1
|
Lee LR, Fan PH, Chen YF, Chang MH, Liu YC, Chang CC, Chen JT. Structurally Defined Amphiphilic AAO Membranes Using UV-Assisted Thiol-Yne Chemistry: Applications in Anti-Counterfeiting and Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48073-48084. [PMID: 39189834 PMCID: PMC11403548 DOI: 10.1021/acsami.4c09040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In this study, we fabricate and characterize amphiphilic anodic aluminum oxide (AAO) membranes using UV-triggered thiol-yne click reactions and photomasks for various innovative applications, including driven polymer nanopatterns, anti-counterfeiting, and conductive pathways. Specifically, we synthesize 10-undecynyl-terminated-AAO membranes and subsequently prepare amphiphilic AAO membranes with superhydrophilic and superhydrophobic regions. Various analytical methods, including grazing angle X-ray photoelectron spectroscopy (GIXPS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), nanofocused synchrotron X-ray techniques (nano-XRD and nano-XRF), and water contact angle measurements, confirm the modifications and distinct properties of the modified areas. This work achieves a series of applications, such as driven polymer nanopatterns, solvent- and light-triggered anti-counterfeiting, and region-selective conductive pathways using silver paint with lower resistivity. Besides, the amphiphilic AAO membrane exhibits successful stability, durability, and reusability. To sum up, this study highlights the versatility and potential of amphiphilic AAO membranes in advanced material design and smart applications.
Collapse
Affiliation(s)
- Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Po-Hsin Fan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Ming-Hsuan Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Yu-Chun Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Chun-Chi Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| |
Collapse
|
2
|
Kosovari M, Buffeteau T, Thomas L, Guay Bégin AA, Vellutini L, McGettrick JD, Laroche G, Durrieu MC. Silanization Strategies for Tailoring Peptide Functionalization on Silicon Surfaces: Implications for Enhancing Stem Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29770-29782. [PMID: 38832565 DOI: 10.1021/acsami.4c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biomaterial surface engineering and the integration of cell-adhesive ligands are crucial in biological research and biotechnological applications. The interplay between cells and their microenvironment, influenced by chemical and physical cues, impacts cellular behavior. Surface modification of biomaterials profoundly affects cellular responses, especially at the cell-surface interface. This work focuses on enhancing cellular activities through material manipulation, emphasizing silanization for further functionalization with bioactive molecules such as RGD peptides to improve cell adhesion. The grafting of three distinct silanes onto silicon wafers using both spin coating and immersion methods was investigated. This study sheds light on the effects of different alkyl chain lengths and protecting groups on cellular behavior, providing valuable insights into optimizing silane-based self-assembled monolayers (SAMs) before peptide or protein grafting for the first time. Specifically, it challenges the common use of APTES molecules in this context. These findings advance our understanding of surface modification strategies, paving the way for tailoring biomaterial surfaces to modulate the cellular behavior for diverse biotechnological applications.
Collapse
Affiliation(s)
- Melissa Kosovari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Laurent Thomas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Andrée-Anne Guay Bégin
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - James D McGettrick
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, U.K
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | | |
Collapse
|
3
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
4
|
Singh S, Abdur R, Sheikh MAK, Swain BS, Song J, Kim JH, Nam HS, Kim SH, Lee H, Lee J. Selective Spin Dewetting for Perovskite Solar Modules Fabricated on Engineered Au/ITO Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:424. [PMID: 38470755 DOI: 10.3390/nano14050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
We introduce a novel method for fabricating perovskite solar modules using selective spin-coating on various Au/ITO patterned substrates. These patterns were engineered for two purposes: (1) to enhance selectivity of monolayers primarily self-assembling on the Au electrode, and (2) to enable seamless interconnection between cells through direct contact of the top electrode and the hydrophobic Au connection electrode. Utilizing SAMs-treated Au/ITO, we achieved sequential selective deposition of the electron transport layer (ETL) and the perovskite layer on the hydrophilic amino-terminated ITO, while the hole transport layer (HTL) was deposited on the hydrophobic CH3-terminated Au connection electrodes. Importantly, our approach had a negligible impact on the series resistance of the solar cells, as evidenced by the measured specific contact resistivity of the multilayers. A significant outcome was the production of a six-cell series-connected solar module with a notable average PCE of 8.32%, providing a viable alternative to the conventional laser scribing technique.
Collapse
Affiliation(s)
- Son Singh
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Rahim Abdur
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Md Abdul Kuddus Sheikh
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhabani Sankar Swain
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Jindong Song
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae-Hun Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Ho-Seok Nam
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Sung-Hyon Kim
- Department of Fashion Design, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyunseung Lee
- Department of Fashion Industry, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaegab Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
5
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
6
|
Batili H, Hamawandi B, Ergül AB, Toprak MS. On the electrophoretic deposition of Bi2Te3 nanoparticles through electrolyte optimization and substrate design. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
8
|
Zhou Z, Zhou S, Cheng X, Liu W, Wu R, Wang J, Liu B, Zhu J, Van der Bruggen B, Zhang Y. Ultrathin polyamide membranes enabled by spin-coating assisted interfacial polymerization for high-flux nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Zubets U, Zhao B, Park H, Halik M. A universal concept for area‐selective assembly of metal oxide core‐shell nanoparticles, nanorods, and organic molecules via amide coupling reactions. NANO SELECT 2022. [DOI: 10.1002/nano.202100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Uladzislau Zubets
- Organic Materials and Devices, Department of Materials Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Baolin Zhao
- Organic Materials and Devices, Department of Materials Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Hyoungwon Park
- Organic Materials and Devices, Department of Materials Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Marcus Halik
- Organic Materials and Devices, Department of Materials Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
10
|
Wang Y, Wan Y, Li S, Guo L. Facile fabrication of metastable aluminum/fluoropolymer composite films by spin-coating and their thermal properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Sun YC, Boero G, Brugger J. Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal. ACS APPLIED ELECTRONIC MATERIALS 2021; 3:5423-5432. [PMID: 34977587 PMCID: PMC8717634 DOI: 10.1021/acsaelm.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/16/2021] [Indexed: 05/26/2023]
Abstract
Embedding liquid metals (LMs) into an elastomer is emerging as a promising strategy for stretchable conductors. Existing manufacturing techniques are struggling between spatial resolution and process complexity and are limited to chemically resistant substrates. Here, we report on a hybrid process combining stencil lithography and centrifugal force-assisted patterning of liquid metal for the development of LM-based stretchable conductors. The selective wetting behavior of oxide-removed eutectic gallium-indium (EGaIn) on metal patterns defined by stencil lithography enables micrometer scale LM patterns on an elastomeric substrate. Stencil lithography allows for defining metal regions without harsh chemical treatments, making it suitable for a wide range of substrates. Microscale LM patterns are achieved by efficiently removing the excess material by the centrifugal forces experienced from spinning the substrate. The proposed approach allows for the creation of LM patterns with a line width as small as 2 μm on a stretchable poly(dimethylsiloxane) (PDMS) substrate. The electrical measurement results show that the fabricated EGaIn devices can endure 40% mechanical strain over several thousands of cycles. Furthermore, a stencil design using microbridges is proposed to address the mechanical stability issue in stencil lithography. An EGaIn conductor with a serpentine structure and an interdigitated capacitor are fabricated and characterized. The results demonstrate that the patterned serpentine conductors retain their functionality with applied mechanical strain up to 80%. The performance of the interdigitated capacitors upon applied strain is in good agreement with the theoretical estimation. Finally, we demonstrate our approach also on poly(octamethylene maleate (anhydride) citrate) (POMaC) substrates to broaden the use of the proposed method to not only flexible and stretchable but also biodegradable substrates, opening a way for in vivo transient microsystem engineering. The work presented here provides a versatile and reliable approach for manufacturing stretchable conductors.
Collapse
|
12
|
A New Hybrid Sensitive PANI/SWCNT/Ferrocene-Based Layer for a Wearable CO Sensor. SENSORS 2021; 21:s21051801. [PMID: 33807640 PMCID: PMC7961761 DOI: 10.3390/s21051801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/13/2023]
Abstract
Developing a sensing layer with high electroactive properties is an important aspect for proper functionality of a wearable sensor. The polymeric nanocomposite material obtained by a simple electropolymerization on gold interdigitated electrodes (IDEs) can be optimized to have suitable conductive properties to be used with direct current (DC) measurements. A new layer based on polyaniline:poly(4-styrenesulfonate) (PANI:PSS)/single-walled carbon nanotubes (SWCNT)/ferrocene (Fc) was electrosynthesized and deposed on interdigital transducers (IDT) and was characterized in detail using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). The sensor characteristics of the material towards carbon monoxide (CO) in the concentration range of 10–300 ppm were examined, showing a minimal relative humidity interference of only 1% and an increase of sensitivity with the increase of CO concentration. Humidity interference could be controlled by the number of CV cycles when a compact layer was formed and the addition of Fc played an important role in the decrease of humidity. The results for CO detection can be substantially improved by optimizing the number of deposition cycles and enhancing the Fc concentration. The material was developed for selective detection of CO in real environmental conditions and shows good potential for use in a wearable sensor.
Collapse
|
13
|
Mondal S. Impact of the process conditions on polymer pattern morphology during spin coating over topological surfaces. SOFT MATTER 2021; 17:1346-1358. [PMID: 33325977 DOI: 10.1039/d0sm01622e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micro and nanofabrication techniques depend on the technology of polymer film casting. Spin coating is a relatively robust method to develop uniform polymer films over the substrate surface. However, polymer casting over a topographically prepatterned surface using the spin coating technique is challenging because of the complex transport phenomena involved in the process. Apart from the substrate wettability and the polymer composition, the geometry of the substrate prepatterns affects the polymer phase separation characteristics and thus the morphology of the polymer pattern. In this work the phase separation dynamics during the spinodal decomposition of a polymer-solvent system in a spin coating process is mathematically investigated. The effect of the prepattern topography, substrate wettability, spin-coating rotational speed, and polymer composition on the phase separation dynamics is investigated. The results reveal that the periodicity and phase difference of the polymer peaks with the topography are dependent on the geometric parameters and substrate wettability. The impact of the rotational motion, on the polymer film, is restricted by the surface roughness (due to the topological prepatterns). On reducing the polymer fraction in the solution, the transition from a uniform coating to film defects to isolated patches (wetting to dewetting) occurs. The surface wettability plays a crucial role in topology directed dewetting, which is not observed in flat substrates.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
14
|
Lundy R, Yadav P, Prochukhan N, Giraud EC, O'Mahony TF, Selkirk A, Mullen E, Conway J, Turner M, Daniels S, Mani-Gonzalez PG, Snelgrove M, Bogan J, McFeely C, O'Connor R, McGlynn E, Hughes G, Cummins C, Morris MA. Precise Definition of a "Monolayer Point" in Polymer Brush Films for Fabricating Highly Coherent TiO 2 Thin Films by Vapor-Phase Infiltration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12394-12402. [PMID: 33021792 DOI: 10.1021/acs.langmuir.0c02512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we show that in order to fabricate coherent titania (TiO2) films with precise thickness control, it is critical to generate a complete polymer brush monolayer. To date, demonstrations of such dense polymer monolayer formation that can be utilized for inorganic infiltration have been elusive. We describe a versatile bottom-up approach to covalently and rapidly (60 s processing) graft hydroxyl-terminated poly(2-vinyl pyridine) (P2VP-OH) polymers on silicon substrates. P2VP-OH monolayer films of varying thicknesses can subsequently be used to fabricate high-quality TiO2 films. Our innovative strategy is based upon room-temperature titanium vapor-phase infiltration of the grafted P2VP-OH polymer brushes that can produce TiO2 nanofilms of 2-4 nm thicknesses. Crucial parameters are explored, including molecular weight and solution concentration for grafting dense P2VP-OH monolayers from the liquid phase with high coverage and uniformity across wafer-scale areas (>2 cm2). Additionally, we compare the P2VP-OH polymer systems with another reactive polymer, poly(methyl methacrylate)-OH, and a relatively nonreactive polymer, poly(styrene)-OH. Furthermore, we prove the latter to be effective for surface blocking and deactivation. We show a simple process to graft monolayers for polymers that are weakly interacting with one another but more challenging for reactive systems. Our methodology provides new insight into the rapid grafting of polymer brushes and their ability to form TiO2 films. We believe that the results described herein are important for further expanding the use of reactive and unreactive polymers for fields including area-selective deposition, solar cell absorber layers, and antimicrobial surface coatings.
Collapse
Affiliation(s)
- Ross Lundy
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Pravind Yadav
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Nadezda Prochukhan
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Elsa C Giraud
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Tom F O'Mahony
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew Selkirk
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Eleanor Mullen
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Jim Conway
- National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| | - Miles Turner
- National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| | - Stephen Daniels
- National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| | - P G Mani-Gonzalez
- Institute of Engineering and Technology, Department of Physics and Mathematics, Autonomous University of Ciudad Juárez, Cd. Juárez 32310, Mexico
| | - Matthew Snelgrove
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Justin Bogan
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Caitlin McFeely
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Robert O'Connor
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Enda McGlynn
- National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Greg Hughes
- National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Cian Cummins
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Michael A Morris
- AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
Huang WP, Chen XC, Hu M, Wang J, Qian HL, Hu DF, Dong RL, Xu SY, Ren KF, Ji J. Dynamic Porous Pattern through Controlling Noncovalent Interactions in Polyelectrolyte Film for Sequential and Regional Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42081-42088. [PMID: 32937689 DOI: 10.1021/acsami.0c09580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inspired by nature, many functional surfaces have been developed with special structures in biology, chemistry, and materials. Many research studies have been focused on the preparation of surfaces with static structure. Achieving dynamical manipulation of surface structure is desired but still a great challenge. Herein, a polyelectrolyte film capable of regional and reversible changes in the microporous structure is presented. Our proposal is based on the combination of azobenzene (Azo) π-π stacking and electrostatic interaction, which could be affected respectively by ultraviolet (UV) irradiation and water plasticization, to tune the mobility of polyelectrolyte chains. The porous patterns can be obtained after regional ultraviolet irradiation and acid treatment. Owing to the reversibility of Azo π-π stacking and electrostatic interaction, the patterns can be repeatedly created and erased in the polyelectrolyte film made by layer-by-layer (LbL) self-assembly of poly(ethyleneimine)-azo and poly(acrylic acid). Furthermore, through two rounds of porous pattern formation and erasure, different functional species can be loaded separately and confined regionally within the film, showing potential applications in the functional surface. This work highlights the coordination of two noncovalent interactions in thin films for regional and reversible controlling its structure, opening a window for more in-depth development of functional surfaces.
Collapse
Affiliation(s)
- Wei-Pin Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xia-Chao Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deng-Feng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui-Lin Dong
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Song-Yi Xu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Li T, Hu K, Ma X, Zhang W, Yin J, Jiang X. Hierarchical 3D Patterns with Dynamic Wrinkles Produced by a Photocontrolled Diels-Alder Reaction on the Surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906712. [PMID: 31898831 DOI: 10.1002/adma.201906712] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Three-dimensional (3D) reconfigurable patterns with dynamic morphologies enable the on-demand control of surface properties, such as optical, wetting, and adhesive properties, to achieve smart surfaces. Here, a simple yet general strategy is developed for fabricating 3D patterns with reversible wrinkles on the surface, in which a Diels-Alder (D-A) reaction in the top layer, which consists of a reversible cross-linked polymer network composed of a furan-containing copolymer (PSFB) and bismaleimide (BMI), can be spatially controlled by the photodimerization of BMI. When a photomask is used during irradiation with ultraviolet (UV) light, selective photodimerization of the maleimide leads to the diffusion of maleimide from the unexposed region to the exposed region, resulting in the generation of a diffused relief pattern. By controlling the reversible D-A reaction at different temperatures, orthogonal wrinkles can be sequentially and reversibly generated or erased in both the exposed and unexposed regions on the surface. Theoretical modeling with boundary effects reveals that the orientation of the wrinkle in the exposed region is perpendicular to the boundary, whereas the wrinkle in the unexposed region is parallel to the boundary. This strategy, based on a photocontrolled D-A reaction, provides an important and robust alternative for fabricating 3D patterned surfaces with dynamic topographies.
Collapse
Affiliation(s)
- Tiantian Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiming Hu
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Sy Piecco KWE, Vicente JR, Pyle JR, Ingram DC, Kordesch ME, Chen J. Reusable Chemically-Micropatterned Substrates via Sequential Photoinitiated Thiol-Ene Reactions as Template for Perovskite Thin-Film Microarrays. ACS APPLIED ELECTRONIC MATERIALS 2019; 1:2279-2286. [PMID: 32832905 PMCID: PMC7442211 DOI: 10.1021/acsaelm.9b00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Patterning semiconducting materials are important for many applications such as microelectronics, displays, and photodetectors. Lead halide perovskites are an emerging class of semiconducting materials that can be patterned via solution-based methods. Here we report an all-benchtop patterning strategy by first generating a patterned surface with contrasting wettabilities to organic solvents that have been used in the perovskite precursor solution then spin-coating the solution onto the patterned surface. The precursor solution only stays in the area with higher affinity (wettability). We applied sequential sunlight-initiated thiol-ene reactions to functionalize (and pattern) both glass and conductive fluorine-doped tin oxide (FTO) transparent glass surfaces. The functionalized surfaces were measured with the solvent contact angles of water and different organic solvents and were further characterized by XPS, selective fluorescence staining, and selective DNA adsorption. By simply spin-coating and baking the perovskite precursor solution on the patterned substrates, we obtained perovskite thin-film microarrays. The spin-coated perovskite arrays were characterized by XRD, AFM, and SEM. We concluded that patterned substrate prepared via sequential sunlight-initiated thiol-ene click reactions is suitable to fabricate perovskite arrays via the benchtop process. In addition, the same patterned substrates can be reused several times until a favorable perovskite microarray is acquired. Among a few conditions we have tested, DMSO solvent and modified FTO surfaces with alternatively carboxylic acid and alkane is the best combination to obtain high-quality perovskite microarrays. The solvent contact angle of DMSO on carboxylic acid-modified FTO surface is nearly zero and 65±3° on octadecane modified FTO surface.
Collapse
Affiliation(s)
- Kurt Waldo E. Sy Piecco
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
- University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
| | - Juvinch R. Vicente
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
- University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
| | - Joseph R. Pyle
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - David C. Ingram
- Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - Martin E. Kordesch
- Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|