1
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
2
|
Kortman VG, de Vries E, Jovanova J, Sakes A. Magnetic Stimulation for Programmed Shape Morphing: Review of Four-Dimensional Printing, Challenges and Opportunities. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:977-993. [PMID: 39359596 PMCID: PMC11442361 DOI: 10.1089/3dp.2023.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In the field of Additive Manufacturing, four-dimensional (4D) printing has emerged as a promising technique to fabricate smart structures capable of undergoing shape morphing in response to specific stimuli. Magnetic stimulation offers a safe, remote, and rapid actuation mechanism for magnetically responsive structures. This review provides a comprehensive overview of the various strategies and manufacturing approaches employed in the development of magnetically stimulated shape morphing 4D-printed structures, based on an extensive literature search. The review explores the use of magnetic stimulation either individually or in combination with other stimuli. While most of the literature focuses on single-stimulus responsive structures, a few examples of multi-stimuli responsive structures are also presented. We investigate the influence of the orientation of magnetic particles in smart material composites, which can be either random or programmed during or after printing. Finally, the similarities and differences among the different strategies and their impact on the resulting shape-morphing behavior are analyzed. This systematic overview functions as a guide for readers in selecting a manufacturing approach to achieve a specific magnetically actuated shape-morphing effect.
Collapse
Affiliation(s)
- Vera G Kortman
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Ellen de Vries
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Jovana Jovanova
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Aimée Sakes
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
3
|
Palacios-Alonso P, Sanz-de-Diego E, Peláez RP, Cortajarena AL, Teran FJ, Delgado-Buscalioni R. Predicting the size and morphology of nanoparticle clusters driven by biomolecular recognition. SOFT MATTER 2023; 19:8929-8944. [PMID: 37530392 DOI: 10.1039/d3sm00536d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nanoparticle aggregation is a driving principle of innovative materials and biosensing methodologies, improving transduction capabilities displayed by optical, electrical or magnetic measurements. This aggregation can be driven by the biomolecular recognition between target biomolecules (analytes) and receptors bound onto nanoparticle surface. Despite theoretical advances on modelling the entropic interaction in similar systems, predictions of the fractal morphologies of the nanoclusters of bioconjugated nanoparticles are lacking. The morphology of resulting nanoclusters is sensitive to the location, size, flexibility, average number of receptors per particle f̄, and the analyte-particle concentration ratio. Here we considered bioconjugated iron oxide nanoparticles (IONPs) where bonds are mediated by a divalent protein that binds two receptors attached onto different IONPs. We developed a protocol combining analytical expressions for receptors and linker distributions, and Brownian dynamics simulations for bond formation, and validated it against experiments. As more bonds become available (e.g., by adding analytes), the aggregation deviates from the ideal Bethe's lattice scenario due to multivalence, loop formation, and steric hindrance. Generalizing Bethe's lattice theory with a (not-integer) effective functionality feff leads to analytical expressions for the cluster size distributions in excellent agreement with simulations. At high analyte concentration steric impediment imposes an accessible limit value facc to feff, which is bounded by facc < feff < f̄. A transition to gel phase, is correctly captured by the derived theory. Our findings offer new insights into quantifying analyte amounts by assessing nanocluster size, and predicting nanoassembly morphologies accurately is a first step towards understanding variations of physical properties in clusters formed after biomolecular recognition.
Collapse
Affiliation(s)
- Pablo Palacios-Alonso
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center, IFIMAC, Spain
| | | | - Raúl P Peláez
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - A L Cortajarena
- CIC biomaGUNE-BRTA, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - F J Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Rafael Delgado-Buscalioni
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center, IFIMAC, Spain
| |
Collapse
|
4
|
Sun Y, Du Z, Zhang H, Wang H, Sasayama T, Yoshida T. Simultaneous estimation of magnetic moment and Brownian relaxation time distributions of magnetic nanoparticles based on magnetic particle spectroscopy for biosensing application. NANOSCALE 2023; 15:16089-16102. [PMID: 37751148 DOI: 10.1039/d3nr02860g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Magnetic nanoparticles (MNPs) exhibit unique physicochemical characteristics owing to their comparable dimensions with important biological substances, high surface-to-volume ratios, size-dependent magnetic properties, and temperature sensitivity. In this study, we present a novel method for simultaneously estimating the magnetic moment and Brownian relaxation time distribution of MNPs based on AC magnetization harmonics. We provide a detailed description of the theoretical framework and experimental procedures. The dynamics of MNP magnetization are described using the Fokker-Planck equation, and a matrix equation is established to connect the magnetic moment, Brownian relaxation time, and magnetization harmonics. By employing a non-negative linear least squares algorithm with constraints, the magnetic moment and Brownian relaxation time distributions are inversed, which are then converted into the distributions of core sizes and hydrodynamic sizes. Finally, the estimated core size distribution reconstructed from M-H curves is consistent with the hydrodynamic size distribution measured by dynamic light scattering. This method is particularly useful for facilitating quantitative magnetic immunoassays.
Collapse
Affiliation(s)
- Yi Sun
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Zhongzhou Du
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Haochen Zhang
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Haozhe Wang
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Teruyoshi Sasayama
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Takashi Yoshida
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Wolf A, Zink A, Stiegler LMS, Branscheid R, Apeleo Zubiri B, Müssig S, Peukert W, Walter J, Spiecker E, Mandel K. Magnetic in situ determination of surface coordination motifs by utilizing the degree of particle agglomeration. J Colloid Interface Sci 2023; 648:633-643. [PMID: 37321082 DOI: 10.1016/j.jcis.2023.05.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Most analytical techniques used to study the surface chemical properties of superparamagnetic iron oxide nanoparticles (SPIONs) are barely suitable for in situ investigations in liquids, where SPIONs are mostly applied for hyperthermia therapy, diagnostic biosensing, magnetic particle imaging or water purification. Magnetic particle spectroscopy (MPS) can resolve changes in magnetic interactions of SPIONs within seconds at ambient conditions. Herein, we show that by adding mono- and divalent cations to citric acid capped SPIONs, the degree of agglomeration can be utilized to study the selectivity of cations towards surface coordination motifs via MPS. A favored chelate agent, like ethylenediaminetetraacetic acid (EDTA) for divalent cations, removes cations from coordination sites on the SPION surface and causes redispersion of agglomerates. The magnetic determination thereof represents what we call a "magnetically indicated complexometric titration". The relevance of agglomerate sizes for the MPS signal response is studied on a model system of SPIONs and the surfactant cetrimonium bromide (CTAB). Analytical ultracentrifugation (AUC) and cryogenic transmission electron microscopy (cryo-TEM) reveal that large micron-sized agglomerates are required to significantly change the MPS signal response. With this work, a fast and easy-to-use characterization method to determine surface coordination motifs of magnetic nanoparticles in optically dense media is demonstrated.
Collapse
Affiliation(s)
- Andreas Wolf
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Wuerzburg, Germany
| | - Andreas Zink
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Lisa M S Stiegler
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Robert Branscheid
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 3, 91058 Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 3, 91058 Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Johannes Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 3, 91058 Erlangen, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Wuerzburg, Germany.
| |
Collapse
|
6
|
Dasika S, Parashar M, Saha K. Mapping AC susceptibility with quantum diamond microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2887607. [PMID: 37125854 DOI: 10.1063/5.0138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
We present a technique for determining the micro-scale AC susceptibility of magnetic materials. We use the magnetic field sensing properties of nitrogen-vacancy (NV-) centers in diamond to gather quantitative data about the magnetic state of the magnetic material under investigation. A quantum diamond microscope with an integrated lock-in camera is used to perform pixel-by-pixel, lock-in detection of NV- photo-luminescence for high-speed magnetic field imaging. In addition, a secondary sensor is employed to isolate the effect of the excitation field from fields arising from magnetic structures on NV- centers. We demonstrate our experimental technique by measuring the AC susceptibility of soft permalloy micro-magnets at excitation frequencies of up to 20 Hz with a spatial resolution of 1.2 µm and a field of view of 100 µm. Our work paves the way for microscopic measurement of AC susceptibilities of magnetic materials relevant to physical, biological, and material sciences.
Collapse
Affiliation(s)
- Shishir Dasika
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Madhur Parashar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kasturi Saha
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application. BIOSENSORS 2023; 13:304. [PMID: 36979516 PMCID: PMC10046048 DOI: 10.3390/bios13030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In the last few decades, point-of-care (POC) sensors have become increasingly important in the detection of various targets for the early diagnostics and treatment of diseases. Diverse nanomaterials are used as building blocks for the development of smart biosensors and magnetite nanoparticles (MNPs) are among them. The intrinsic properties of MNPs, such as their large surface area, chemical stability, ease of functionalization, high saturation magnetization, and more, mean they have great potential for use in biosensors. Moreover, the unique characteristics of MNPs, such as their response to external magnetic fields, allow them to be easily manipulated (concentrated and redispersed) in fluidic media. As they are functionalized with biomolecules, MNPs bear high sensitivity and selectivity towards the detection of target biomolecules, which means they are advantageous in biosensor development and lead to a more sensitive, rapid, and accurate identification and quantification of target analytes. Due to the abovementioned properties of functionalized MNPs and their unique magnetic characteristics, they could be employed in the creation of new POC devices, molecular logic gates, and new biomolecular-based biocomputing interfaces, which would build on new ideas and principles. The current review outlines the synthesis, surface coverage, and functionalization of MNPs, as well as recent advancements in magnetite-based biosensors for POC diagnostics and some perspectives in molecular logic, and it also contains some of our own results regarding the topic, which include synthetic MNPs, their application for sample preparation, and the design of fluorescent-based molecular logic gates.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Shweta Pawar
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Perelshtein
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Wu K, Chugh VK, Krishna VD, Wang YA, Gordon TD, Cheeran MCJ, Wang JP. Five-Minute Magnetic Nanoparticle Spectroscopy-Based Bioassay for Ultrafast Detection of SARS-CoV-2 Spike Protein. ACS APPLIED NANO MATERIALS 2022; 5:17503-17507. [PMID: 36570474 PMCID: PMC9762417 DOI: 10.1021/acsanm.2c05237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 05/28/2023]
Abstract
In this work, we report a 5-min magnetic particle spectroscopy (MPS)-based bioassay strategy. In our approach, surface-functionalized magnetic nanoparticles are incubated with target analytes at 37 °C with agitation for 3 min, and the MPS reading is then taken at the fifth minute. We prove the feasibility of 5 min ultrafast detection of SARS-CoV-2 spike protein with a detection limit below 5 nM (0.2 pmol). Our proposed 5-min bioassay strategy may be applied to reduce the assay time for other liquid-phase, volumetric biosensors such as NMR, quantum dots, fluorescent biosensors, etc.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | | | | | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
9
|
Wu K, Liu J, Chugh VK, Liang S, Saha R, Krishna VD, Cheeran MCJ, Wang JP. Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap. NANO FUTURES 2022; 6:022001. [PMID: 36199556 PMCID: PMC9531898 DOI: 10.1088/2399-1984/ac5cd1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has flourished as an independent platform for many biological and biomedical applications. It has been extensively reported as a versatile platform for a variety of bioassays along with the artificially designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target analytes from fluid samples. In this review, the mechanisms and theories of different MPS platforms realizing volumetric- and surface-based bioassays are discussed. Some representative works of MPS platforms for applications such as disease diagnosis, food safety and plant pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end of this review, we commented on the rapid growth and booming of MPS-based bioassays in its first 15 years. We also prospected opportunities and challenges that portable MPS devices face in the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Venkatramana D Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
10
|
Healy S, Bakuzis AF, Goodwill PW, Attaluri A, Bulte JWM, Ivkov R. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1779. [PMID: 35238181 PMCID: PMC9107505 DOI: 10.1002/wnan.1779] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat‐based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle‐imaging technology that provides real‐time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof‐of‐principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Collapse
Affiliation(s)
- Sean Healy
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andris F Bakuzis
- Instituto de Física and CNanoMed, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Anilchandra Attaluri
- Department of Mechanical Engineering, Pennsylvania State University, Harrisburg, Harrisburg, Pennsylvania, USA
| | - Jeff W M Bulte
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Wu K, Chugh VK, Krishna VD, Girolamo AD, Wang YA, Saha R, Liang S, Cheeran MCJ, Wang JP. One-Step, Wash-free, Nanoparticle Clustering-Based Magnetic Particle Spectroscopy Bioassay Method for Detection of SARS-CoV-2 Spike and Nucleocapsid Proteins in the Liquid Phase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44136-44146. [PMID: 34499464 PMCID: PMC8442556 DOI: 10.1021/acsami.1c14657] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 05/04/2023]
Abstract
With the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an increasing quest for more accessible, easy-to-use, rapid, inexpensive, and high-accuracy diagnostic tools. Traditional disease diagnostic methods such as qRT-PCR (quantitative reverse transcription-PCR) and ELISA (enzyme-linked immunosorbent assay) require multiple steps, trained technicians, and long turnaround time that may worsen the disease surveillance and pandemic control. In sight of this situation, a rapid, one-step, easy-to-use, and high-accuracy diagnostic platform will be valuable for future epidemic control, especially for regions with scarce medical resources. Herein, we report a magnetic particle spectroscopy (MPS) platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biomarkers: spike and nucleocapsid proteins. This technique monitors the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses their higher harmonics as a measure of the nanoparticles' binding states. By anchoring polyclonal antibodies (pAbs) onto MNP surfaces, these nanoparticles function as nanoprobes to specifically bind to target analytes (SARS-CoV-2 spike and nucleocapsid proteins in this work) and form nanoparticle clusters. This binding event causes detectable changes in higher harmonics and allows for quantitative and qualitative detection of target analytes in the liquid phase. We have achieved detection limits of 1.56 nM (equivalent to 125 fmole) and 12.5 nM (equivalent to 1 pmole) for detecting SARS-CoV-2 spike and nucleocapsid proteins, respectively. This MPS platform combined with the one-step, wash-free, nanoparticle clustering-based assay method is intrinsically versatile and allows for the detection of a variety of other disease biomarkers by simply changing the surface functional groups on MNPs.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Arturo di Girolamo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
12
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
13
|
Zhong J, Rösch EL, Viereck T, Schilling M, Ludwig F. Toward Rapid and Sensitive Detection of SARS-CoV-2 with Functionalized Magnetic Nanoparticles. ACS Sens 2021; 6:976-984. [PMID: 33496572 PMCID: PMC7860137 DOI: 10.1021/acssensors.0c02160] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent strategies throughout the whole world. As of October 2020, there have not yet been any medicines or therapies to be effective against SARS-CoV-2. Thus, rapid and sensitive diagnostics is the most important measures to control the outbreak of SARS-CoV-2. Homogeneous biosensing based on magnetic nanoparticles (MNPs) is one of the most promising approaches for rapid and highly sensitive detection of biomolecules. This paper proposes an approach for rapid and sensitive detection of SARS-CoV-2 with functionalized MNPs via the measurement of their magnetic response in an ac magnetic field. For proof of concept, mimic SARS-CoV-2 consisting of spike proteins and polystyrene beads are used for experiments. Experimental results demonstrate that the proposed approach allows the rapid detection of mimic SARS-CoV-2 with a limit of detection of 0.084 nM (5.9 fmole). The proposed approach has great potential for designing a low-cost and point-of-care device for rapid and sensitive diagnostics of SARS-CoV-2.
Collapse
Affiliation(s)
- Jing Zhong
- Institute for Electrical Measurement Science and Fundamental Electrical
Engineering and Laboratory for Emerging Nanometrology (LENA), TU
Braunschweig, Hans-Sommer-Str. 66, Braunschweig D-38106,
Germany
| | - Enja Laureen Rösch
- Institute for Electrical Measurement Science and Fundamental Electrical
Engineering and Laboratory for Emerging Nanometrology (LENA), TU
Braunschweig, Hans-Sommer-Str. 66, Braunschweig D-38106,
Germany
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical
Engineering and Laboratory for Emerging Nanometrology (LENA), TU
Braunschweig, Hans-Sommer-Str. 66, Braunschweig D-38106,
Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical
Engineering and Laboratory for Emerging Nanometrology (LENA), TU
Braunschweig, Hans-Sommer-Str. 66, Braunschweig D-38106,
Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical
Engineering and Laboratory for Emerging Nanometrology (LENA), TU
Braunschweig, Hans-Sommer-Str. 66, Braunschweig D-38106,
Germany
| |
Collapse
|
14
|
Wu K, Liu J, Saha R, Peng C, Su D, Wang YA, Wang JP. Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization. ACS OMEGA 2021; 6:6274-6283. [PMID: 33718717 PMCID: PMC7948237 DOI: 10.1021/acsomega.0c05845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively used as tiny heating sources in magnetic hyperthermia therapy, contrast agents in magnetic resonance imaging, tracers in magnetic particle imaging, carriers for drug/gene delivery, etc. There have emerged many MNP/microbead suppliers since the past decade, such as Ocean NanoTech, Nanoprobes, US Research Nanomaterials, Miltenyi Biotec, micromod Partikeltechnologie GmbH, nanoComposix, and so forth. In this paper, we report the physical and magnetic characterizations on iron oxide nanoparticle products from Ocean NanoTech. Standard characterization tools such as vibrating-sample magnetometry, X-ray diffraction, dynamic light scattering, transmission electron microscopy, and zeta potential analysis are used to provide MNP customers and researchers with an overview of these iron oxide nanoparticle products. In addition, the dynamic magnetic responses of these iron oxide nanoparticles in aqueous solutions are investigated under low- and high-frequency alternating magnetic fields, giving a standardized operating procedure for characterizing the MNPs from Ocean NanoTech, thereby yielding the best of MNPs for different applications.
Collapse
Affiliation(s)
- Kai Wu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinming Liu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaoyi Peng
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department
of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Jian-Ping Wang
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Wu K, Chugh VK, di Girolamo A, Liu J, Saha R, Su D, Krishna VD, Nair A, Davies W, Wang YA, Cheeran MCJ, Wang JP. A Portable Magnetic Particle Spectrometer for Future Rapid and Wash-Free Bioassays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7966-7976. [PMID: 33566573 PMCID: PMC9053107 DOI: 10.1021/acsami.0c21040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nowadays, there is an increasing demand for more accessible routine diagnostics for patients with respect to high accuracy, ease of use, and low cost. However, the quantitative and high accuracy bioassays in large hospitals and laboratories usually require trained technicians and equipment that is both bulky and expensive. In addition, the multistep bioassays and long turnaround time could severely affect the disease surveillance and control especially in pandemics such as influenza and COVID-19. In view of this, a portable, quantitative bioassay device will be valuable in regions with scarce medical resources and help relieve burden on local healthcare systems. Herein, we introduce the MagiCoil diagnostic device, an inexpensive, portable, quantitative, and rapid bioassay platform based on the magnetic particle spectrometer (MPS) technique. MPS detects the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses the harmonics from oscillating MNPs as metrics for sensitive and quantitative bioassays. This device does not require trained technicians to operate and employs a fully automatic, one-step, and wash-free assay with a user friendly smartphone interface. Using a streptavidin-biotin binding system as a model, we show that the detection limit of the current portable device for streptavidin is 64 nM (equal to 5.12 pmole). In addition, this MPS technique is very versatile and allows for the detection of different diseases just by changing the surface modifications on MNPs. Although MPS-based bioassays show high sensitivities as reported in many literatures, at the current stage, this portable device faces insufficient sensitivity and needs further improvements. It is foreseen that this kind of portable device can transform the multistep, laboratory-based bioassays to one-step field testing in nonclinical settings such as schools, homes, offices, etc.
Collapse
Affiliation(s)
| | | | - Arturo di Girolamo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Abilash Nair
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Will Davies
- Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering and Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Avugadda SK, Wickramasinghe S, Niculaes D, Ju M, Lak A, Silvestri N, Nitti S, Roy I, Samia ACS, Pellegrino T. Uncovering the Magnetic Particle Imaging and Magnetic Resonance Imaging Features of Iron Oxide Nanocube Clusters. NANOMATERIALS 2020; 11:nano11010062. [PMID: 33383768 PMCID: PMC7824301 DOI: 10.3390/nano11010062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Multifunctional imaging nanoprobes continue to garner strong interest for their great potential in the detection and monitoring of cancer. In this study, we investigate a series of spatially arranged iron oxide nanocube-based clusters (i.e., chain-like dimer/trimer, centrosymmetric clusters, and enzymatically cleavable two-dimensional clusters) as magnetic particle imaging and magnetic resonance imaging probes. Our findings demonstrate that the short nanocube chain assemblies exhibit remarkable magnetic particle imaging signal enhancement with respect to the individually dispersed or the centrosymmetric cluster analogues. This result can be attributed to the beneficial uniaxial magnetic dipolar coupling occurring in the chain-like nanocube assembly. Moreover, we could effectively synthesize enzymatically cleavable two-dimensional nanocube clusters, which upon exposure to a lytic enzyme, exhibit a progressive increase in magnetic particle imaging signal at well-defined incubation time points. The increase in magnetic particle imaging signal can be used to trace the disassembly of the large planar clusters into smaller nanocube chains by enzymatic polymer degradation. These studies demonstrate that chain-like assemblies of iron oxide nanocubes offer the best spatial arrangement to improve magnetic particle imaging signals. In addition, the nanocube clusters synthesized in this study also show remarkable transverse magnetic resonance imaging relaxation signals. These nanoprobes, previously showcased for their outstanding heat performance in magnetic hyperthermia applications, have great potential as dual imaging probes and could be employed to improve the tumor thermo-therapeutic efficacy, while offering a readable magnetic signal for image mapping of material disassemblies at tumor sites.
Collapse
Affiliation(s)
- Sahitya Kumar Avugadda
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Sameera Wickramasinghe
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
| | - Dina Niculaes
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Minseon Ju
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
| | - Aidin Lak
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Niccolò Silvestri
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Simone Nitti
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2 TN, UK;
| | - Anna Cristina S. Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
- Correspondence: (A.C.S.S.); (T.P.)
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
- Correspondence: (A.C.S.S.); (T.P.)
| |
Collapse
|
17
|
Wu K, Saha R, Su D, Krishna VD, Liu J, Cheeran MCJ, Wang JP. Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19. ACS APPLIED NANO MATERIALS 2020; 3:9560-9580. [PMID: 37556271 PMCID: PMC7526334 DOI: 10.1021/acsanm.0c02048] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 05/02/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is a threat to the global healthcare system and economic security. As of July 2020, no specific drugs or vaccines are yet available for COVID-19; a fast and accurate diagnosis for SARS-CoV-2 is essential in slowing the spread of COVID-19 and for efficient implementation of control and containment strategies. Magnetic nanosensing is an emerging topic representing the frontiers of current biosensing and magnetic areas. The past decade has seen rapid growth in applying magnetic tools for biological and biomedical applications. Recent advances in magnetic nanomaterials and nanotechnologies have transformed current diagnostic methods to nanoscale and pushed the detection limit to early-stage disease diagnosis. Herein, this review covers the literature of magnetic nanosensors for virus and pathogen detection before COVID-19. We review popular magnetic nanosensing techniques including magnetoresistance, magnetic particle spectroscopy, and nuclear magnetic resonance. Magnetic point-of-care diagnostic kits are also reviewed aiming at developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak as well as preventing future epidemics. In addition, other platforms that use magnetic nanomaterials as auxiliary tools for enhanced pathogen and virus detection are also covered. The goal of this review is to inform the researchers of diagnostic and surveillance platforms for SARS-CoV-2 and their performances.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department of Chemical Engineering and
Material Science, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Venkatramana D. Krishna
- Department of Veterinary Population
Medicine, University of Minnesota, St.
Paul, Minnesota 55108, United States
| | - Jinming Liu
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Maxim C.-J. Cheeran
- Department of Veterinary Population
Medicine, University of Minnesota, St.
Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Zhong J, Schilling M, Ludwig F. Magnetic nanoparticle-based biomolecule imaging with a scanning magnetic particle spectrometer. NANOTECHNOLOGY 2020; 31:225101. [PMID: 32069445 DOI: 10.1088/1361-6528/ab776a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study reports on a wash-free, inexpensive and sensitive approach of biomolecule imaging with magnetic nanoparticles (MNPs) via a custom-built scanning magnetic particle spectrometer (SMPS). Streptavidin-coated MNPs are used as magnetic biomarkers for the detection of Immunoglobulin G (IgG) conjugated with biotin (IgG-Biotin) while five samples with different-concentration IgG-Biotin are prepared for experiments. The measurements of the ac susceptibility indicate that the conjugation of the IgG-Biotin onto the surface of the MNPs forms cross-linking between the MNPs, thus increasing the characteristic Brownian relaxation time from 0.627 to 1.448 ms. The ratio of the 3rd to the 1st harmonics is measured on the samples with different-concentration IgG-Biotin in ac magnetic fields with a frequency ranging from about 300 Hz to 2 kHz. It shows that the measurement sensitivity of the IgG-Biotin concentration decreases from 4.62 × 10-3 to 0.39 × 10-3 nM-1 with increasing excitation frequency. Phantom images of the harmonic ratio, measured with the SMPS, indicate that unbound and bound MNPs can be easily distinguished. Furthermore, the excitation frequency dependence of the contrast-to-noise ratio of the images is discussed based on the measurement sensitivity and the standard deviation of the measured image intensity. This study demonstrates the feasibility of the SMPS for imaging biomolecules bound onto the MNPs, which is of great interest to disease diagnostics and therapy.
Collapse
Affiliation(s)
- Jing Zhong
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, Technische Universität Braunschweig, Hans-Sommer-Str. 66, Braunschweig D-38106, Germany
| | | | | |
Collapse
|
19
|
Wu K, Liu J, Saha R, Ma B, Su D, Peng C, Sun J, Wang JP. Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization. ACS OMEGA 2020; 5:11756-11767. [PMID: 32478267 PMCID: PMC7254815 DOI: 10.1021/acsomega.0c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively used in drug/gene delivery, hyperthermia therapy, magnetic particle imaging (MPI), magnetic resonance imaging (MRI), magnetic bioassays, and so forth. With proper surface chemical modifications, physicochemically stable and nontoxic MNPs are emerging contrast agents and tracers for in vivo MRI and MPI applications. Herein, we report the high magnetic moment, irregularly shaped γ'-Fe4N nanoparticles for enhanced hyperthermia therapy and T2 contrast agent for MRI application. The static and dynamic magnetic properties of γ'-Fe4N nanoparticles are characterized by a vibrating sample magnetometer (VSM) and a magnetic particle spectroscopy (MPS) system, respectively. Compared to the γ-Fe2O3 nanoparticles, γ'-Fe4N nanoparticles show at least three times higher saturation magnetization, which, as a result, gives rise to the stronger dynamic magnetic responses as proved in the MPS measurement results. In addition, γ'-Fe4N nanoparticles are functionalized with an oleic acid layer by a wet mechanical milling process. The morphologies of as-milled nanoparticles are characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), and nanoparticle tracking analyzer (NTA). We report that with proper surface chemical modification and tuning on morphologies, γ'-Fe4N nanoparticles could be used as tiny heating sources for hyperthermia and contrast agents for MRI applications with minimum dose.
Collapse
Affiliation(s)
- Kai Wu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinming Liu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bin Ma
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department
of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaoyi Peng
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiajia Sun
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jian-Ping Wang
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Wu K, Liu J, Saha R, Su D, Krishna VD, Cheeran MCJ, Wang JP. Magnetic Particle Spectroscopy for Detection of Influenza A Virus Subtype H1N1. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13686-13697. [PMID: 32150378 DOI: 10.1021/acsami.0c00815] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Magnetic nanoparticles (MNPs) with proper surface functionalization have been extensively applied as labels for magnetic immunoassays, carriers for controlled drug/gene delivery, tracers and contrasts for magnetic imaging, etc. Here, we introduce a new biosensing scheme based on magnetic particle spectroscopy (MPS) and the self-assembly of MNPs to quantitatively detect H1N1 nucleoprotein molecules. MPS monitors the harmonics of oscillating MNPs as a metric for the freedom of rotational process, thus indicating the bound states of MNPs. These harmonics can be readily collected from nanogram quantities of iron oxide nanoparticles within 10 s. The H1N1 nucleoprotein molecule hosts multiple different epitopes that forms binding sites for many IgG polyclonal antibodies. Anchoring IgG polyclonal antibodies onto MNPs triggers the cross-linking between MNPs and H1N1 nucleoprotein molecules, thereby forming MNP self-assemblies. Using MPS and the self-assembly of MNPs, we were able to detect as low as 44 nM (4.4 pmole) H1N1 nucleoprotein. In addition, the morphologies and the hydrodynamic sizes of the MNP self-assemblies are characterized to verify the MPS results. Different MNP self-assembly models such as classical cluster, open ring tetramer, and chain model as well as multimers (from dimer to pentamer) are proposed in this paper. Herein, we claim the feasibility of using MPS and the self-assembly of MNPs as a new biosensing scheme for detecting ultralow concentrations of target biomolecules, which can be employed as rapid, sensitive, and wash-free magnetic immunoassays.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Venkatramana D Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
22
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|