Hayat A. Advanced Porous Aromatic Frameworks: A Comprehensive Overview of Emerging Functional Strategies and Potential Applications. ACS NANO 2025; 19:7482-7545. [PMID: 39965777 DOI: 10.1021/acsnano.4c16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Porous aromatic frameworks (PAFs) are a fundamental group of porous materials characterized by their distinct structural features and large surface areas. These materials are synthesized from aromatic building units linked by strong carbon-carbon bonds, which confer exceptional rigidity and long-term stability. PAFs functionalities may arise directly from the intrinsic chemistry of their building units or through the postmodification of aromatic motifs using well-defined chemical processes. Compared to other traditional porous materials such as zeolites and metallic-organic frameworks, PAFs demonstrate superior stability under severe chemical treatments due to their robust carbon-carbon bonding. Even in challenging environments, the chemical stability and ease of functionalization of PAFs demonstrate their flexibility and specificity. Research on PAFs has significantly expanded and accelerated over the past decade, necessitating a comprehensive overview of key advancements in this field. This review provides an in-depth analysis of the recent advances in the synthesis, functionalization, and dimensionality of PAFs, along with their distinctive properties and wide-ranging applications. This review explores the innovative methodologies in PAFs synthesis, the strategies for functionalizing their structures, and the manipulation of their dimensionality to tailor their properties for specific potential applications. Similarly, the key application areas, including batteries, absorption, sensors, CO2 capture, photo-/electrocatalytic usages, supercapacitors, separation, and biomedical are discussed in detail, highlighting the versatility and potential of PAFs in addressing modern scientific and industrial challenges.
Collapse
Affiliation(s)
- Hamid Ali
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
- School of Resources and Environment, Shensi Lab, University of Electronic Science and Technology of China, Chengdu, 611731,China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | | | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, 72345, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Asif Hayat
- Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
2
|
Bora P, Bhuyan C, Gogoi P, Hazarika S. Advances in CO 2 separation from the landscape of porous aromatic framework-based engineered membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7834-7859. [PMID: 40063216 DOI: 10.1007/s11356-025-36167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Uncontrolled carbon emission contributes significantly towards global warming and climate change necessitating an urgent and effective remedy. CO2 is one of the major constituents of the greenhouse gas family. The main sources that contribute to CO2 emission are industries, transports, etc., where CO2 gets emitted with other gases. Before released into the environment, effective separation of CO2 from mixture gases can lessen its direct environmental exposure. Traditional techniques for CO2 separation include adsorption, absorption, cryogenic distillation, and membrane separation. Membrane technology is advantageous in CO2 separation due to its excellent properties like energy efficiency, affordability, durability, scalability, processing simplicity, and high separation efficiency. Advancements in membrane materials have introduced various advanced materials among which porous aromatic frameworks (PAFs) are proven highly applicable in gas separation. PAFs are a branch of engineered porous materials that offer excellent porosity, substantial surface area, homogeneous pore size, room for structural modification, and anti-aging properties. PAF-based membranes are widely used in various CO2 separation applications; mostly in natural gas purification and flue gas treatment. This review article has discussed synthetic routes of PAFs, structural modification techniques, membrane applications, and mechanisms in the context of CO2 separation. The current status of PAF-based membranes is briefly highlighted from an economic and industrial point of view. Future directions for PAF-based membranes such as functionalization or integration of PAFs with other materials/nanomaterials to create hybrid materials with greater CO2-phillicity are discussed. Moreover, potential aspects to consider in the near future associated with PAF syntheses are also highlighted.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyadarshini Gogoi
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, Amin LG, Al-Shaalan NH, Boraie WE, Attia MS, Al-Gahtany SA, Aldaleeli N, Ghobashy MM, Sharshir AI, Madani M, Darwesh R, Abaza SF. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv 2024; 14:33143-33190. [PMID: 39434995 PMCID: PMC11492427 DOI: 10.1039/d4ra05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health. This review aims to analyze the unique properties of various polymeric materials, including porous aromatic frameworks, biopolymers, and molecularly imprinted polymers, and their effectiveness in water remediation applications. Key findings reveal that these adsorbents demonstrate high surface areas, tunable surface chemistries, and mechanical stability, which enhance their performance in removing contaminants such as heavy metals, organic pollutants, and emerging contaminants from water sources. Furthermore, the review identifies gaps in current research and suggests future directions, including developing multifunctional polymeric materials and integrating adsorption techniques with advanced remediation technologies. This comprehensive analysis aims to contribute to advancing next-generation water purification technologies, ensuring access to clean and safe water for future generations.
Collapse
Affiliation(s)
- Huda Alkhaldi
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Safwat A Mahmoud
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Lamia Galal Amin
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Waleed E Boraie
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | | | - Nadiah Aldaleeli
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A I Sharshir
- Solid State and Electronic Accelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Sana F Abaza
- Physics Department, Faculty of Science, Alexandria University 21568 Alexandria Egypt
| |
Collapse
|
4
|
Li X, Wang L, Li S, Yu S, Liu Z, Liu Q, Dong X. In situ growth of HKUST-1 on electrospun polyacrylonitrile nanofibers/regenerated cellulose aerogel for efficient methylene blue adsorption. Int J Biol Macromol 2024; 274:133381. [PMID: 38914404 DOI: 10.1016/j.ijbiomac.2024.133381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Dyes, as organic pollutants, are causing increasingly severe environmental problems. Metal-organic frameworks (MOFs) are considered promising dye adsorbents; however, their application is limited due to their powder or solid particle forms and limited reusability. Therefore, this study proposes an innovative approach to develop a novel MOF-based composite aerogel, specifically a HKUST-1/polyacrylonitrile nanofibers/regenerated cellulose (HKUST-1/PANNs/RC) composite aerogel adsorbent, for the adsorption of pollutants in water. This adsorbent was successfully prepared using a simple method combining covalent crosslinking, quick freezing, freeze-drying, in-situ growth synthesis, and solvothermal techniques. The HKUST-1/PANNs/RC composite aerogel exhibits a significantly large specific surface area, which is approximately 64 times greater than that of PANNs/RC (10.45 m2·g-1), with a specific surface area of 669.9 m2·g-1. The PANNs serve as a support framework, imparting excellent mechanical properties to the composite aerogel, enhancing its overall stability and recoverability. Additionally, the composite aerogel contains numerous -COOH and -OH groups on its surface, providing strong acid resistance and facilitating interactions with pollutant molecules through electrostatic interactions, π-π conjugation, n-π* interactions, and hydrogen bonding, thereby promoting the adsorption process. Using methylene blue (MB) as a probe molecule, the study results demonstrate that the HKUST-1/PANNs/RC composite aerogel has an adsorption capacity of 522.01 mg·g-1 for MB (25 h), exhibiting excellent adsorption performance. This composite aerogel shows great potential for application in water pollution control.
Collapse
Affiliation(s)
- Xiang Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Lili Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Suyao Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Shihua Yu
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhigang Liu
- Centre of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qun Liu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Xiangting Dong
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
5
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
6
|
Khamis F, Hegab HM, Banat F, Arafat HA, Hasan SW. Comprehensive review on pH and temperature-responsive polymeric adsorbents: Mechanisms, equilibrium, kinetics, and thermodynamics of adsorption processes for heavy metals and organic dyes. CHEMOSPHERE 2024; 349:140801. [PMID: 38029934 DOI: 10.1016/j.chemosphere.2023.140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Wastewater treatment technologies have been developed to address the health and environmental risks associated with toxic and cancer-causing dyes and heavy metals found in industrial waste. The most commonly used method to mitigate and treat such effluents is adsorption, which is favored for its high efficiency, low costs, and ease of operation. However, traditional adsorbents have limitations in terms of regeneration and selectivity compared to smart adsorbents. Smart polymeric adsorbents, on the other hand, can undergo physical and chemical changes in response to external factors like temperature and pH, enabling a selective adsorption process. These adsorbents can be easily regenerated and reused with minimal generation of secondary pollutants during desorption. The unique properties acquired by stimuli-responsive adsorbents have encouraged researchers to investigate their potential for the selective and efficient removal of organic dyes and heavy metals. This comprehensive review focuses on two common stimuli, pH and temperature, discussing the fabrication methods and characteristics of smart adsorbents responsive to these factors. It also provides an overview of the mechanisms, isotherms, kinetics, and thermodynamics of the adsorption process for each type of stimuli-responsive adsorbent. Finally, the review concludes with discussions on future perspectives and considerations.
Collapse
Affiliation(s)
- Fatema Khamis
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hassan A Arafat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates; Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Bie W, Zhang S, Zhang L, Li H, Sun X, Cai T, Wang Z, Kong F, Wang W. Thioether-functionalized porous β-cyclodextrin polymer for efficient removal of heavy metal ions and organic micropollutants from water. Carbohydr Polym 2024; 324:121509. [PMID: 37985051 DOI: 10.1016/j.carbpol.2023.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Herein, a thioether-functionalized porous β-cyclodextrin polymer (P(Bn-S-CD)) was prepared for efficient removal of heavy metal ions and organic micropollutants (OMPs) from water. P(Bn-S-CD) showed a surface area of 763 m2/g and a sulfur content 5.83 wt%. Based on screening studies, Hg2+ and diclofenac sodium (DS) were selected as model pollutants. P(Bn-S-CD) could adsorb Hg2+ and DS simultaneously, while the adsorbed Hg2+ afforded positive charges to the primary rims of CDs, greatly enhancing the adsorption rate and adsorption capacity of DS. Although the adsorbed DS showed no obvious effect on Hg2+ adsorption, it improved the affinity of Hg2+ upon P(Bn-S-CD). Adsorption mechanism studies confirmed the essential role of electrostatic interactions for these results. P(Bn-S-CD) also showed good selectivity towards heavy metal ions, excellent adsorption performance in real water at environmental levels and good reusability, implying great promise for water treatment.
Collapse
Affiliation(s)
- Wenwen Bie
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Shuzhao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Lin Zhang
- Comprehensive Testing Center, Yancheng Customs, Yancheng 224002, PR China
| | - Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China.
| | - Xiaoyu Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Tianpei Cai
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Zhongxia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
8
|
Liang S, Wang K, Wang K, Wang T, Guo C, Wang W, Wang J. Adsorption Behavior of Diclofenac on Polystyrene and Poly(butylene adipate- co-terephthalate) Microplastics: Influencing Factors and Adsorption Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12216-12225. [PMID: 37581507 PMCID: PMC10469442 DOI: 10.1021/acs.langmuir.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Indexed: 08/16/2023]
Abstract
To unveil the intricacies surrounding the interaction between microplastics (MPs) and pollutants, diligent investigation is warranted to mitigate the environmental perils they pose. This exposition delves into the sorption behavior and mechanism of diclofenac sodium (DCF), a contaminant, upon two distinct materials: polystyrene (PS) and poly(butylene adipate-co-terephthalate) (PBAT). Experimental adsorption endeavors solidify the observation that the adsorption capacity of DCF onto the designated MPs amounts to Q(PBAT) = 9.26 mg g-1 and Q(PS) = 9.03 mg g-1, respectively. An exploration of the factors governing these discrepant adsorption phenomena elucidates the influence of MPs and DCF properties, environmental factors, as well as surfactants. Fitting procedures underscore the suitability of the pseudo-second-order kinetic and Freundlich models in capturing the intricacies of the DCF adsorption process onto MPs, corroborating the notion that the mentioned process is characterized by non-homogeneous chemisorption. Moreover, this inquiry unveils that the primary adsorption mechanisms of DCF upon MPs encompass electrostatic interaction, hydrogen bonding, and halo hydrogen bonding. An additional investigation concerns the impact of commonly encountered surfactants in aqueous environments on the adsorption of DCF onto MPs. The presence of surfactants elicits modifications in the surface charge properties of MPs, consequently influencing their adsorption efficacy vis-à-vis DCF.
Collapse
Affiliation(s)
- Siqi Liang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Kangkang Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Kefu Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Tao Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Changyan Guo
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Wei Wang
- Department
of Chemistry, University of Bergen, Bergen 5007, Norway
- Centre
for Pharmacy, University of Bergen, Bergen 5020, Norway
| | - Jide Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
9
|
Li H, Han X, Zhang L, Yu W, Bie W, Wei M, Wang Z, Kong F, Wang W. Sulfonated polyhedral oligomeric silsesquioxane-cyclodextrin hybrid polymers for efficient removal of micropollutants from water. Carbohydr Polym 2023; 312:120832. [PMID: 37059548 DOI: 10.1016/j.carbpol.2023.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Herein, β-cyclodextrin-containing hybrid polymers (P1, P2 and P3) were prepared through crosslinking partially benzylated β-cyclodextrin (PBCD) by octavinylsilsesquioxane (OVS). P1 stood out in screening studies and the residual hydroxyl groups of PBCD was sulfonate-functionalized. The obtained P1-SO3Na showed greatly enhanced adsorption towards cationic MPs and maintained the excellent adsorption performance towards neutral MPs. The rate constants (k2) of cationic MPs upon P1-SO3Na were 9.8-34.8 times larger than those upon P1. The equilibrium uptakes of the neutral and cationic MPs upon P1-SO3Na were above 94.5 %. Meanwhile, P1-SO3Na demonstrated appreciable adsorption capacities, excellent selectivity, effective adsorption of mixed MPs at environmental levels and good reusability. These results confirmed the great potential of P1-SO3Na as effective adsorbent to remove MPs from water.
Collapse
|
10
|
Cao S, Huang J, Tian J, Liu Z, Su H, Chen Z. Deep insight into selective adsorption behavior and mechanism of novel deep eutectic solvent functionalized bio-sorbent towards methcathinone: Experiments and DFT calculation. ENVIRONMENTAL RESEARCH 2023; 227:115792. [PMID: 36997045 DOI: 10.1016/j.envres.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
This work designed and synthesized novelly selective, highly efficient and friendly environmental biochar nanomaterial (ZMBC@ChCl-EG) by screening suitable deep eutectic solvent (DES) as the functional monomer via Density Functional Theory (DFT). The prepared ZMBC@ChCl-EG achieved the highly efficient adsorption of methcathinone (MC) and exhibited excellent selectivity as well as good reusability. Selectivity analysis concluded that the distribution coefficient value (KD) of ZMBC@ChCl-EG towards MC was 3.247 L/g, which was about 3 times higher than that of ZMBC, corresponding to stronger selective adsorption capacity. The studies of isothermal and kinetics indicated that ZMBC@ChCl-EG had an excellent adsorption capacity towards MC and the adsorption was mainly chemically controlled. In addition, DFT was used to calculate the binding energies between MC and each component. The binding energies were -10.57 kcal/mol for ChCl-EG/MC, -3.15∼-9.51 kcal/mol for BCs/MC, -2.33 kcal/mol for ZIF-8/MC, respectively, suggesting that DES played a major role in enhancing methcathinone adsorption. Lastly, the adsorption mechanisms were revealed by variables experiment combined with characterizations and DFT calculation. The main mechanisms were hydrogen bonding and π-π interaction.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Jing Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Tian
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
11
|
Lin Z, Jin Y, Chen Y, Li Y, Chen J, Zhuang X, Mo P, Liu H, Chen P, Lv W, Liu G. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights. J Colloid Interface Sci 2023; 645:943-955. [PMID: 37182326 DOI: 10.1016/j.jcis.2023.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
In recent years, ionic covalent organic frameworks (iCOFs) have become popular for the removal of contaminants from water. Herein, we employed 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 1,3-diaminoguanidine monohydrochloride (DgCl) to develop a novel leaf-like iCOF (TFP-DgCl) for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs (NSAIDs). The uniformly distributed adsorption sites, suitable pore sizes, and functional groups (hydroxyl groups, guanidinium groups, and aromatic groups) of the TFP-DgCl endowed it with powerful and selective adsorption capacities for NSAIDs. Remarkably, the optimal leaf-like TFP-DgCl demonstrated an excellent maximum adsorption capacity (1100.08 mg/g) for diclofenac sodium (DCF), to the best of our knowledge, the largest adsorption capacity ever achieved for DCF. Further testing under varying environmental conditions such as pH, different types of anions, and multi-component systems confirmed the practical suitability of the TFP-DgCl. Moreover, the prepared TFP-DgCl exhibited exceptional reusability and stability through six adsorption-desorption cycles. Finally, the adsorption mechanisms of NSAIDs on leaf-like TFP-DgCl were confirmed as electrostatic interactions, hydrogen bonding, and π-π interactions. This work significantly supplements to our understanding of iCOFs and provides new insights into the removal of NSAIDs from wastewater.
Collapse
Affiliation(s)
- Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuhan Jin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongxian Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yulin Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqin Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiying Mo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Sanad MMS, Gaber SE, El-Aswar EI, Farahat MM. Graphene-magnetite functionalized diatomite for efficient removal of organochlorine pesticides from aquatic environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117145. [PMID: 36586365 DOI: 10.1016/j.jenvman.2022.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
A unique composite based on graphene oxide, magnetite, and diatomite was synthetized by eco-friendly dry coating technique for the removal of four toxic organochlorine pesticides from agricultural drainage. The prepared composite was fully characterized using X-ray fluorescence (XRF), X-ray diffraction (XRD), particle size analyzer, Vibrating-sample magnetometer (VSM), magnetic susceptibility meter, zeta potential, scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS), and Brunauer-Emmett-Teller analysis (BET) techniques. The characterization results confirmed the fabrication of a discrete core/shell structured composite possess both adsorptive and magnetic nature. The surface area, pore volume and pore diameter were 23.4 m2/g, 0.0026 cm3/g, and 4.5 nm, respectively. The amenability to use the fabricated composite as an adsorbent for some organochlorine pesticides was investigated under different conditions of concentration, time, pH, and temperature. Batch adsorption experiment showed that 97% removal efficiency was observed for all the studied pesticides with adsorption capacities of 7.78 mg/g after 2 h contact time and at any pH region. The adsorption was exothermic (ΔH < 0), spontaneous (ΔG° < 0), followed pseudo 2nd order kinetics (R2 > 0.998), and fitted well to Langmuir's isotherm pattern for all pesticides (R2 > 0.98). It is assumed that organochlorine pesticides were initially physisorbed by the graphene nanoplatelets via hydrophobic and π-π interactions along with chemisorption for forming monolayer. Moreover, the pesticides molecules could diffuse in the DMG composite micropores and be trapped in the structural defects. The regeneration of the composite exhibited over 90% removal efficiency even after seven cycles. The fabricated composite was examined to remove organochlorine from a real water sample, the obtained results suggest the possibility to use this composite as an economical, effective and sustainable adsorbent for the treatment of pesticides contaminating water.
Collapse
Affiliation(s)
- Moustafa M S Sanad
- Central Metallurgical Research and Development Institute, (CMRDI) P.O. Box 87, Helwan, Cairo, Egypt
| | - Seleem E Gaber
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt.
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Mohsen M Farahat
- Central Metallurgical Research and Development Institute, (CMRDI) P.O. Box 87, Helwan, Cairo, Egypt
| |
Collapse
|
13
|
Li X, Shao H, Ma Q, Yu W, Dong X. Self-supporting flexible metal-organic framework-based electrospun nanofibers membrane for efficient removal of tetracycline from aqueous solutions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|
15
|
Gong L, Zhu H, Wu W, Lin D, Yang K. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127980. [PMID: 34883374 DOI: 10.1016/j.jhazmat.2021.127980] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Oil spills and organic solvents leakages have led to serious environmental problems, which calls for the emerging materials for the separation of oil/organic solvents from water effectively. Herein, a superhydrophobic/superoleophilic, SHMP-1@Sponge, with water contact angle (WCA) of 156° and oil contact angle of 0°, was fabricated by dip coating polymer SHMP-1 powder onto the skeleton of 3D melamine sponge. The SHMP-1@Sponge featured large specific surface area (556 m2/g) as well as high chemical and mechanical durability. SHMP-1@Sponge can absorb up to 40-105 times of its own weight of light and heavy oils/organic solvents in seconds, and it can be recycled for 25 times by squeezing. Moreover, the separation efficiency of immiscible oil/water mixtures and oil-in-water emulsions by SHMP-1@Sponge are > 99.5%. SHMP-1@Sponge shows tremendous absorption capacity for chloroform-in-water emulsions (1460 mg/g) compared with nitrobenzene-in-water (1290 mg/g) and diesel-in-water emulsions (980 mg/g), which is the strongest superhydrophobic absorbent for surfactant-stabilized oil-in-water emulsions reported to date. The durable SHMP-1@Sponge fabricated by loading superhydrophobic polymer with large surface area onto 3D sponge makes it a promising material for oil/water separation in realistic aquatic environments.
Collapse
Affiliation(s)
- Li Gong
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China.
| |
Collapse
|
16
|
El-Aswar EI, Ramadan H, Elkik H, Taha AG. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113908. [PMID: 34626949 DOI: 10.1016/j.jenvman.2021.113908] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The direct discharge of significant amounts of polluted water into water bodies causes adverse ecological and human health effects. This severe deterioration in water quality creates significant challenges to meet the growing demand for clean water. Therefore, the world urgently needs environmentally friendly advanced technology to overcome this global crisis. In this regard, nanofiber-based membrane filtration is a promising technique in wastewater remediation because of their huge surface area, extremely porous structure, amenable pore size/pore size distribution, variety of material choices, and flexibility to modification with other functional materials. However, despite their unique properties, fouling, poor mechanical properties, shrinkage, and deformation are major drawbacks of nanofiber membranes for treating wastewater. This review presents a comprehensive overview of nanofiber membranes' fabrication and function in water purification applications as well as providing novel approaches to overcoming/alleviating the mentioned disadvantages. The review first presents nanofiber membrane preparation methods, focusing on electrospinning as a versatile and viable technique alongside discussing the parameters controlling nanofiber morphology. Afterward, the functionalization of nanofiber membranes by combining them with other nanomaterials, such as metal and metal-oxide nanoparticles, carbon nanotubes, metal-organic frameworks, and biomolecules, were demonstrated and discussed. In addition, nanofiber membranes functionalized with microorganisms were highlighted. Finally, we introduced and discussed in detail the most relevant and recent advances in nanofiber applications in wastewater treatment in the context of removing different pollutants (e.g., heavy metals, nutrients, radioactive elements, pharmaceuticals, and personal care products, dyes, and pesticides). Moreover, the promising antimicrobial ability of nanofiber membranes in removing microorganisms from wastewater has been fully underscored. We believe this comprehensive review could provide researchers with preliminary data and guide both researchers and producers engaged in the nanofiber membrane industry, letting them focus on the research gaps in wastewater treatment.
Collapse
Affiliation(s)
- Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring, National Water Research Center, El-Kanater, Qalyubiyah, 13621, Egypt.
| | - Hassan Ramadan
- Public Works Engineering Department, Faculty of Engineering, Tanta University, Tanta, 31733, Egypt
| | - Hussin Elkik
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
17
|
High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: Selective ion exchange. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Liao X, Yu G, Luo R, Wang Q, He C, Liu S. Thiol/methylthio-functionalized porous aromatic frameworks for simultaneous capture of aromatic pollutants and Hg(II) from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126244. [PMID: 34098263 DOI: 10.1016/j.jhazmat.2021.126244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Simultaneously capturing organic pollutants and heavy metal can greatly reduce the water remediation time and cost, however it is still a great challenge presently. Herein, two novel thiol/methylthio-functionalized porous aromatic frameworks were synthesized as sorbents via the Sonogashira-Hagihara reaction of 1,3,5-triethynylbenzene and 1,3,5-tris(4-bromophenyl) benzene, the subsequent chloromethylation of the phenyl rings, and the final nucleophile substitution of -Cl groups by NaSH/NaSMe. These two sorbents were characterized by FT-IR spectra, energy dispersive X-ray spectra, scanning electron microscope, nitrogen adsorption analysis, thermo-gravimetric analysis, and elemental analyses. Adsorption experiments displayed that new sorbents had high uptake abilities and fast adsorption kinetics for aromatic pollutants and mercury (II) (Hg(II)). The maximum adsorption capacity (Qmax) of toluene and m-xylene on both new sorbents were 531.9-571.4 mg/g with the kinetic binding rate constants (kobs) of 0.00276-0.02422 g/mg/min, and the Qmax values of Hg(II) were 148.1-180.3 mg/g with kobs of 0.00592-0.01573 g/mg/min. Moreover, new sorbents indicated high simultaneous uptake abilities for these pollutants with good reusability, and finally they were successfully applied to the simultaneous remediation of these pollutants in two simulated sewages with high and low concentration, indicating their great practical application potential in wastewater remediation.
Collapse
Affiliation(s)
- Xinrong Liao
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China
| | - Guoqiang Yu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China
| | - Ruiqing Luo
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China
| | - Chiyang He
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, United States
| |
Collapse
|
19
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
20
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Mashile GP, Mpupa A, Nomngongo PN. Magnetic Mesoporous Carbon/β-Cyclodextrin-Chitosan Nanocomposite for Extraction and Preconcentration of Multi-Class Emerging Contaminant Residues in Environmental Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:540. [PMID: 33672631 PMCID: PMC7924173 DOI: 10.3390/nano11020540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022]
Abstract
This study reports the development of magnetic solid-phase extraction combined with high-performance liquid chromatography for the determination of ten trace amounts of emerging contaminants (fluoroquinolone antibiotics, parabens, anticonvulsants and β-blockers) in water systems. Magnetic mesoporous carbon/β-cyclodextrin-chitosan (MMPC/Cyc-Chit) was used as an adsorbent in dispersive magnetic solid-phase extraction (DMSPE). The magnetic solid-phase extraction method was optimized using central composite design. Under the optimum conditions, the limits of detection (LODs) ranged from 0.1 to 0.7 ng L-1, 0.5 to 1.1 ng L-1 and 0.2 to 0.8 ng L-1 for anticonvulsants and β-blockers, fluoroquinolone and parabens, respectively. Relatively good dynamic linear ranges were obtained for all the investigated analytes. The repeatability (n = 7) and reproducibility (n = 5) were less than 5%, while the enrichment factors ranged between 90 and 150. The feasibility of the method in real samples was assessed by analysis of river water, tap water and wastewater samples. The recoveries for the investigated analytes in the real samples ranged from 93.5 to 98.8%, with %RSDs under 4%.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
22
|
Zhao R, Shi X, Ma T, Rong H, Wang Z, Cui F, Zhu G, Wang C. Constructing Mesoporous Adsorption Channels and MOF-Polymer Interfaces in Electrospun Composite Fibers for Effective Removal of Emerging Organic Contaminants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:755-764. [PMID: 33373204 DOI: 10.1021/acsami.0c20404] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, metal-organic framework (MOF)-based electrospun fibers have attracted considerable attention as adsorbents for organic contaminant removal from water. To prepare these fibers, two common strategies including blending electrospinning and surface coating are employed. However, fibers obtained from the two strategies still have some disadvantages, such as adsorption site blockage and unstable loading. Here, we constructed interconnected mesopores in the electrospun zeolitic imidazolate framework-8 (ZIF-8)/polyacrylonitrile (PAN) fibers with the assistance of poly(vinylpyrrolidone) to expose more adsorption sites of ZIF-8 and make ZIF-8 more stable. Moreover, the mesopores could also enhance the diffusion of contaminant molecules and create MOF-polymer interfaces in the fiber, which improve the adsorption rate and adsorption capacity, respectively. The obtained fibers were used to adsorb antibiotic tetracycline from water. Benefiting from the mesoporous adsorption channels and the MOF-polymer interface, porous ZIF-8/PAN fibers showed faster adsorption kinetics than ZIF-8/PAN blending fibers and larger adsorption capacity than ZIF-8-coated PAN fibers and ZIF-8/PAN blending fibers. The maximum adsorption capacity of porous ZIF-8/PAN fibers was 885.24 mg/g, which is close to that of pure ZIF-8. After 10 adsorption-desorption cycles, the removal efficiency was still above 97%. In addition, porous ZIF-8/PAN fibers could act as the membrane adsorbents to dynamically separate tetracycline with a treated capacity of 9.93 × 103 bed volumes. These results demonstrate that our prepared porous ZIF-8/PAN fibers have great potential in antibiotic drug removal.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoyuan Shi
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Tingting Ma
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Huazhen Rong
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ziyang Wang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
23
|
Liu Q, Yu H, Zeng F, Li X, Sun J, Hu X, Pan Q, Li C, Lin H, min Su Z. Polyaniline as interface layers promoting the in-situ growth of zeolite imidazole skeleton on regenerated cellulose aerogel for efficient removal of tetracycline. J Colloid Interface Sci 2020; 579:119-127. [DOI: 10.1016/j.jcis.2020.06.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
|
24
|
Barroso-Solares S, Cuadra-Rodriguez D, Rodriguez-Mendez ML, Rodriguez-Perez MA, Pinto J. A new generation of hollow polymeric microfibers produced by gas dissolution foaming. J Mater Chem B 2020; 8:8820-8829. [PMID: 33026393 DOI: 10.1039/d0tb01560a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.
Collapse
Affiliation(s)
- Suset Barroso-Solares
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, University of Valladolid, 47011, Spain.
| | | | | | | | | |
Collapse
|
25
|
Removal of Lead from Water Solution by Reusable Magnetic Adsorbent Incorporating Selective Lead-Binding Peptide. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a reusable adsorbent to remove lead from water, a peptide-based magnetic adsorbent incorporating lead-binding peptide was constructed. First, a 7-mer lead-binding peptide (TNTLSNN) was covalently bonded onto the surface of a magnetic bead. Compared to the adsorption capacity of a bare magnetic bead (4.0 mg lead/g bead), the peptide-linked bead exhibited a capacity more than eight times higher than that of a bare bead (34.1 mg lead/g bead). The regenerated peptide bead, by desorbing the lead from the bead with EDTA, could be repeatedly used (tested over six cycles) for the following round of lead adsorption without any significant loss of adsorption capacity. The selective removal of lead in the presence of other interfering metals was demonstrated with the individual or the combinatory use of four metal ions, namely Pb(II), Ni(II), Co(II), and Cu(II), where the amount of adsorbed Pb(II) was remarkably higher than those of the other metal ions. The adsorption isotherm followed the Langmuir model well, with the maximum adsorption loading (qmax) of 70.4 mg lead/g bead.
Collapse
|
26
|
Wang X, Song X, Si L, Xu L, Xu Z. A novel biomimetic immunoassay method based on Pt nanozyme and molecularly imprinted polymer for the detection of histamine in foods. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1807916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Xiaofeng Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Xiaoqing Song
- Shandong Provincial Academy of Educational Recruitment and Examination, Jinan, People’s Republic of China
| | - Lin Si
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Longhua Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| |
Collapse
|
27
|
Wang C, Wang W, Wang J, Zhang P, Miao S, Jin B, Li L. Effective removal of aromatic pollutants via adsorption and photocatalysis of porous organic frameworks. RSC Adv 2020; 10:32016-32019. [PMID: 35518183 PMCID: PMC9056622 DOI: 10.1039/d0ra05724j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
PAF-45 with a wholly aromatic framework, intrinsic microporosity and π-π conjugation system shows excellent performance in aromatic pollutant removal. It exhibits a high adsorption capacity for the benzene series and moderate photocatalytic performance. As an adsorbent, PAF-45 can adsorb 35 wt% benzene and 68 wt% chlorobenzene in static adsorption experiments at room temperature and pressure. In benzene simulation wastewater, PAF-45 also shows excellent adsorption capacity, without significant reduction after 10 cycles of the adsorption-desorption process. Moreover, PAF-45 exhibits an impressive photocatalytic degradability of aromatic compounds, like aniline and phenol, under visible light illumination.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Automobile Materials of Ministry of Education, State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Solid Waste Recycling Engineering Research Center of Jilin, Jilin University Changchun 130022 Jilin Prov. China
| | - Wei Wang
- Key Laboratory of Automobile Materials of Ministry of Education, State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Solid Waste Recycling Engineering Research Center of Jilin, Jilin University Changchun 130022 Jilin Prov. China
| | - Jian Wang
- Key Laboratory of Automobile Materials of Ministry of Education, State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Solid Waste Recycling Engineering Research Center of Jilin, Jilin University Changchun 130022 Jilin Prov. China
| | - Peiping Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Solid Waste Recycling Engineering Research Center of Jilin, Jilin University Changchun 130022 Jilin Prov. China
| | - Shiding Miao
- Key Laboratory of Automobile Materials of Ministry of Education, State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Solid Waste Recycling Engineering Research Center of Jilin, Jilin University Changchun 130022 Jilin Prov. China
| | - Bo Jin
- Key Laboratory of Automobile Materials of Ministry of Education, State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Solid Waste Recycling Engineering Research Center of Jilin, Jilin University Changchun 130022 Jilin Prov. China
| | - Lina Li
- Key Laboratory of Automobile Materials of Ministry of Education, State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Solid Waste Recycling Engineering Research Center of Jilin, Jilin University Changchun 130022 Jilin Prov. China
| |
Collapse
|
28
|
Taghizadeh A, Taghizadeh M, Jouyandeh M, Yazdi MK, Zarrintaj P, Saeb MR, Lima EC, Gupta VK. Conductive polymers in water treatment: A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113447] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
A novel nitrogen-containing covalent organic framework adsorbent for the efficient removal of bisphenol A from aqueous solution. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Ahmad SM, Mestre AS, Neng NR, Ania CO, Carvalho AP, Nogueira JMF. Carbon-Based Sorbent Coatings for the Determination of Pharmaceutical Compounds by Bar Adsorptive Microextraction. ACS APPLIED BIO MATERIALS 2020; 3:2078-2091. [PMID: 35025329 DOI: 10.1021/acsabm.9b01206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thirteen carbon materials comprising commercial activated carbons and lab-made materials (activated carbons, hydrochars, and low-T and high-T activated hydrochars) were assayed as sorbent coatings in bar adsorptive microextration (BAμE) to monitor trace levels of ten common pharmaceutical compounds (PhCs) in environmental water matrices including surface water, seawater, tap water, and wastewater. Polar and nonpolar pharmaceuticals were selected, sulfamethoxazole, triclosan, carbamazepine, diclofenac, mefenamic acid, 17-α-ethinylestradiol, 17-β-estradiol, estrone, gemfibrozil, and clofibric acid, as model compounds to cover distinct therapeutic classes. Despite having a less-developed porosity, data showed that "in-house" prepared low-T activated hydrochars, obtained from carbohydrates and an eutectic salt mixture at low temperature (i.e., 180 °C) and autogenerated pressure, compete with the best commercial activated carbons for this particular application. The combination of a micro and mesopore network with a rich oxygen-based surface chemistry yielding an acidic nature allowed these low-T activated hydrochars to present the best overall recoveries (between 20.9 and 82.4%) for the simultaneous determination of the ten target PhCs with very distinct chemical properties using high performance liquid chromatography-diode array detection (HPLC-DAD).
Collapse
Affiliation(s)
- Samir M Ahmad
- Centro de Quı́mica Estrutural and Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana S Mestre
- Centro de Quı́mica Estrutural and Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Nuno R Neng
- Centro de Quı́mica Estrutural and Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Conchi O Ania
- CNRS, CEMHTI UPR3079, University of Orléans, F-45071 Orléans, France
| | - Ana P Carvalho
- Centro de Quı́mica Estrutural and Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - José M F Nogueira
- Centro de Quı́mica Estrutural and Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
31
|
Yu W, Li H, Zhang L, Liu J, Kong F, Wang W. Preparation of Magnetic Porous Aromatic Framework for Rapid and Efficient Removal of Organic Pollutants from Water. ANAL SCI 2020; 36:1157-1163. [PMID: 32281577 DOI: 10.2116/analsci.20p013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, efforts were made to prepare a porous aromatic framework (PAF) with build-in magnetic nanoparticles (Fe3O4-PAF) for use as an efficient adsorbent for the removal of organic pollutants from water. The Fe3O4-PAF showed good handleability and could be recovered easily by magnetic separation. As a proof of concept, the adsorption properties of Fe3O4-PAF were investigated to remove 2,4-dichlorophenol (2,4-DCP) and bisphenol A (BPA) from water. The Fe3O4-PAF showed a fast adsorption rate, high adsorption efficiency and high adsorption capacities. It adsorbed 2,4-DCP (0.1 mmol L-1) and BPA (0.1 mmol L-1) with pseudo-second-order rate constant (k2) of 2.1 and 3.54 g mg-1 min-1, respectively. According to the Langmuir isotherm model, the maximum adsorption capacities of 2,4-DCP and BPA onto Fe3O4-PAF were calculated to be 234.74 and 233.65 mg g-1, respectively. The Fe3O4-PAF also featured good tolerance to harsh conditions, facilitating its application in a real water environment. It could be regenerated easily and reused multiple times without obvious loss of efficiency. In summary, this study provides a general and effective way to improve the handleability of PAFs and expands the practical application of PAF-based materials.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Chemistry and Chemical Engineering, Jiangsu University
| | - Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Lin Zhang
- Comprehensive Testing Center, Yancheng Customs
| | - Jing Liu
- School of Pharmacy, China Pharmaceutical University
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology.,School of Chemistry and Chemical Engineering, Yangzhou University
| |
Collapse
|
32
|
Abstract
Porous aromatic frameworks (PAFs) represent an important category of porous solids. PAFs possess rigid frameworks and exceptionally high surface areas, and, uniquely, they are constructed from carbon-carbon-bond-linked aromatic-based building units. Various functionalities can either originate from the intrinsic chemistry of their building units or are achieved by postmodification of the aromatic motifs using established reactions. Specially, the strong carbon-carbon bonding renders PAFs stable under harsh chemical treatments. Therefore, PAFs exhibit specificity in their chemistry and functionalities compared with conventional porous materials such as zeolites and metal organic frameworks. The unique features of PAFs render them being tolerant of severe environments and readily functionalized by harsh chemical treatments. The research field of PAFs has experienced rapid expansion over the past decade, and it is necessary to provide a comprehensive guide to the essential development of the field at this stage. Regarding research into PAFs, the synthesis, functionalization, and applications are the three most important topics. In this thematic review, the three topics are comprehensively explained and aptly exemplified to shed light on developments in the field. Current questions and a perspective outlook will be summarized.
Collapse
Affiliation(s)
- Yuyang Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
33
|
Zaarour B, Zhu L, Jin X. A Review on the Secondary Surface Morphology of Electrospun Nanofibers: Formation Mechanisms, Characterizations, and Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903981] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bilal Zaarour
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
- Textile Industries Mechanical Engineering and Techniques DepartmentFaculty of Mechanical and Electrical Engineering, Damascus University Damascus Syria
| | - Lei Zhu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
| |
Collapse
|
34
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
35
|
Mo C, Faheem M, Aziz S, Jian S, Xue W, Yuyang T, Shuang D, Guangshan Z. Hydroxyl porous aromatic frameworks for efficient adsorption of organic micropollutants in water. RSC Adv 2020; 10:26335-26341. [PMID: 35519788 PMCID: PMC9055414 DOI: 10.1039/d0ra04222f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 12/02/2022] Open
Abstract
Environmental pollution is an important issue in sustainable human development. People give great importance to environmental protection, especially with regards to increasingly scarce water resources. Water pollution is becoming more and more serious due to the existence of organic micropollutants. As a platform with good stability, porous aromatic frameworks (PAFs) have been widely studied. Because of their high surface area and thermal stability, they are considered to be a good sewage treatment agent. However, the aromatic nature of PAFs makes their skeletons mostly hydrophobic. This characteristic of PAFs seriously affects their diffusion rate in water as an adsorbent, resulting in a low adsorption rate. In this work, we synthesized a series of hydroxyl functionalized porous aromatic frameworks (PAF-80, PAF-81, and PAF-82) via the Sonogashira–Hagihara cross-coupling reaction, which created polar motifs on the hydrophobic surfaces, and carried out adsorption tests on typical organic micropollutants in water such as bisphenol A (BPA), 2-naphthol (2-NO) and p-chloroxylenol (PCMX). Among the three PAFs, PAF-82 exhibited the highest BET surface area, polar active sites, and a high degree of conjugation, which led to the best adsorption performance compared to that of PAF-80 and PAF-81. The Langmuir adsorption capacity of PAF-82 for BPA, 2-NO, and PCMX is 689 mg g−1, 431 mg g−1, and 480 mg g−1, respectively, which surpasses most previously reported adsorbents. In addition, after 5 cycles of regeneration, it still maintained a high removal rate for pollutants. The obtained results reveal that micropollutant adsorption in water is not controlled by a single factor, but is the result of a synergy of multiple factors, including specific surface area, polar functional groups, pore size distribution, and skeleton conjugation. Our study has revealed the great potential of hydroxyl PAFs for efficient adsorption of organic micropollutants in water. A series of hydroxyl functionalized PAF materials (PAF-80, PAF-81, and PAF-82) were synthesized, which create polar channels to the hydrophobic surfaces and explored as efficient adsorption of organic micropollutants in water.![]()
Collapse
Affiliation(s)
- Chen Mo
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Muhammad Faheem
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Saba Aziz
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Song Jian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Wang Xue
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Tian Yuyang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Ding Shuang
- Institute for Interdisciplinary Biomass Functional Materials Studies
- Jilin Engineering Normal University
- Changchun 130052
- P. R. China
| | - Zhu Guangshan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
36
|
Liu J, Jin C, Wang C. Hyperbranched thiourea-grafted electrospun polyacrylonitrile fibers for efficient and selective gold recovery. J Colloid Interface Sci 2019; 561:449-458. [PMID: 31767393 DOI: 10.1016/j.jcis.2019.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022]
Abstract
Research on the recovery of precious metals (including gold, Au), attracts attention of scientists worldwide. This paper reports synthesis of a novel fiber adsorbent consisting of hyperbranched thiourea-grafted electrospun polyacrylonitrile (HS-PAN) for Au(III) ion recovery. High-density functional groups of the hyperbranched structure allowed HS-PAN fibers to exhibit much higher affinity and selectivity towards Au(III) than towards Pt(IV), Cr(VI), Pb(II), Ni(II), Co(II), Fe(III), Mg(II), Cu(II) and Na(I). Au(III) adsorption proceeded according to the pseudo-second-order kinetic model and could be fitted very well using Langmuir isotherm. The maximum adsorption capacity of these fibers relative to Au(III) was 3257.3 mg/g, which is higher than the values reported in the literature for other Au(III) adsorbents. Our novel HS-PAN fibers can extract Au from real electronic waste with 99% recovery yield in just 1 h. Thus, this study demonstrates a very efficient and low-cost way to recover gold.
Collapse
Affiliation(s)
- Jiadi Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Changxian Jin
- Jilin Zhenliang Science and Technology Co. Ltd, Changchun 130012, PR China
| | - Ce Wang
- Alan G. Macdiarmid Institute, College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China.
| |
Collapse
|