1
|
Chen H, Zhao X, Halimov A, Fu M, Tu J, Liu H, Xu H, Liu J. Phototheranostic Zinc Porphyrin Nanoparticles Triggered by an 808 nm Laser: NIR-II Fluorescence/Photoacoustic Imaging-Guided Combined Photothermal/Photodynamic/NO Therapy. Bioconjug Chem 2025; 36:838-845. [PMID: 40194279 DOI: 10.1021/acs.bioconjchem.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Single-wavelength lasers that trigger intelligently designed multifunctional theranostic nanoplatforms are urgently needed for early cancer diagnosis and imaging-guided therapy. In this study, a novel zinc porphyrin, Por-TR, was fabricated by incorporating thiophene as a donor and introducing electron acceptors on both sides to expand the conjugation. The presence of multiple flexible chains in the molecular structure of Por-TR inhibits π-π stacking, which allows it to form J nanoaggregates when coassembled with DSPE-PEG2000, demonstrating maximum absorption at approximately 808 nm. These Por-TR NPs provide NIR-II fluorescence/PA dual-modal signals for imaging and serve as a combined PTT/PDT therapeutic agent, making them a suitable multifunctional theranostic nanoplatform. To further improve their therapeutic effects, we embedded a thermosensitive NO donor, BNN6, in the Por-TR nanosystem to achieve combined PDT/PTT/NO therapy. Intravenous injection of Por-TR-NO NPs into 4T1 tumor-bearing mice enabled the accurate observation of tumor location via NIR-II fluorescence/PA dual-modal imaging. In vivo therapy results show that the Por-TR-NO NPs exhibited remarkable antitumor efficacy in combined PTT/PDT/NO therapy, which was triggered by an 808 nm laser. Overall, this nanoplatform offers a versatile approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Xiaobo Zhao
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Akbar Halimov
- Physical-Technical Institute, Uzbekistan Academy of Sciences, 100084 Tashkent, Uzbekistan
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingkai Fu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Tu
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Hui Liu
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Huajun Xu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Jun Liu
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| |
Collapse
|
2
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
3
|
Kirla H, Wu J, Hamzah J, Henry DJ. One-pot synthesis and covalent conjugation of methylene blue in mesoporous silica nanoparticles - A platform for enhanced photodynamic therapy. Colloids Surf B Biointerfaces 2024; 245:114195. [PMID: 39232478 DOI: 10.1016/j.colsurfb.2024.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Photodynamic therapy (PDT) is an emerging clinical modality for diverse disease conditions, including cancer. This technique involves, the generation of cytotoxic reactive oxygen species by a photosensitizer in the presence of light and oxygen. Methylene blue (MB) is a cationic dye with an ability to act as photosensitizing and bioimaging agent. The direct utilization of MB as photosensitizer for biological applications has often been impeded by its poor photostability and unwanted tissue interactions. Nanocarriers such as mesoporous silica nanoparticles (MSNs) provide an effective means of overcoming these limitations. However, the mere physical adsorption of the dye within the MSN can result in leakage, compromising the effectiveness of PDT. Therefore, in this work, we report the conjugation of MB into MSNs using novel MB-silane derivatives, namely MBS1 and MBS2, to create dye-doped and amine-functionalized MSNs (MBS1-AMSN and MBS2-AMSN). The PDT efficacy and bioimaging capability of these nanoparticles were compared with those of MSNs in which MB was non-covalently encapsulated (MB@AMSN). The synthesized nanoparticles, ultra-small in size (≤ 35 ± 4 nm) with monodispersity, exhibited enhanced fluorescence quantum yields. MBS1-AMSN demonstrated 70-fold increase, while MBS2-AMSN showed 33-fold improvement in fluorescence quantum yields compared to MB@AMSN at the same concentration. Covalent conjugation resulted in a 2-fold enhancement in the singlet oxygen quantum yield of the dye in MBS1-AMSN and 1.2-fold improvement in MBS2-AMSN, compared to non-covalent encapsulation. Assessment on RAW 264.7 macrophages revealed superior fluorescence in cell imaging for MBS1-AMSN, establishing it as a more efficient PDT agent compared to MBS2-AMSN and MB@AMSN. These findings suggest that MBS1-AMSN holds significant potential as a theranostic nanoplatform for image-guided PDT.
Collapse
Affiliation(s)
- Haritha Kirla
- Chemistry and Physics, College of Science, Technology, Engineering and Maths, Murdoch University, WA 6150, Australia; Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, WA 6009, Australia.
| | - Jiansha Wu
- Chemistry and Physics, College of Science, Technology, Engineering and Maths, Murdoch University, WA 6150, Australia; Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, WA 6009, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, WA 6009, Australia
| | - David J Henry
- Chemistry and Physics, College of Science, Technology, Engineering and Maths, Murdoch University, WA 6150, Australia.
| |
Collapse
|
4
|
Wang Y, Wu J, Chen M, Zhang J, Sun X, Zhou H, Gao Z. Application of near-infrared-activated and ATP-responsive trifunctional upconversion nano-jelly for in vivo tumor imaging and synergistic therapy. Biosens Bioelectron 2024; 250:116094. [PMID: 38308943 DOI: 10.1016/j.bios.2024.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Upconversion nanoparticles (UCNPs)-mediated in-situ imaging and synergistic therapy may be an effective approach against tumors. However, it remains a challenge to improve therapeutic index and reduce toxicity. Here, we investigated the construction process of a three-layer (core-shell-shell) upconversion nano-jelly hydrogels (UCNJs) coated with stimulus-responsive deoxyribonucleic acid chains, aiming to achieve selective recognition of tumor cells and controlled release of drugs. The UCNJs have a NaYF4: Yb, Er core with an outer silica shell with embedded methylene blue (MB). Then the outer layer was coated with mesoporous silica and loaded with doxorubicin (DOX). Finally, polyacrylamide chains containing anti-adenosine triphosphate (ATP) aptamer sequences were assembled layer-by-layer on the surface of particles to form DNA hydrogels to lock DOX. Under near-infrared irradiation, green light (540 nm) emitted by UCNJs can be used for imaging, while red light (660 nm) is absorbed by MB. The latter generates singlet oxygen, resulting in photodynamic therapy (PDT) effect to inhibit tumor growth. UCNJs also can recognize ATP in tumor cells, leading to hydrogel degradation and DOX release. The hydrogel coating can increase drug-carrying capacity of mesoporous materials and improve biocompatibility. Therefore, the UCNJs has great potential advantages for application in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| |
Collapse
|
5
|
Zhou YJ, Zhang J, Cao DX, Tang AN, Kong DM. Telomerase-activated Au@DNA nanomachine for targeted chemo-photodynamic synergistic therapy. RSC Med Chem 2023; 14:2268-2276. [PMID: 37974961 PMCID: PMC10650438 DOI: 10.1039/d3md00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
We successfully designed a smart activatable nanomachine for cancer synergistic therapy. Photodynamic therapy (PDT) and chemotherapy can be activated by intracellular telomerase while anti-cancer drugs can be effectively transported into tumour cells. An Sgc8 aptamer was designed, which can specifically distinguish tumour cells from normal cells and perform targeted therapy. The nanomachine entered the tumour cells by recognising PTK7, which is overexpressed on the surface of cancer cells. Then, the "switch" of the system was opened by TP sequence extension under telomerase stimulus. So, the chemotherapeutic drug DOX was released to achieve the chemotherapy, and the Ce6 labelled Sgc8-apt was released to activate the PDT. It was found that if no telomerase existed, the Ce6 would always be in an "off" state and could not activate the PDT. Telomerase is the key to controlling the activation of the PDT, which effectively reduces the damage photosensitisers cause to normal cells. Using in vitro and in vivo experiments, the nanomachine shows an excellent performance in targeted synergistic therapy, which is expected to be utilised in the future.
Collapse
Affiliation(s)
- Yun-Jie Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Dong-Xiao Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| |
Collapse
|
6
|
Zhou SH, Wang RD, Wu TT, Deng SH, Guo JC, Zhou SM, Zhou X, Du J, Zhao QH, Ren X, Xie MJ. Long rod-shaped gallium composite material: Self-separating material aggregation induced enhancement of ROS for photothermal/photodynamic therapy of HCT116 cells. Eur J Med Chem 2023; 262:115892. [PMID: 39491428 DOI: 10.1016/j.ejmech.2023.115892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
As many of the disadvantages of traditional single therapy can be avoided with combination therapy, combination therapy has become a new treatment method. Herein, a long rod-shaped gallium composite multifunctional material (CP-Au-PEG-FA@BSA@IR780) based on chemotherapy therapy (CT), photothermal therapy (PTT) and photodynamic therapy (PDT) is constructed to increase reactive oxygen species (ROS) levels and Au NP release. CP-Au-PEG-FA@BSA@IR780 has fluorescence localization characteristics and can combine with CT-DNA to cause cancer cell apoptosis. The in vitro cytotoxicity experiments showed the excellent biocompatibility and great therapeutic efficacy of the designed nanoplatform compared to those of the IR780 group, which had weak red fluorescence. The in vivo experiments also showed that the designed micro/nano platform can effectively eliminate HCT116 tumors by allowing the temperature of the tumor site to exceed 55 °C (thermal ablation) under light irradiation. The main mechanism of chemotherapy indicated that the presence of Fe2+/Fe3+ can disrupt the rod-shaped structure of the original material and increase the content of Ga3+. Overall, CP-Au-PEG-FA@BSA@IR780 is a promising cancer therapy strategy that combines CT, PTT, and PDT and provides new insights into the synthesis method of enhancing composite materials with photothermal properties.
Collapse
Affiliation(s)
- Si-Han Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China; International Institute of Rivers and Ecological Security, Yunnan University, Kunming, 650091, Yunnan, China
| | - Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Tian-Tian Wu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shi-Hui Deng
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ji-Chao Guo
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shu-Min Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xuan Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jiajia Du
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| |
Collapse
|
7
|
Wu D, Zhang Z, Li X, Zhou J, Cao Y, Qi S, Wang L, Liu Z, Yu G. Dynamically assembled nanomedicine based on host-guest molecular recognition for NIR laser-excited chemotherapy and phototheranostics. Acta Biomater 2023; 168:565-579. [PMID: 37481192 DOI: 10.1016/j.actbio.2023.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Nanomedicines combining multimodal therapeutic modalities supply opportunities to eliminate tumors in a safe and efficient manner. However, the rigid encapsulation and covalent conjugation of different therapeutic reagents suffer from the complicated preparation process, premature drug leakage and severe adverse events. Herein, we report a self-enhanced supramolecular nanomedicine (SND) based on the host-guest molecular recognition between β-cyclodextrin (β-CD) and camptothecin (CPT) for trimodal synergistic chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT) using a single 670 nm near-infrared (NIR) laser. Thioketal bond and polyethylene glycol (PEG) segment are introduced into the structure of CPT-tk-PEG prodrug, thus the premature release of CPT is efficiently inhibited and the specific drug release is realized at tumor site where singlet oxygen (1O2)-generated PDT is performed. A boron dipyrromethene (BODIPY) theranostic agent is anchored onto β-CD, endowing SND with capabilities of fluorescence imaging, PDT and PTT. Benefiting from the supramolecular assembly, not only the solubility of CPT is improved by 40 times, but also the blood circulation time and tumor accumulation of SND are greatly promoted. In vivo, SND can effectively induce the immunogenic cell death (ICD) of tumor cells, thus performing prominent inhibition against both primary and distal tumors, and even anti-metastasis effect against liver without causing obvious systemic toxicity. STATEMENT OF SIGNIFICANCE: Although nanomedicines supply opportunities to eliminate tumors in an efficient manner, they usually suffer from premature drug leakage, complicated preparation process and severe side effects owing to the rigid encapsulation or covalent conjugation. Based on the host-guest molecular recognition, we developed a self-enhanced SND for synergistic chemotherapy, photodynamic therapy and photothermal therapy. Introduction of thioketal bond in CPT prodrug avoided the premature drug release, and the specific drug release was realized in the tumor cells. Profiting from the facile supramolecular assembly strategy, SND not only displayed a primary anticancer efficacy with a low systemic toxicity, but also efficiently inhibited the growth of distal tumors, contributing a vaccine-like function to eradicate the recurrent and metastatic tumors.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinyue Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Lei Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, PR China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, PR China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
9
|
Ravi A, Pathigoolla A, Balan H, Gupta R, Raj G, Varghese R, Sureshan KM. Adamantoid Scaffolds for Multiple Cargo Loading and Cellular Delivery as β-Cyclodextrin Inclusion Complexes. Angew Chem Int Ed Engl 2023; 62:e202307324. [PMID: 37384430 DOI: 10.1002/anie.202307324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
There is huge demand for developing guests that bind β-CD and can conjugate multiple cargos for cellular delivery. We synthesized trioxaadamantane derivatives, which can conjugate up to three cargos per guest. 1 H NMR titration and isothermal titration calorimetry revealed these guests form 1 : 1 inclusion complexes with β-CD with association constants in the order of 103 M-1 . Co-crystallization of β-CD with guests yielded crystals of their 1 : 1 inclusion complexes as determined by single-crystal X-ray diffraction. In all cases, trioxaadamantane core is buried within the hydrophobic cavity of β-CD and three hydroxyl groups are exposed outside. We established biocompatibility using representative candidate G4 and its inclusion complex with β-CD (β-CD⊂G4), by MTT assay using HeLa cells. We incubated HeLa cells with rhodamine-conjugated G4 and established cellular cargo delivery using confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS) analysis. For functional assay, we incubated HeLa cells with β-CD-inclusion complexes of G4-derived prodrugs G6 and G7, containing one and three units of the antitumor drug (S)-(+)-camptothecin, respectively. Cells incubated with β-CD⊂G7 displayed the highest internalization and uniform distribution of camptothecin. β-CD⊂G7 showed higher cytotoxicity than G7, camptothecin, G6 and β-CD⊂G6, affirming the efficiency of adamantoid derivatives in high-density loading and cargo delivery.
Collapse
Affiliation(s)
- Arthi Ravi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Atchutarao Pathigoolla
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Haripriya Balan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Ria Gupta
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| |
Collapse
|
10
|
Huang Y, Wei D, Wang B, Tang D, Cheng A, Xiao S, Yu Y, Huang W. NIR-II light evokes DNA cross-linking for chemotherapy and immunogenic cell death. Acta Biomater 2023; 160:198-210. [PMID: 36792048 DOI: 10.1016/j.actbio.2023.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
As a DNA damaging agent, oxaliplatin (OXA) can induce immunogenic cell death (ICD) in tumors to activate the immune system. However, the DNA damage induced by OXA is limited and the ICD effect is not strong enough to enhance anti-tumor efficacy. Here, we propose a strategy to maximize the ICD effect of OXA through the mild hyperthermia generated by nanoparticles with a platinum (IV) prodrug of OXA (Pt(IV)-C16) and a near-infrared-II (NIR-II) photothermal agent IR1061 upon the irradiation of NIR-II light. The mild hyperthermia (43 °C) holds advantages in two aspects: 1) increase the Pt-DNA cross-linking, leading to enhanced DNA damage and apoptosis; 2) induce stronger ICD effects for cancer immunotherapy. We demonstrated that, compared with OXA and photothermal therapy of IR1061 alone, these nanoparticles under NIR-II light irradiation can significantly improve the anti-cancer efficacy against triple-negative breast cancer 4T1 tumor. This new strategy provides an effective way to improve the therapeutic outcome of OXA. STATEMENT OF SIGNIFICANCE: OXA could induce immunogenic cell death (ICD) via stimulating immune responses by increasing tumor cell stress and death, which triggers tumor-specific immune responses to achieve immunotherapy. However, due to the insufficient Pt-DNA crosslinks, the ICD effect triggered by OXA cannot induce robust immune response. Mild hyperthermia has great potential to maximize the therapeutic outcome of oxaliplatin by increasing the Pt-DNA cross-linking to augment the immunoresponse for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Huang
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China; Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China
| | - Shengjun Xiao
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weiguo Huang
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China; Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Sun P, Li Z, Zhang D, Zeng W, Zheng Y, Mei L, Chen H, Gao N, Zeng X. Multifunctional biodegradable nanoplatform based on oxaliplatin prodrug cross-linked mesoporous polydopamine for enhancing cancer synergetic therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Bera A, Gautam S, Sahoo S, Pal AK, Kondaiah P, Chakravarty AR. Red light active Pt(iv)-BODIPY prodrug as a mitochondria and endoplasmic reticulum targeted chemo-PDT agent. RSC Med Chem 2022; 13:1526-1539. [PMID: 36561074 PMCID: PMC9749958 DOI: 10.1039/d2md00225f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 12/25/2022] Open
Abstract
A cisplatin-based platinum(iv) prodrug, [Pt(NH3)2Cl2(OH)(L 1 )], having L 1 as a red-light active boron-dipyrromethene (BODIPY) pendant, was synthesized and characterized and its application as a chemo-cum-photodynamic therapy agent was studied. Me-L 1 as the ligand precursor is structurally characterized. The complex displayed an intense absorption band near 650 nm (ε ∼ 8.8 × 104 dm3 mol-1 cm-1) in 1 : 1 (v/v) DMSO/DPBS. It showed an emission band at 674 nm (λ ex = 630 nm) with a fluorescence quantum yield (Φ F) value of 0.37. In red light (600-720 nm), it generated singlet oxygen as evidenced from the 1,3-diphenylisobenzofuran (DPBF) titration experiment giving a singlet oxygen quantum yield (Φ Δ) value of 0.28 in DMSO. The mechanistic pUC19 DNA photocleavage study and singlet oxygen sensor green (SOSG) assay ascertained its ability to generate singlet oxygen in both extracellular and intracellular media by a type-II photo-process. The complex exhibited high stability in the dark, but on red-light irradiation, it displayed rapid activation in the presence of a reducing environment. It displayed remarkable apoptotic photocytotoxicity with half-maximal inhibitory concentration (IC50) ranging from 0.58 to 0.76 μM in human cervical cancer (HeLa) and breast cancer (MCF-7) cells with a respective photo-cytotoxicity index value of >172 and >131. The photodynamic activity was significantly less in non-cancerous human peripheral lung epithelial (HPL1D) cells. The emissive complex showed localization in the mitochondria and endoplasmic reticulum (ER) with a similar Pearson's correlation coefficient value, making it a dual organelle-targeted therapeutic agent. JC-1, fluo-4-AM and annexin V-FITC/propidium iodide assays in HeLa cells showed cellular apoptosis by arresting cells in the sub-G1 phase via mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| | - Srishti Gautam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore 560012 India +91 80 22932688
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| | - Apurba Kumar Pal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore 560012 India +91 80 22932688
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| |
Collapse
|
13
|
Li Y, Su Y, Li Z, Chen Y. Supramolecular Combination Cancer Therapy Based on Macrocyclic Supramolecular Materials. Polymers (Basel) 2022; 14:polym14224855. [PMID: 36432982 PMCID: PMC9696801 DOI: 10.3390/polym14224855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular combination therapy adopts supramolecular materials to design intelligent drug delivery systems with different strategies for cancer treatments. Thereinto, macrocyclic supramolecular materials play a crucial role in encapsulating anticancer drugs to improve anticancer efficiency and decrease toxicity towards normal tissue by host-guest interaction. In general, chemotherapy is still common therapy for solid tumors in clinics. However, supramolecular combination therapy can overcome the limitations of the traditional single-drug chemotherapy in the laboratory findings. In this review, we summarized the combination chemotherapy, photothermal chemotherapy, and gene chemotherapy based on macrocyclic supramolecular materials. Finally, the application prospects in supramolecular combination therapy are discussed.
Collapse
|
14
|
Liu Z, Li H, Tian Z, Liu X, Guo Y, He J, Wang Z, Zhou T, Liu Y. Porphyrin-Based Nanoparticles: A Promising Phototherapy Platform. Chempluschem 2022; 87:e202200156. [PMID: 35997087 DOI: 10.1002/cplu.202200156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, is an emerging form of non-invasive treatment. The combination of imaging technology and phototherapy is becoming an attractive development in the treatment of cancer, as it allows for highly effective therapeutic results through image-guided phototherapy. Porphyrins have attracted significant interest in the treatment and diagnosis of cancer due to their excellent phototherapeutic effects in phototherapy and their remarkable imaging capabilities in fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. However, porphyrins suffer from poor water solubility, low near-infrared absorption and insufficient tumor accumulation. The development of nanotechnology provides an effective way to improve the bioavailability, phototherapeutic effect and imaging capability of porphyrins. This review highlights the research results of porphyrin-based small molecule nanoparticles in phototherapy and image-guided phototherapy in the last decade and discusses the challenges and directions for the development of porphyrin-based small molecule nanoparticles in phototherapy.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Hui Li
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Tao Zhou
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| |
Collapse
|
15
|
Sun X, Zhang J, Xiu J, Zhao X, Yang C, Li D, Li K, Hu H, Qiao M, Chen D, Zhao X. A phenolic based tumor-permeated nano-framework for immunogenic cell death induction combined with PD-L1 immune checkpoint blockade. Biomater Sci 2022; 10:3808-3822. [PMID: 35670432 DOI: 10.1039/d2bm00455k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A critical obstacle for programmed death ligand 1 (PD-L1) immune checkpoint blockade immunotherapy is the insufficient T cell infiltration and low immunogenicity of tumor cells. Improving tumor immunogenicity through immunogenic cell death (ICD) can make tumor sensitive to PD-L1 checkpoint blockade immunotherapy. Herein, a phenolic based tumor-permeated nano-framework (EGPt-NF) was fabricated by cross-linking phenylboric acid modified platinum nanoparticles (PBA-Pt, ICD inducer) and epigallocatechin-3-O-gallate (EGCG, PD-L1 inhibitor) via pH-reversible borate ester. In particular, PBA-Pt could not only induce ICD cascade but also relieve tumor hypoxia. Consequently, EGPt-NF could effectively promote dendritic cell maturation and downregulate PD-L1 expression in tumor cells. Furthermore, EGPt-NF could also relieve tumor hypoxia to facilitate cytotoxic T lymphocyte infiltration and IFN-γ secretion. The synergistic effect of EGPt-NF could effectively improve tumor immunogenicity and amplify the therapeutic outcomes of cancer immunotherapy, resulting in a strong antitumor immune response in primary tumor and metastasis inhibition. Our simple approach expands the application of platinum-based drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Jingya Xiu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Xiufeng Zhao
- Department of Oncology, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, PR China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Xinling Road, No. 22, Shantou, PR China
| | - Dan Li
- Department of Pharmaceutics, Affiliated Central Hospital of Shenyang Medical College, Nanqi West Road, No. 5, Shenyang, PR China
| | - Kexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| |
Collapse
|
16
|
Wu X, Chen Y, Guo Q, Tao L, Ding Y, Ding X, Shen X. Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics 2022; 14:1375. [PMID: 35890271 PMCID: PMC9323899 DOI: 10.3390/pharmaceutics14071375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host-guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.
Collapse
Affiliation(s)
- Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China;
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| |
Collapse
|
17
|
Jiao J, He J, Li M, Yang J, Yang H, Wang X, Yang S. A porphyrin-based metallacage for enhanced photodynamic therapy. NANOSCALE 2022; 14:6373-6383. [PMID: 35411893 DOI: 10.1039/d1nr08293k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we designed an effective nanoplatform to improve the photodynamic therapy (PDT) of porphyrins. Combining a porphyrin-based metallacage (PM), hyaluronidase (HAase) and DSPE-mPEG2000 together, the nanoparticle (PM@HAase-mPEG) showed enhanced PDT efficacy. The PM improved the stability of the porphyrin, avoided its aggregation and provided cavities to concentrate oxygen molecules, which was beneficial for enhancing PDT. HAase degraded HA to increase the intracellular accumulation of nanoparticles, normalized blood vessels and relieved hypoxia in tumors. PM@HAase-mPEG inhibited the growth of tumors in a 4T1 mouse model by the generated singlet oxygen with excellent PDT efficacy. This study resolved the problems of the instability of PSs, less cellular accumulation of drugs, and tumor hypoxia that limited the anti-tumor application of PDT.
Collapse
Affiliation(s)
- Jingjing Jiao
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jing He
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Mengmeng Li
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jingxia Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoqing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
18
|
Shi H, Lin S, Wang Y, Lou J, Hu Y, Chen Y, Zhang Q. Ruthenium photosensitizer anchored gold nanorods for synergistic photodynamic and photothermal therapy. Dalton Trans 2022; 51:6846-6854. [PMID: 35438705 DOI: 10.1039/d2dt00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium polypyridyl complexes have been widely used as bioprobes and photosensitizers. However, several disadvantages including slow cellular uptake, nonspecific binding with biomolecules and toxicity limit their applications. In this study, a nanocarrier of human serum albumin coated gold nanorods was developed to deliver a ruthenium photosensitizer for PDT/PTT combination therapy. The HSA coating endowed the nanodrug with high biocompatibility and stability under physiological conditions. Ru-GNR-HSANPs generate 1O2 and hydroxyl radicals to kill cancer cells under blue light irradiation, and exhibit excellent photothermal anticancer effects under 808 nm light irradiation. Significant synergistic anticancer effects were achieved by combined PDT/PTT therapy. Importantly, Ru-GNR-HSANPs can have the synergistic PDT/PTT functions with no need of drug release from the carrier.
Collapse
Affiliation(s)
- Hongdong Shi
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Simin Lin
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yi Wang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Jingxue Lou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yatao Hu
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yuyu Chen
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
19
|
Yang G, Wang D, Phua SZF, Bindra AK, Qian C, Zhang R, Cheng L, Liu G, Wu H, Liu Z, Zhao Y. Albumin-Based Therapeutics Capable of Glutathione Consumption and Hydrogen Peroxide Generation for Synergetic Chemodynamic and Chemotherapy of Cancer. ACS NANO 2022; 16:2319-2329. [PMID: 35129953 DOI: 10.1021/acsnano.1c08536] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A nanoscale therapeutic system with good biocompatibility was facilely fabricated by the coassembly of human serum albumin and glucose oxidase (GOD), where the former was pretreated with metal ions through a chelating agent or the chemotherapeutic prodrug oxaliplatin (Oxa(IV)). Among different chelating metal ions used, Mn2+ ion was selected to produce hydroxyl radical (•OH) efficiently through Fenton-like reaction, while GOD loaded in the system was able to generate a large amount of hydrogen peroxide for promoting efficient conversion into highly toxic •OH. In the meanwhile, the conversion of the Oxa(IV) prodrug into chemotherapeutic Oxa(II) was beneficial for the consumption of glutathione, thereby enhancing the chemodynamic therapy (CDT) efficacy. Based on the combined chemotherapy and CDT, the treatment with this system leads to superior antitumor outcome.
Collapse
Affiliation(s)
- Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Cheng Qian
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
20
|
Aghajanzadeh M, Zamani M, Rajabi Kouchi F, Eixenberger J, Shirini D, Estrada D, Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14020322. [PMID: 35214054 PMCID: PMC8880656 DOI: 10.3390/pharmaceutics14020322] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Mozhgan Aghajanzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Mostafa Zamani
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Fereshteh Rajabi Kouchi
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
| | - Josh Eixenberger
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
- Correspondence: (J.E.); or (F.S.)
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
- Correspondence: (J.E.); or (F.S.)
| |
Collapse
|
21
|
Synthesis, Characterization of NR@SiO2/PNIPAm-co-Ppa Composite Nanogel and Study On Its Application in Photodynamic Therapy. J Fluoresc 2022; 32:771-782. [DOI: 10.1007/s10895-021-02872-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
|
22
|
Wang Y, Chen P, Luo Q, Li X, Zhu W. Supramolecular Polymeric Prodrug Micelles for Efficient Anticancer Drug Delivery. Polym Chem 2022. [DOI: 10.1039/d2py00332e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric prodrugs have attracted great interest in the field of antitumor drug delivery owing to its integrated advantages of prodrugs and nanoparticles. However, the ambiguous chemical composition of polymeric prodrugs...
Collapse
|
23
|
Prakash K, Osterloh WR, Rathi P, Kadish KM, Sankar M. Facile synthesis of antipodal β-arylaminodibromoporphyrins through Buchwald-Hartwig C-N coupling reaction and exploring their spectral and electrochemical redox properties. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Bindra AK, Wang D, Zheng Z, Jana D, Zhou W, Yan S, Wu H, Zheng Y, Zhao Y. Self-assembled semiconducting polymer based hybrid nanoagents for synergistic tumor treatment. Biomaterials 2021; 279:121188. [PMID: 34678649 DOI: 10.1016/j.biomaterials.2021.121188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is an impending need for the development of carrier-free nanosystems for single laser triggered activation of phototherapy, as such approach can overcome the drawbacks associated with irradiation by two distinct laser sources for avoiding prolonged treatment time and complex treatment protocols. Herein, we developed a self-assembled nanosystem (SCP-CS) consisting of a new semiconducting polymer (SCP) and encapsulated ultrasmall CuS (CS) nanoparticles. The SCP component displays remarkable near infrared (NIR) induced photothermal ability, enhanced reactive oxygen species (ROS) generation, and incredible photoacoustic (PA) signals upon activation by 808 nm laser for phototherapy mediated cancer ablation. The CuS component improves the PA imaging ability of SCP-CS, and also enhances photo-induced chemodynamic efficacy. Attributed to promoted single laser-triggered hyperthermia and enhanced ROS generation, the SCP-CS nanosystem shows effective intracellular uptake and intratumoral accumulation, enhanced tumor suppression with reduced treatment time, and devoid of any noticeable toxicity.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Suxia Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
25
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
26
|
Li L, Zhu Y, Liu M, Jin D, Zhang L, Cheng J, Liu Y. Conjugation of oxaliplatin with PEGylated-nanobody for enhancing tumor targeting and prolonging circulation. J Inorg Biochem 2021; 223:111553. [PMID: 34340059 DOI: 10.1016/j.jinorgbio.2021.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Oxaliplatin is a platinum-based drug used in clinic for cancer chemotherapy. Despite of its success, the non-selective effect on normal cells causes severe side-effects and hampers its applications. Targeted delivery of oxaliplatin to cancer cells is an effective approach to enhance drug efficacy and reduce adverse effect. In this work, the Pt(IV) prodrug of oxaliplatin has been conjugated to poly(ethylene glycol) (PEG) modified nanobody in order to achieve tumor targeting as well as improved circulation in vivo. The Pt(IV) prodrug was site-specifically linked to an anti-epidermal growth factor receptor (EGFR) nanobody, so that the drug can be accumulated more pronounced in EGFR positive tumor cells than in normal cells. The effect of different length of PEG on the drug circulation has been investigated, while the fusion of anti-albumin nanobody was used for comparison. The result demonstrates that the prolonged drug circulation significantly increases the in vivo drug efficiency of the oxaliplatin-nanobody conjugate.
Collapse
Affiliation(s)
- Li Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Duo Jin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
27
|
Lang T, Li N, Zhang J, Li Y, Rong R, Fu Y. Prodrug-based nano-delivery strategy to improve the antitumor ability of carboplatin in vivo and in vitro. Drug Deliv 2021; 28:1272-1280. [PMID: 34176381 PMCID: PMC8238065 DOI: 10.1080/10717544.2021.1938754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chemotherapy plays a major role in the treatment of cancer, but it still has great limitations in anti-tumor effect. Carboplatin (CAR) is the first-line drug in the treatment of non-small cell lung cancer, but the therapeutic effect is demonstrated weak. Therefore, we modified CAR with hexadecyl chain and polyethylene glycol, so as to realize its liposolubility and PEGylation. The synthesized amphiphilic CAR prodrugs could self-assemble into polymer micelles in water with an average particle size about 11.8 nm and low critical micelles concentration (0.0538 mg·mL-1). In vivo pharmacodynamics and cytotoxicity experiment evidenced that the polymer micelles were equipped with preferable anti-tumor effect, finally attained the aim of elevating anti-tumor effect and prolonging retention time in vivo. The self-assembled micelles skillfully solve the shortcomings of weak efficacy of CAR, which provides a powerful platform for the application of chemical drug in oncology.
Collapse
Affiliation(s)
- Tingting Lang
- Department of Pharmaceutics, Yantai University, Yantai, PR China.,Department of Pharmaceutics, Binzhou Medical University, Yantai, PR China
| | - Nuannuan Li
- Department of Pharmaceutics, Yantai University, Yantai, PR China
| | - Jing Zhang
- Department of Pharmaceutics, Binzhou Medical University, Yantai, PR China
| | - Yi Li
- Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, PR China
| | - Rong Rong
- Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, PR China
| | - Yuanlei Fu
- Department of Pharmaceutics, Yantai University, Yantai, PR China.,Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, PR China
| |
Collapse
|
28
|
Kwon N, Kim H, Li X, Yoon J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem Sci 2021; 12:7248-7268. [PMID: 34163818 PMCID: PMC8171357 DOI: 10.1039/d1sc01125a] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising treatment for cancers such as superficial skin cancers, esophageal cancer, and cervical cancer. Unfortunately, PDT often does not have sufficient therapeutic benefits due to its intrinsic oxygen dependence and the limited permeability of irradiating light. Side effects from "always on" photosensitizers (PSs) can be problematic, and PDT cannot treat tumor metastases or recurrences. In recent years, supramolecular approaches using non-covalent interactions have attracted attention due to their potential in PS development. A supramolecular PS assembly could be built to maximize photodynamic effects and minimize side effects. A combination of two or more therapies can effectively address shortcomings while maximizing the benefits of each treatment regimen. Using the supramolecular assembly, it is possible to design a multifunctional supramolecular PS to exert synergistic effects by combining PDT with other treatment methods. This review provides a summary of important research progress on supramolecular systems that can be used to combine PDT with photothermal therapy, chemotherapy, and immunotherapy to compensate for the shortcomings of PDT, and it provides an overview of the prospects for future cancer treatment advances and clinical applications.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University Fuzhou 350116 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
29
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
30
|
Yang J, Dai D, Ma L, Yang YW. Molecular-scale drug delivery systems loaded with oxaliplatin for supramolecular chemotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Polydopamine-carbon dots functionalized hollow carbon nanoplatform for fluorescence-imaging and photothermal-enhanced thermochemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111908. [PMID: 33641904 DOI: 10.1016/j.msec.2021.111908] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
The low power photothermal therapy can reduce the tissue damage caused by laser irradiation, thus the near-infrared (NIR) absorbing vehicles with high photothermal conversion efficiency are demanded in the low power treatment. Herein, the NIR-absorbing agent polydopamine (PDA) and carbon dots (CDs) were gated on the openings of hollow mesoporous carbon (HMC) to construct a photothermal enhanced multi-functional system (HMC-SS-PDA@CDs). Interestingly, the fluorescence emission wavelength of HMC-SS-PDA@CDs was red-shifted by FRET effect between PDA and CDs, which solved the dilemma of fluorescence quenching of carbon-based materials and was more conducive to cell imaging. The modification of PDA@CDs not only acts as the gatekeepers to realize multi-responsive release of pH, GSH and NIR, but also endows the HMC vehicle with excellent photothermal generation capacity, the possibility for bio-imaging as well as the enhanced stability. Naturally, both the cytological level and the multicellular tumor sphere level demonstrate that the delivery system has good low-power synergistic therapeutic with combination index (CI) of 0.348 and imaging effects. Meanwhile, the combined treatment group showed the highest tumor inhibition rate of 92.6% at 0.75 W/cm2. Therefore, DOX/HMC-SS-PDA@CDs nano-platform had broad application prospects in low power therapy and convenient imaging of carbon-based materials.
Collapse
|
33
|
Gao Q, Gao J, Ding C, Li S, Deng L, Kong Y. Construction of a pH- and near-infrared irradiation-responsive nanoplatform for chemo-photothermal therapy. Int J Pharm 2021; 593:120112. [PMID: 33259903 DOI: 10.1016/j.ijpharm.2020.120112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
Au nanoclusters, decorated with graphene quantum dots (GQDs), were obtained through photocatalytic reduction of AuCl43- by UV irradiation, and then cytarabine (Cyt) was loaded to the Au/GQDs via charge-dipole interactions. Mercaptopropionic acid (MPA) was anchored to the Cyt-loaded Au/GQDs through the formation of Au-S bond, which was further encapsulated by polyethyleneimine (PEI) via charge-dipole interactions. The delivery of Cyt from the quaternary complex (Au/GQDs/MPA/PEI) is pH-sensitive and can be modulated by near-infrared (NIR) irradiation. The results of cell viability test indicate that the developed nanoplatform can be used for chemo-photothermal combination therapy of cancer cells, and the efficacy of chemo-photothermal combination therapy is significantly higher than that of the single mode of photothermal therapy (PTT) or chemotherapy.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 518000, China
| | - Jun Gao
- Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China.
| | - Chengqiang Ding
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Shangji Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
34
|
Dai X, Zhang B, Zhou W, Liu Y. High-Efficiency Synergistic Effect of Supramolecular Nanoparticles Based on Cyclodextrin Prodrug on Cancer Therapy. Biomacromolecules 2020; 21:4998-5007. [PMID: 32946217 DOI: 10.1021/acs.biomac.0c01181] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Novel cyclodextrin-prodrug supramolecular nanoparticles (NPs) with cooperative-enhancing cancer therapy were constructed from a reduction-sensitive disulfide bond-linked permethyl-β-cyclodextrin-camptothecin prodrug, water-soluble adamantane-porphyrin photosensitizer, and hyaluronic acid grafted by triphenylphosphine and β-cyclodextrin through an orthogonal host-guest recognition strategy, displaying uniform nanoparticles with a diameter around 100 nm as revealed by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Compared with 293T normal cells, the supramolecular NPs could be easily taken up by mitochondria of A549 cancer cells, then release the active anticancer drug camptothecin (CPT) in situ via the cleavage of the disulfide bond by the overexpressed glutathione, and could initiate the effective singlet oxygen (1O2) generation by porphyrin under light irradiation, ultimately resulting in severe mitochondrial dysfunction and a rising cell death rate with increasing micromolar concentration of NPs. These multicomponent supramolecular nanoassemblies effectively combined the two-step synergistic chemo-photodynamic therapy of reduction-release of CPT and light-triggered 1O2 generation within cancer cells presenting the synergistic effect of supramolecular nanoparticles on cancer therapy, which provide a new approach for efficient step-by-step cancer therapy.
Collapse
Affiliation(s)
- Xianyin Dai
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Weilei Zhou
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Deng Z, Wang N, Ai F, Wang Z, Zhu G. Nanomaterial‐mediated platinum drug‐based combinatorial cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Na Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Fujin Ai
- College of Health Science and Environment Engineering Shenzhen Technology University Shenzhen P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences Health Science Center Shenzhen University Shenzhen P. R. China
| | - Guangyu Zhu
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| |
Collapse
|
36
|
Affiliation(s)
- Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano‐Micro Architecture Chemistry (NMAC)College of ChemistryJilin University Changchun P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano‐Micro Architecture Chemistry (NMAC)College of ChemistryJilin University Changchun P. R. China
| |
Collapse
|
37
|
Xu Y, Deng M, Zhang H, Tan S, Li D, Li S, Luo L, Liao G, Wang Q, Huang J, Liu J, Yang X, Wang K. Selection of Affinity Reagents to Neutralize the Hemolytic Toxicity of Melittin Based on a Self-Assembled Nanoparticle Library. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16040-16049. [PMID: 32174109 DOI: 10.1021/acsami.0c00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antibodies are the most common affinity reagents for specific target recognition. However, their applications are limited by high cost and low stability. Thus, seeking substitutes for antibodies is of great significance. In this work, we designed a library containing 82 self-assembled nanoparticles (SNPs) based on the self-assembly of β-cyclodextrin polymers and adamantane derivatives, and then screened out eight types of SNPs capable of suppressing the toxicity of melittin using a hemolytic activity neutralization assay. The affinities of the SNPs to melittin were demonstrated using surface plasmon resonance (SPR). As evidenced by cytotoxicity experiments, SNPs could also suppress the toxicity of melittin to other cells. In addition, to verify the universality of our method, 11 types of SNPs capable of neutralizing another toxic peptide, phenolic soluble polypeptide (PSMα3) secreted by Staphylococcus aureus, were selected from the same SNP library. Our self-assembly-based method for the library preparation has the advantages of flexible design, mild experimental condition, and simple operation, which is expected to seek artificial affinity reagents for more species.
Collapse
Affiliation(s)
- Yaqing Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Meitao Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Haitao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Sha Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Dan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Lei Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
38
|
Zhang Q, He J, Yu W, Li Y, Liu Z, Zhou B, Liu Y. A promising anticancer drug: a photosensitizer based on the porphyrin skeleton. RSC Med Chem 2020; 11:427-437. [PMID: 33479647 PMCID: PMC7460723 DOI: 10.1039/c9md00558g] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive combination of treatments that treat tumors and other diseases by using photosensitizers, light and oxygen to produce cytotoxic reactive oxygen species (ROS) inducing tumor cell apoptosis. Photosensitizers are the key part of PDT for clinical application and experimental research, and most of them are porphyrin compounds at present. Due to their unique affinity for tumor tissues, porphyrins are not only excellent photosensitizers, but also good carriers to transport other active drugs into tumor tissues, which can exert synergistic anticancer effects of PDT and chemotherapy. This article reviews the clinical development of porphyrin photosensitizers and the research status of porphyrin containing bioactive groups. Finally, future perspectives and the current challenges of photosensitizers based on the porphyrin skeleton are discussed.
Collapse
Affiliation(s)
- Qizhi Zhang
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering , University of South China , Hengyang City , Hunan Province 421001 , P.R. China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Yanchun Li
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Binning Zhou
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| |
Collapse
|
39
|
Liu D, Zhang Q, Zhang L, Yu W, Long H, He J, Liu Y. Novel photosensitizing properties of porphyrin–chrysin derivatives with antitumor activity in vitro. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy is a promising cancer treatment with the advantages of low toxicity, high efficiency, and noninvasiveness. In this study, 23 novel porphyrin–chrysin derivatives are synthesized using alkyl carbon chains as bridges. We use human gastric cancer cells (MGC-803) and human cervical cancer cells to evaluate the in vitro antitumor activity of all the porphyrin–chrysin derivatives, with 5-fluorouracil (5-Fu) as a positive control. Several of the prepared compounds showed effective photodynamic killing effects, among which 5-hydroxy-2-phenyl-7-(2-(4-(10,15,20-tris(4-hydroxyphenyl)porphyrin-5-yl)phenoxy)ethoxy)-4 H-chromen-4-one shows the highest antiproliferation activity on human cervical cancer cells, with a half maximal inhibitory concentration of 26.51 ± 1.15 µM. Flow cytometry analysis showed that human cervical cancer cell apoptosis might be induced by G1 phase arrest.
Collapse
Affiliation(s)
- Ding Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Lang Zhang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Huizhi Long
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| |
Collapse
|
40
|
Zhang Z, Wang R, Huang X, Luo R, Xue J, Gao J, Liu W, Liu F, Feng F, Qu W. Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5680-5694. [PMID: 31944660 DOI: 10.1021/acsami.9b23325] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT), a clinically approved cancer treatment, has faced many drawbacks that restricted its applications. For example, the hypoxia-induced elevated hypoxia-inducible factor-1α (HIF-1α) may desensitize tumors to PDT, and the high concentration of glutathione (GSH) in cancer cells can also neutralize the generated reactive oxygen species (ROS) during PDT, resulting in insufficient therapy. Moreover, extra probes for imaging-guided visualization therapy are always needed to track drug release or distribution, while it may decrease the drug loading of the drug delivery system (DDS). In the present study, we have designed and prepared a novel multifunctional combined therapy nanoparticle (ZnPc@Cur-S-OA NPs), in which curcumin (Cur) was not only used as a chemotherapy drug to achieve a combination therapy with PDT via downregulating HIF-1α and depleting GSH in B16F10 cells but also designed as a small-molecule ROS-triggered release prodrug to deliver the photosensitizer (PS). The red fluorescence of PS in the nanoparticles (NPs) can be used to track the NPs distribution, while the green fluorescence of Cur showed an "OFF-ON" activation, which enables additional imaging and real-time self-monitoring capabilities. These results proved that the prepared combined therapy NPs were more effective to inhibit the growth of B16F10 mouse melanoma tumor than was monotherapy without eliciting systemic toxicity either in vitro or in vivo, which indicated the combined therapy NPs as an effective way to improve the PDT efficacy via downregulation of HIF-1α and depletion of GSH. Thus, the strategy of using a multifunctional natural product as the stimuli-responsive carrier as well as the synergist with PDT for enhancing antitumor efficacy via multiple pathways may open an alternative avenue to fabricate new self-delivery combination therapy nanodrugs. Besides, the fluorescence emitted from the drug can be used for real-time self-monitoring of drug release and distribution, which has great potential in clinic to adjust the administration dose and irradiation time for different tumor types and stages for individual therapy.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Renjie Luo
- Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing 210009 , China
| | - Jingwei Xue
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , Taian City Central Hospital , Taian 271000 , China
- Taian City institute of Digestive Disease , Taian City Central Hospital , Taian 271000 , China
| | - Jing Gao
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , Taian City Central Hospital , Taian 271000 , China
- Department of Stomatology , Taian City Central Hospital , Taian 271000 , China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing 210009 , China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education , China Pharmaceutical University , Nanjing 210009 , China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , Taian City Central Hospital , Taian 271000 , China
- Pharmaceutical Department , Taian City Central Hospital , Taian 271000 , China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
- Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , China
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , China Pharmaceutical University , Nanjing 210009 , China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
41
|
Özkan M, Keser Y, Koc A, Tuncel D. Glycosylated porphyrin-cucurbituril conjugate for photodynamic inactivation of bacteria and doxorubicin carriage for anticancer drug delivery. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrin derivatives are highly attractive in the construction of multifunctional molecular platforms with interesting properties and applications. In this regard, we report here the use of a multifunctional porphyrin-based molecular platform as a photosensitizer for photodynamic therapy and as a drug carrier. This molecular platform was constructed by conjugating a host molecule, cucurbit[7]uril to a triglycosylated tetraphenyl porphyrin and serves very efficiently as a photosensitizer in the inactivation of both gram-negative (Escherichia coli, E. coli) and gram-positive bacteria (Bacillus subtilis, B. subtilis) and growth inhibition of cancer cells as well as a doxorubicin (DOX) carrier for chemo-photodynamic dual cancer therapy. Another remarkable feature of this photosensitizer is that it shows negligible cytotoxicity in the dark.
Collapse
Affiliation(s)
- Melis Özkan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Yağmur Keser
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Ahmet Koc
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Dönüs Tuncel
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
42
|
Chen L, Zhuang W, Hu C, Yu T, Su X, Liang Z, Li G, Wang Y. pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. J Mater Chem B 2020; 8:5645-5654. [DOI: 10.1039/d0tb00622j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanocarriers have been an important strategy for enhancing the combination therapy of chemotherapy and photodynamic therapy (PDT) (Chem-PDT).
Collapse
Affiliation(s)
- Liang Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Tao Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xin Su
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhen Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
43
|
Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics 2020; 10:615-629. [PMID: 31903141 PMCID: PMC6929989 DOI: 10.7150/thno.40066] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
Multifunctional supramolecular nanoplatforms that integrate the advantages of different therapeutic techniques can trigger multimodal synergistic treatment of tumors, thus representing an emerging powerful tool for cancer therapeutics. Methods: In this work, we design and fabricate a multifunctional supramolecular drug delivery platform, namely Fa-mPEG@CP5-CuS@HMSN-Py nanoparticles (FaPCH NPs), consisting of a pyridinium (Py)-modified hollow mesoporous silica nanoparticles-based drug reservoir (HMSN-Py) with high loading capacity, a layer of NIR-operable carboxylatopillar[5]arene (CP5)-functionalized CuS nanoparticles (CP5-CuS) on the surface of HMSN-Py connected through supramolecular host-guest interactions between CP5 rings and Py stalks, and another layer of folic acid (Fa)-conjugated polyethylene glycol (Fa-PEG) antennas by electrostatic interactions capable of active targeting at tumor lesions, in a controlled, highly integrated fashion for synergistic chemo-photothermal therapy. Results: Fa-mPEG antennas endowed the enhanced active targeting effect toward cancer cells, and CP5-CuS served as not only a quadruple-stimuli responsive nanogate for controllable drug release but also a special agent for NIR-guided photothermal therapy. Meanwhile, anticancer drug doxorubicin (DOX) could be released from the HMSN-Py reservoirs under tumor microenvironments for chemotherapy, thus realizing multimodal synergistic therapeutics. Such a supramolecular drug delivery platform showed effective synergistic chemo-photothermal therapy both in vitro and in vivo. Conclusion: This novel supramolecular nanoplatform possesses great potential in controlled drug delivery and tumor cellular internalization for synergistic chemo-photothermal therapy, providing a promising approach for multimodal synergistic cancer treatment.
Collapse
Affiliation(s)
- Jie Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Dihua Dai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Xinyue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Lianjun Ma
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
44
|
Abazari R, Ataei F, Morsali A, Slawin AMZ, L Carpenter-Warren C. A Luminescent Amine-Functionalized Metal-Organic Framework Conjugated with Folic Acid as a Targeted Biocompatible pH-Responsive Nanocarrier for Apoptosis Induction in Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45442-45454. [PMID: 31718155 DOI: 10.1021/acsami.9b16473] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Folic acid amine-functionalized metal-organic framework (FOLA@NH2-Eu:TMU-62) with luminescent properties loaded with 5-fluorouracil (5-Fu), as an anticancer medication, was used to construct a new cancer targeted drug delivery system in the present study. The 5-Fu release from this targeted carrier along with MTT assay and trypan blue dye exclusion test results also exhibited pH-controlled characteristics of the given carrier in acidic environments, which is very suitable for targeting solid tumors. Then, the inhibitory action of 5-Fu-loaded FOLA@NH2-Eu:TMU-62 for Michigan Cancer Foundation-7 (MCF7) cell migration was explored according to scratch wound healing assays. Based on the results, the FOLA@NH2-Eu:TMU-62 carrier was not toxic for MCF-10A normal cells, but it was significantly toxic for MCF-7 breast cancer ones, revealing that the FOLA@NH2-Eu:TMU-62 carrier could be utilized in accurate cancer treatments through apoptotic pathways with higher reactive oxygen species compared with 5-Fu alone. This cancer-targeted design of FOLA@NH2-Eu:TMU-62 could thus pave the way for synergistic effects of targeting as well as organized release capabilities.
Collapse
Affiliation(s)
| | | | | | - Alexandra M Z Slawin
- School of Chemistry , University of St Andrews , St Andrews , Fife, KY16 9ST , U.K
| | | |
Collapse
|
45
|
Özkan M, Kumar Y, Keser Y, Hadi SE, Tuncel D. Cucurbit[7]uril-Anchored Porphyrin-Based Multifunctional Molecular Platform for Photodynamic Antimicrobial and Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4693-4697. [DOI: 10.1021/acsabm.9b00763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Melis Özkan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Yogesh Kumar
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Yagmur Keser
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Seyed E. Hadi
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Dönüs Tuncel
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
46
|
Xue Y, Li J, Yang G, Liu Z, Zhou H, Zhang W. Multistep Consolidated Phototherapy Mediated by a NIR-Activated Photosensitizer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33628-33636. [PMID: 31433160 DOI: 10.1021/acsami.9b10605] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The multifunctional effect of a single molecule for therapeutic functionalities on a single theranostic nanosystem has a great significance to enhance the accuracy of diagnosis and improve the efficacy of therapy. Herein, a biocompatible multistep phototherapeutic system (Ppa-Cy7-PEG-biotin) that contains a photosensitizer pyropheophorbide A (Ppa) with the covalent conjunction of a near-infrared (NIR) cyanine dye (Cy7) was successfully fabricated and functionalized with biotin for flexible specific tumor-targeting phototherapy. These theranostic micelles will disaggregate after NIR irradiation via the photodegradation of cyanine accompanied by the photothermal conversion and the optically controlled release for the restoration of photodynamic function of quenched Ppa. Consecutively, promoted treatments of photosensitive molecules greatly prolonged the tumor retention time and treatment efficiency, having a multistep antitumor effect both in vitro and in vivo. Different from the simple phototherapeutic configurations that only act on the superficial areas of tumors at mild doses, the multistep therapy can be competent for broadly damaging the superficial and deeper regions of tumors at the same dose. Therefore, as opposed to the general combination phototherapeutic approach, this strategy presents a photoactivation-based multistep phototheranostic platform with an enormous potential in enhanced combined phototherapy for cancer.
Collapse
Affiliation(s)
- Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
| | - Jipeng Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology , Shanghai Ninth People's Hospital , Shanghai 200011 , China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
| | - Huifang Zhou
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology , Shanghai Ninth People's Hospital , Shanghai 200011 , China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
47
|
Zhong S, Chen C, Yang G, Zhu Y, Cao H, Xu B, Luo Y, Gao Y, Zhang W. Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33697-33705. [PMID: 31487149 DOI: 10.1021/acsami.9b12620] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an "acid-triggered nanoexpansion" method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (1O2) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.
Collapse
|