1
|
Sun L, Liu Q, Dang S, Jia J. Highly Luminescent Lanthanide Metal-Organic Frameworks for Trace Detection of Norfloxacin. Inorg Chem 2025; 64:10272-10278. [PMID: 40373266 DOI: 10.1021/acs.inorgchem.5c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Highly sensitive and selective detection of trace norfloxacin (NOR) in aqueous media was rarely reported by MOFs. Herein, a specific 2D TbMOF (terbium metal-organic framework) with outstanding luminescent properties was synthesized through simple bottom-up solvent-thermal methods. It exhibited prominent selectivity and stability toward NOR in ethanol through luminescence quenching with a Ksv value of 4.8 × 104 M-1 and a limit of detection of 0.14 μM. In addition to the low detection limit and high selectivity, the TbMOF prepared in this work also has a fast response time of less than 10 s, making it superior to other MOF-based luminescent sensors, which indicated the excellent sensitivity of our materials toward NOR at very low concentrations.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Qing Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Song Dang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Bej S, Cho EB. State-of-the-art progress and prospect of metal-organic frameworks and composites for photoelectrochemical amino-drugs sensing. ENVIRONMENTAL RESEARCH 2025; 270:120946. [PMID: 39884535 DOI: 10.1016/j.envres.2025.120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Unregulated discharge of antibiotics in waterbodies has posed a significant threat to the aquatic flora and fauna in post-pandemic times. This alarming situation has ascertained the need for suitable sensors to detect persistent antibiotic residues. In this context, functional hybrid materials centralized on reticular metal-organic frameworks (MOFs)/composites have been a research hot spot for photoelectrochemical host-guest recognition events over the past two decades. The unique amalgamation of the robust framework, ease of synthesis, and tunable photophysical properties complemented with in silico approaches render these materials highly promising for recognition events over other contemporaries. The present review provides a critical analysis of the state-of-the-art advancement of MOFs along with their allied composites toward the detection of targeted amino-drug residues (nitrofurazone, norfloxacin, ciprofloxacin, tetracycline, acetaminophen) within the last quinquennial period (approximately 2019-2024). Detection of the targeted drug residues by electrochemical and fluorometric pathways and their host-guest mechanistic pathways have been precisely described. Additionally, different functionalization methods and luminescence strategies with their structural viewpoint have been concisely summarized. Moreover, we delve into the futuristic possibility of integrating artificial intelligence (AI) and machine learning (ML) for better quantification of antibiotics. Finally, the unmet challenges and future research directions of the current research strategies have been outlined for automatic ML (AutoML) assisted next-generation POCT device fabrication.
Collapse
Affiliation(s)
- Sourav Bej
- Energy Convergence Research Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Eun-Bum Cho
- Energy Convergence Research Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea; Department of Fine Chemistry, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea; Institute for Applied Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
3
|
Meng S, He X, Li B, Yang Y, Mao S, Li Z. A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection. Talanta 2025; 285:127420. [PMID: 39708568 DOI: 10.1016/j.talanta.2024.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The excessive presence of the metal ions Cu2+ and Fe3+ in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu2+ and Fe3+ in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix. The synthesized hydrogel sensor ME-IPA@SA-TbZn exhibits remarkable capabilities in detecting and distinguishing between Cu2+ and Fe3+ with high selectivity and sensitivity. Specifically, it achieves limits of detection (LODs) of 1.275 μM for Cu2+ and 0.549 μM for Fe3+, respectively, both are below the maximum allowable concentrations set by the U.S. Environmental Protection Agency (EPA) for drinking water. Importantly, the hydrogel sensing platform delivers intuitive and visible results under simple operating conditions, and has been successfully applied to Cu2+ and Fe3+ detection in river samples. In addition, it was demonstrated that disruption of the "antenna" effect, absorption competition quenching (ACQ) effect, and ion exchange (IE) effect are the main mechanisms leading to fluorescence quenching. Based on these results, ME-IPA@SA-TbZn hold promise as a fluorescent sensor for detecting Cu2+ and Fe3+ ions.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Chanda A, Mandal SK. Ultrafast ppb-Level Detection of Nitro-Furan Based Antibiotics in Aqueous Medium by an Oxadiazole-Grafted Luminescent Sensor. Chem Asian J 2025; 20:e202401206. [PMID: 39587716 DOI: 10.1002/asia.202401206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
This work is primarily focused on the utilization of an oxadiazole grafted 2D luminescent metal-organic framework, {[Zn2(4-tpom)2(oxdz)2]⋅4H2O}n (1), in the detection of trace amounts of nitrofuran-based antibiotics such as nitrofurantoin (NFT) and nitrofurazone (NFZ) in aqueous medium. The π-electron rich moieties and the H-bond accepting sites in the dual linkers (4-tpom and oxdz2-) enable the framework to interact efficiently with NFT and NFZ exhibiting a turn-off fluorescence response with the respective KSV (6.55×104 M-1 and 4×104 M-1) and LOD (89 ppb and 78 ppb) values. Furthermore, the efficiency of 1 in sensing commercially sold antibiotic tablet, Martifur-100 (contains nitrofurantoin as an active ingredient), is demonstrated as an example with an LOD value of 277 ppb. Its multicycle reusability and the ultrafast response toward these antibiotics are also reported. The nature of quenching of 1 by NFT and NFZ has been investigated with experimental and theoretical considerations.
Collapse
Affiliation(s)
- Alokananda Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar, Punjab, 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar, Punjab, 140306, India
| |
Collapse
|
5
|
Gao Y, Zhu Y, Wang Y, Bi J. Water-Stable Ln-MOF as a multi-emitting luminescent sensor for the detection of metal ions and pharmaceuticals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124915. [PMID: 39096672 DOI: 10.1016/j.saa.2024.124915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The development of innovative multi-emission sensors for the rapid and accurate detection of contaminants is both vital and challenging. In this study, utilizing two rigid ligands (H3ICA and H4BTEC), a series of water-stable bimetallic organic frameworks (EuTb-MOFs) were synthesized. Luminescent investigations have revealed that EuTb-MOF-1 exhibits prominent multiple emission peaks, attributed to the distinctive fluorescence characteristics of Eu(III) and Tb(III) ions. Therefore, EuTb-MOF-1 efficiently recognized various metal ions and pharmaceutical compounds through 2D decoded maps. Fe3+ and Pb2+ exhibited significant quenching effects on the luminescence of EuTb-MOF-1, which were attributed to the internal filtering effect and the interaction between Lewis basic sites within EuTb-MOF-1 and Pb2+ ions, respectively. Furthermore, EuTb-MOF-1 demonstrated high sensitivity to sulfonamide antibiotics, with detection limits of 0.037 μM for SMZ and 0.041 μM for SDZ, respectively. In addition, EuTb-MOF-1 was immobilized to prepare MOF-based test strips, enabling direct visual detection of sulfonamides as a portable sensor. With excellent water stability, multi-responsive recognition capabilities, and high sensitivity to specific analytes, EuTb-MOF-1 is a promising candidate for environmental contaminant detection in aquatic systems.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Yanyue Zhu
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Yuping Wang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, PR China.
| |
Collapse
|
6
|
Zhang H, Wang JJ, Fan G, Yue EL, Tang L, Wang X, Hou XY, Zhang Y. A multifunctional sensor for detecting tetracycline, 4-nitrophenol, and pesticides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124842. [PMID: 39032234 DOI: 10.1016/j.saa.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
In recent years, due to the abuse of antibiotics, nitro explosives and pesticides, which have caused great harm to the environment and human health, social concerns have prompted researchers to develop more sensitive detection platforms for these pollutants. In this paper, a novel two-dimensional Zn (II) coordination polymer, [Zn(L)0.5(1,2-bimb)]·DMF (1), [H4L=[1,1':4',1''-terphenyl]-2, 2'',4, 4'' -tetracarboxylic acid, 1,2-bimb = 1,2-bis(imidazol-1-ylmethyl)benzene] was synthesized using a hydro-solvothermal method. Among commonly used organic solvents, 1 exhibits significant stability. Fast and efficient fluorescence response can be achieved for tetracycline (TET), 4-nitrophenol (4-NP), fluazinam (FLU), and abamectin benzoate (AMB) with low detection limits. A binary intelligent logic gate device with FLU and AMB as chemical input signals is successfully constructed, which provides a new idea for biochemical detection. In addition, a portable visual test paper has been prepared, which has high sensitivity, good selectivity, and simple operation. It can be used for rapid detection of pollutants in daily life and has broad application prospects. Finally, a detailed discussion was conducted on the fluorescence sensing mechanism of 1 for detecting TET, 4-NP, AMB and FLU.
Collapse
Affiliation(s)
- Huan Zhang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Ji-Jiang Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Guang Fan
- Department of Chemistry and Chemical Engineering, Xianyang Normal University, Xiangyang 712000, PR China.
| | - Er-Lin Yue
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Long Tang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiao Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiang-Yang Hou
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yuqi Zhang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
7
|
Shi H, Yu X, Liu Y, Shi Y, Liu H, Wang H. Construction of luminescent dye@MOF platforms for sensing antibiotics with enhanced selectivity and sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124804. [PMID: 39003829 DOI: 10.1016/j.saa.2024.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The fabrication of luminescent dye@MOF composites has received extensive attentions in the development of realistic sensing applications. Herein, based on two anionic In-MOFs with different pore structure (1 and 2), the charge and size dependent ion-exchange of cationic dyes was investigated, and consequently four luminescent dye@MOF composites (DMASM@1/2 and RhB@1/2) were successfully fabricated and importantly can be regarded as ideal platforms for better understanding of the factors affecting the construction of dye@MOF composites, which may closely related to a well match between the intrinsic properties and size/charge of the fluorescent molecules and the porosity, structure character of the MOF hosts. Furthermore, these four dye@MOF composites were utilized for sensing of different kinds of antibiotics, demonstrating enhanced selectivity and sensitivity. DMASM@1/2 demonstrated excellent selectivity and sensitivity for NFT and NFZ antibiotics, while RhB@1/2 exhibited excellent selectivity and sensitivity for MDZ and DTZ antibiotics. Systematic analysis of the detection mechanism revealed that different energy transfer efficiency and interaction between MOF frameworks and different types of guest dyes led to different selectivity and detection mechanisms for antibiotics. Moreover, high selectivity and sensitivity, low LOD and extraordinary recycling capacity of four dye@MOF composites in the detection of antibiotics promote their excellent prospect in the further practical application.
Collapse
Affiliation(s)
- Han Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xuan Yu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yuchen Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yanhui Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
8
|
Huang H, Huang H, Yang J, Yang H, Dai J, Li Z, Yao W, Guo X. Synthesis of P, N-dopped carbon nanosheets for highly sensitive fluorescence analysis of nitrofuran antibiotics in fish. Food Chem 2024; 459:140445. [PMID: 39024887 DOI: 10.1016/j.foodchem.2024.140445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The misuse of antibiotics has caused serious impacts on food safety and human health, making it crucial to develop rapidly and highly sensitive methods for detecting trace nitrofuran antibiotics (NFs). In this study, phosphorus, nitride-doped carbon nanosheets (PN/CNs) were synthesized using a simple hydrothermal method based on graphitic carbon nitride. This prepared material showed excellent water solubility and stable optical properties. A new fluorescence sensing platform based on PN/CNs was constructed for the highly sensitive detection of four NFs. This sensitivity was mainly attributed to the fluorescence resonance energy transfer (FRET) mechanism. The limits of detection for nitrofurazone, nitrofurantoin, furazolidone and furaltadone were determined to be 13.41, 15.24, 16.37 and 19.94 nM, respectively. The high sensitivity and selectivity of PN/CNs for these four NFs were thoroughly evaluated by the Stern-Volmer equation and FRET quenching efficiency. This proposed method exhibited high sensitivity and can be successfully applied to detect NFs in fish.
Collapse
Affiliation(s)
- Huiqun Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Hongyuan Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Huan Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Jing Dai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Zhuo Li
- Tobacco Science Institute of Jiangxi Province, Nanchang 330000, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| |
Collapse
|
9
|
Liu CP, Lin TE, Chiang JC, Chen BJ, Chien PH, Chien SY, Lee GH, Liu YH, Lu KL. An exceptional water stable terbium-based metal-organic framework for selective detection of pesticides. RSC Adv 2024; 14:35220-35226. [PMID: 39502867 PMCID: PMC11536185 DOI: 10.1039/d4ra06622g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A terbium-based metal-organic framework (MOF) with exceptional water stability for highly selective detection of pesticide thiamethoxam (TMX) in aqueous solution is reported. To date, most reported lanthanide metal-organic frameworks (Ln-MOFs) still exhibit poor water stability, which may limit their practical applications in bio-sensing and detecting pollutants in environmental water samples. In this work, a Tb-MOF [Tb(BDC)1.5(DEF)·0.5H2O] n (1, BDC = 1,4-benzene dicarboxylate, DEF = N,N-diethylformamide) was prepared by hydrothermal reactions of 1,4-benzenedicarboxylic acid with the corresponding rare earth ions of Tb3+. Impressively, water stability surveys of compound 1 indicated that it maintained at least 90% of its emission intensity after storage in water for several months. This characteristic of long water stability is unusual as compared to other Ln-MOFs, making compound 1 an excellent candidate for sensing applications in the aqueous phase. In particular, the green emission of compound 1 could be quenched by the pesticide thiamethoxam (TMX), which was attributed to both the static and dynamic quenching processes based on an upward-curving Stern-Volmer plot. The quenching mechanism was speculatively attributed to the inner filter effect combined with the complex formation based on the electrostatic interaction of compound 1 and TMX, resulting in the promotion of the quenching efficiency. Finally, compound 1 was demonstrated to detect TMX in aqueous solution with rapid response and high selectivity.
Collapse
Affiliation(s)
- Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Ting-En Lin
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Jung-Chang Chiang
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Bo-Jhen Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Po-Hsiu Chien
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Hsiang Liu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
- Institute of Chemistry, Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
10
|
Hu J, Chen P, Zhang L, Sun P, Huang Y, Liu X, Fan Q. A universal optical aptasensor for antibiotics determination based on a new high-efficiency Förster resonance energy transfer pair. Mikrochim Acta 2024; 191:561. [PMID: 39180707 DOI: 10.1007/s00604-024-06629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A novel "turn-on" aptasensor for kanamycin (Kana) detection based on a new Förster resonance energy transfer (FRET) pair is reported. A new organic small molecule was employed as a high-efficiency quencher for fluorophore. Based on specific interactions between ssDNA and the quencher, an ingenious and amplified strategy was designed. In the absence of the target, the fluorescence of the fluorophore labeled at the end of the aptamer was quenched. After the binding of the aptamer to the target, the fluorescence was recovered and amplified. The proposed aptasensor showed high specificity, selectivity, and stability in complicated systems. With the P3-based strategy, the limit of detection for Kana is estimated to be 10 nM, which is much lower than the maximum allowable concentration in milk. The recoveries of spiked Kana in milk were in the range 99.8 ~ 105.3% (n = 3). Fortunately, this novel method can be easily extended to other antibiotics such as tobramycin by simply replacing the aptamer, showing great potential as a universal platform for selective, sensitive, and rapid detection of hazardous analytes in food samples.
Collapse
Affiliation(s)
- Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Chen
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Longsheng Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
11
|
Wang X, Wang YL, Yu HR, Lv XB, Liang T, Cheng CJ. A penicillinase-modified poly(N-isopropylacrylamide-co-acrylamide) smart hydrogel biosensor with superior recyclability for sensitive and colorimetric detection of penicillin G. Biosens Bioelectron 2024; 254:116221. [PMID: 38513541 DOI: 10.1016/j.bios.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 03/23/2024]
Abstract
Antibiotics are widely used for treating bacterial infections. However, excessive or improper use of antibiotics can pose a serious threat to human health and water environments, and thus, developing cost-effective, portable and effective strategies to analyze and detect antibiotics is highly desired. Herein, we reported a responsive photonic hydrogel (RPH)-based optical biosensor (PPNAH) with superior recyclability for sensitive and colorimetric determination of a typical β-lactam antibiotic penicillin G (PG) in water. This sensor was composed of poly(N-isopropylacrylamide-co-acrylamide) smart hydrogel with incorporated penicillinase and Fe3O4@SiO2 colloidal photonic crystals (CPCs). The sensor could translate PG concentration signals into changes in the diffraction wavelength and structural color of the hydrogel. It possessed high sensitivity and selectivity to PG and excellent detection performances for other two typical β-lactam antibiotics. Most importantly, due to the unique thermosensitivity of the poly(N-isopropylacrylamide) moieties in the hydrogel, the PG-responded PPNAH sensor could be facilely regenerated via a simple physical method at least fifty times while without compromising its response performance. Besides, our sensor was suitable for monitoring the PG-contaminated environmental water and displayed satisfactory detection performances. Such a sensor possessed obvious advantages of superior recyclability, highly chemical stability, low production cost, easy fabrication, wide range of visual detection, simple and intuitive operation for PG detection, and environmental-friendliness, which holds great potential in sensitive and colorimetric detection of the PG residues in polluted water.
Collapse
Affiliation(s)
- Xi Wang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Yan-Lin Wang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Hai-Rong Yu
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xing-Bin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Ting Liang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China.
| | - Chang-Jing Cheng
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Kumar A, Kataria R. MOFs as versatile scaffolds to explore environmental contaminants based on their luminescence bustle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172129. [PMID: 38569964 DOI: 10.1016/j.scitotenv.2024.172129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Metal-Organic Frameworks (MOFs) with luminescent properties hold significant promise for environmental remediation. This review critically examines recent research on these materials design, synthesis, and applications, mainly focusing on their role in combating environmental pollutants. Through a comprehensive analysis of metal ions, ligands, and framework compositions, the review discusses the importance of tailored design and synthesis approaches in achieving desired luminescent characteristics. Key findings highlight the effectiveness of luminous MOFs as fluorescent sensors for a wide range of contaminants, including heavy metals, reactive species, antibiotics, and explosives. Considering all this, the review discusses future research needs and opportunities in the field of luminous MOFs. It emphasizes the importance of developing multifunctional materials, refining design methodologies, exploring sensing mechanisms, and ensuring environmental compatibility, scalability, and affordability. By providing insights into the current state of research and outlining future directions, this review is a valuable resource for researchers seeking to address environmental challenges using MOF-based solutions.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India; Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali 140301, India
| | - Ramesh Kataria
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
13
|
Qi W, Wang Z, Tong X, Zhang H, Li Y. Distinguishing nitroimidazoles from nitrofurans via luminescence sensing. Chem Commun (Camb) 2024; 60:5078-5081. [PMID: 38639081 DOI: 10.1039/d4cc00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Similarity of nitroimidazole and nitrofuran antibiotics in molecular structure and photophysical properties makes them difficult to distinguish via luminescence sensing technology. Herein, this is solved by a dye-encapsulated lanthanide metal-organic framework luminescent sensor.
Collapse
Affiliation(s)
- Wanyu Qi
- Key Laboratory of Function Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Zicheng Wang
- Key Laboratory of Function Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xin Tong
- Key Laboratory of Function Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Yuxin Li
- Key Laboratory of Function Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
14
|
Chen L, Li Z, Dou Y, Wang H, Chen C, Wang X. Ratiometric fluoroprobe based on Eu-MOF@Tb 3+ for detecting tetracycline hydrochloride in freshwater fish and its application in rapid visual detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134045. [PMID: 38492388 DOI: 10.1016/j.jhazmat.2024.134045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Tetracycline hydrochloride (TCH), a prevalent antibiotic in aquaculture for treating bacterial infections, poses challenges for on-site detection. This study employed the reversed-phase microemulsion method to synthesize a uniform nano metal-organic framework (MOF) material, europium-benzene-p-dicarboxylic acid (Eu-BDC), doped with Tb3+ to form a dual-emission fluorescence probe. By leveraging the combined a-photoinduced electron-transfer (a-PET) and inner filter effect (IFE) mechanisms, high-sensitivity TCH detection in Carassius auratus and Ruditapes philippinarum was achieved. The detection range for TCH is 0.380-75 μM, with a low limit of detection (LOD) at 0.115 μM. Upon TCH binding, Eu-BDC fluorescence rapidly decreased, while Tb3+ fluorescence remained constant, establishing a ratiometric fluorescence change. Investigation into the TCH quenching mechanism on Eu-BDC was conducted using time-dependent density functional theory (TD-DFT) calculations and fluorescence quenching kinetic equations, suggesting a mixed quenching mechanism. Furthermore, a novel photoelectric conversion fluorescence detection device (FL-2) was developed and evaluated in conjunction with high-performance liquid chromatography-diode-array detection (HPLC-DAD). This is the first dedicated fluorescence device for TCH detection, showcasing superior photoelectric conversion performance and stability that reduces experimental errors associated with smartphone photography methods, presenting a promising avenue for on-site rapid TCH detection.
Collapse
Affiliation(s)
- Longtian Chen
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhongjie Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuemao Dou
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunyang Chen
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
15
|
Wang S, Du T, Zhu Y, Liu S, Huangmin J, Zhang L, Shi D, Zhang M, Sun J, Zhang D, Wang J. Natural needle microstructure-based immunochromatographic assay for sensitively detecting streptomycin in food products. Food Chem 2024; 434:137413. [PMID: 37696155 DOI: 10.1016/j.foodchem.2023.137413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Immunochromatographic assays (ICAs) are famous as the point of care test (POCT) technology against food fraud for antibiotics detection. However, the poor sensitivity, stability and the monoclonal antibodies (mAbs)-depended signals limited their further applications. Here, inspired by the vivid color display and functionalization of natural pigments, we developed natural edible pigment-derived needle microstructure (NNMS) as signal tracers by simple crosslinking of alizarin and formaldehyde, allowing high color rendering ability, significant water dispersibility and antibody enrichment. Particularly, immune-network technology was introduced to achieve the simultaneous promotion of colorimetric signal and sensitivity and avoid visual errors in ICA. As a result, the prepared eco-friendly and sustainable NNMS-ICA showed satisfactory performance (LOD was 0.56 ng mL-1), specificity and probe stability (CV was 1.90 %). Furthermore, the NNMS-ICA was successfully applied in food samples (milk and honey) with total recoveries at 91.00-118.82 %.
Collapse
Affiliation(s)
- Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junqi Huangmin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Daize Shi
- Xi'an Strongbio Biotechnology Co. Ltd, Xi'an, 710000, China
| | - Minghui Zhang
- Xi'an Strongbio Biotechnology Co. Ltd, Xi'an, 710000, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
16
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
17
|
Wang K, Dong Y, Bai X, Zhao X, Zhao R, Zhou J, Yu H, Li L, Tang H, Ma Y. A water-stable Zn (II) coordination polymer as a fluorescence sensor for multifunctional detection of Cefixime in milk, honey, beef and chicken. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
19
|
Zhou Y, Wang J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. CHEMOSPHERE 2023; 334:139027. [PMID: 37236277 DOI: 10.1016/j.chemosphere.2023.139027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
With the extensive development of industrial livestock and poultry production, a considerable part of agricultural wastewater containing tremendous ammonium and antibiotics have been indiscriminately released into the aquatic systems, causing serious harms to ecosystem and human health. In this review, ammonium detection technologies, including spectroscopy and fluorescence methods, and sensors were systematically summarized. Antibiotics analysis methodologies were critically reviewed, including chromatographic methods coupled with mass spectrometry, electrochemical sensors, fluorescence sensors, and biosensors. Current progress in remediation methods for ammonium removal were discussed and analyzed, including chemical precipitation, breakpoint chlorination, air stripping, reverse osmosis, adsorption, advanced oxidation processes (AOPs), and biological methods. Antibiotics removal approaches were comprehensively reviewed, including physical, AOPs, and biological processes. Furthermore, the simultaneous removal strategies for ammonium and antibiotics were reviewed and discussed, including physical adsorption processes, AOPs, biological processes. Finally, research gaps and the future perspectives were discussed. Through conducting comprehensive review, future research priorities include: (1) to improve the stabilities and adaptabilities of detection and analysis techniques for ammonium and antibiotics, (2) to develop innovative, efficient, and low cost approaches for simultaneous removal of ammonium and antibiotics, and (3) to explore the underlying mechanisms that governs the simultaneous removal of ammonium and antibiotics. This review could facilitate the evolution of innovative and efficient technologies for ammonium and antibiotics treatment in agricultural wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
20
|
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. Constructing functional metal-organic frameworks by ligand design for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130848. [PMID: 36696779 DOI: 10.1016/j.jhazmat.2023.130848] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) with unique physical and chemical properties are composed of metal ions/clusters and organic ligands, including high porosity, large specific surface area, tunable structure and functionality, which have been widely used in chemical sensing, environmental remediation, and other fields. Organic ligands have a significant impact on the performance of MOFs. Selecting appropriate types, quantities and properties of ligands can well improve the overall performance of MOFs, which is one of the critical issues in the synthesis of MOFs. This article provides a comprehensive review of ligand design strategies for functional MOFs from the number of different types of organic ligands. Single-, dual- and multi-ligand design strategies are systematically presented. The latest advances of these functional MOFs in environmental applications, including pollutant sensing, pollutant separation, and pollutant degradation are further expounded. Furthermore, an outlook section of providing some insights on the future research problems and prospects of functional MOFs is highlighted with the purpose of conquering current restrictions by exploring more innovative approaches.
Collapse
Affiliation(s)
- Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenjing Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenfang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
21
|
Wei Z, Cao H, Mao J, Chen Z, Wu X, Yuan M, Ye T, Xu F. Enhancement of the sensing performance and stability of a MOF based-molecularly imprinted polymer by utilizing dual-ligands and triethanolamine catalysis. Talanta 2023; 258:124459. [PMID: 36933296 DOI: 10.1016/j.talanta.2023.124459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
In this work, a terbium MOF-based molecularly imprinted polymer (Tb-MOF@SiO2@MIP) was prepared using two ligands as organic linkers and triethanolamine (TEA) as a catalyst to improve the sensing performance and stability of the fluorescence sensors. The obtained Tb-MOF@SiO2@MIP was then characterized using a transmission electron microscope (TEM), energy dispersive spectroscopy (EDS) Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The results revealed that Tb-MOF@SiO2@MIP was successfully synthesized with a thin imprinted layer of 76 nm. The synthesized Tb-MOF@SiO2@MIP maintained 96% of its original fluorescence intensity after 44 days in aqueous environments because of appropriate coordination models between the imidazole ligands as a nitrogen donor and Tb (Ⅲ). Furthermore, TGA analysis results indicated that an increase in the thermal stability of Tb-MOF@SiO2@MIP was attributed to the thermal barrier from a MIP layer. The Tb-MOF@SiO2@MIP sensor responded well to the addition of imidacloprid (IDP) in the range of 2.07-150 ng mL-1 with a low detection limit of 0.67 ng mL-1. In vegetable samples, the sensor can quickly detect IDP levels with the average recovery ranging from 85.10 to 99.85% and RSD values ranging from 0.59 to 5.82%. The UV-vis absorption spectrum and density functional theory analysis results revealed that the inner filter effect and dynamic quenching process both contributed to the sensing process of Tb-MOF@SiO2@MIP.
Collapse
Affiliation(s)
- Ziqi Wei
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China
| | - Jialuo Mao
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China
| | - Zixin Chen
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China
| | - Xiuxiu Wu
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
22
|
Hu X, Cao Y, Cai L, Wang H, Fang G, Wang S. A smartphone-assisted optosensing platform based on chromium-based metal-organic framework signal amplification for ultrasensitive and real-time determination of oxytetracycline. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130395. [PMID: 36402106 DOI: 10.1016/j.jhazmat.2022.130395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Ultrasensitive and onsite detection of oxytetracycline (OTC) is of vital significance for ensuring public health. Herein, a novel and versatile fluorescence biomimetic nanosensor, Mg,N-CDs@MIL-101@MIP, was elaborately tailored for the assay of OTC. MIL-101 with extraordinarily high surface area and porosity, as a favorable supporter, suppressed self-quenching of Mg,N-CDs and boosted mass transfer rate, realizing signal amplification. As an ultrasensitive signal transducer, high luminescent Mg,N-CDs yielded conspicuous fluorescence responses for OTC, enhancing the sensitivity of Mg,N-CDs@MIL-101@MIP. High-affinity imprinting sites further endowed Mg,N-CDs@MIL-101@MIP with superior anti-interference ability and reusability. Given prominent merits, Mg,N-CDs@MIL-101@MIP demonstrated a good linear range (0.05-40 μg mL-1) with a lower limit of detection (16.8 ng mL-1), supplying high accessibility to realize ultrasensitive and highly selective measurement of OTC in samples. Additionally, to attain precise onsite profiling of OTC, an intelligent sensing platform was developed by integrating Mg,N-CDs@MIL-101@MIP with a portable smartphone-assisted optical device. As both signal reader and analyzer, smartphone can instantly capture concentration-dependent fluorescent images and accurately digitize them, accomplishing quantitative analysis of OTC. More delightfully, the portable platform was utilized for visual determination of OTC in milk samples with satisfactory results, offering a promising tool for the high-performance onsite evaluation of food safety and environmental health.
Collapse
Affiliation(s)
- Xuelian Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haiyang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
23
|
Rasheed T. Water stable MOFs as emerging class of porous materials for potential environmental applications. CHEMOSPHERE 2023; 313:137607. [PMID: 36566790 DOI: 10.1016/j.chemosphere.2022.137607] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are extensively recognized for their wide applications in a variety of fields such as water purification, adsorption, sensing, catalysis and drug delivery. The fundamental characteristics of the majority of MOFs, such as their structure and shape, are known to be sensitively impacted by water or moisture. As a result, a thorough evaluation of the stability of MOFs in respect to factors linked to these property changes is required. It is quite rare for MOFs in their early stages to have strong water-stability, which is necessary for the commercialization and development of wider applications of this interesting material. Also, numerous applications in presence of water have progressed considerably as a "proof of concept" stage in the past and a growing number of water-stable MOFs (WSMOFs) have been discovered in recent years. This review discusses the variables and processes that affect the aqueous stability of several MOFs, including imidazolate and carboxylate frameworks. Accordingly, this article will assist researchers in accurately evaluating how water affects the stability of MOFs so that effective techniques can be identified for the advancement of water-stable metal-organic frameworks (WSMOFs) and for their effective applications toward a variety of fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
24
|
Wang S, Du T, Liu S, Li Y, Wang Y, Zhang L, Zhang D, Sun J, Zhu M, Wang J. Dyestuff chemistry auxiliary instant immune-network label strategy for immunochromatographic detection of chloramphenicol. Food Chem 2023; 401:134140. [DOI: 10.1016/j.foodchem.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
25
|
Hu Z, Yan B. A luminescent Eu@SOF film fabricated by electrophoretic deposition as ultrasensitive platform for styrene gas quantitative monitoring through fluorescence sensing and ANNs model. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129865. [PMID: 36067558 DOI: 10.1016/j.jhazmat.2022.129865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Styrene is a harmful gas widely existing in the air, which can damage human organs. Therefore, it is very crucial to develop a sensitive, portable and simple sensor for monitoring styrene. Herein, we design and fabricate a luminescent Eu@TMA-ME/FTO film (F) through EPD method. F emits bright red light of Eu(III) ions and shows superior fluorescence response to styrene gas as a sensor, which enable real-time and quantitative monitoring for styrene gas. More importantly, F exhibits a linear response to styrene gas in a wide concentration range of 10-7 to 10-2 M and a low DL with 0.20 ppm. The efficient PET process to styrene induced by ME and the competitive absorption between styrene and F are responsible for the sensing mechanism. Besides, the detection of styrene solution is also investigated in deionized water, tap water and river water. For the further application, an intelligent ANNs model has been constructed to process the fluorescence sensing results, which can convert fluorescence sensing images to the concentration of styrene gas. The data demonstrates that ANNs model can accurately monitor the concentration of styrene gas via deep ML without tedious data processing.
Collapse
Affiliation(s)
- Zhongqian Hu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
26
|
Chen K, Zhu ZQ, Zhang MH, Yang X, Li J, Chen C, Redshaw C. 4,4′-Biphenyldisulfonic acid induced coordination polymers of symmetrical tetramethyl cucurbit[6]uril with alkaline-earth metals for detection of antibiotics. CrystEngComm 2023. [DOI: 10.1039/d2ce01470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Three new 3D TMeQ[6]-based coordination polymers of alkali-earth metal ions (Ca2+, Sr2+ and Ba2+) were characterized, and one can highly selectively detect NFX (norfloxacin) molecules via a fluorescence quenching effect.
Collapse
Affiliation(s)
- Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Zhao-Qiang Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Ming-Hui Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Xiang Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Jie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Chen Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
27
|
Wang R, Zhang H, Wang S, Meng F, Sun J, Lou D, Su Z. A ratiometric fluorescent probe based on a dual-ligand lanthanide metal–organic framework (MOF) for sensitive detection of aluminium and fluoride ions in river and tap water. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02554j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A dual-emission fluorescent probe towards Al3+ and F− using a Ln-MOF material Eu-BDC-NH2/TDA is employed with exceptional sensitivity, high selectivity, low LOD, excellent anti-interference characteristics and direct visual observation.
Collapse
Affiliation(s)
- Runnan Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Sibo Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Fanxu Meng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry, Changchun, 130022, People’s Republic of China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry, Changchun, 130022, People’s Republic of China
| |
Collapse
|
28
|
Putra IH, Yulia F, Zulkarnain IA, Ruliandini R, Zulys A, Mabuchi T, Gonçalves W, Nasruddin. Molecular Simulation Study of CO2 Adsorption on Lanthanum-Based Metal Organic Framework. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422130040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Wang RT, Fu MM, Fu L, Dong GY. Two water-stable Zn(II) complexes for highly sensitive sensing of Cr2O72− ions and levofloxacin. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Zeng JY, Liang YQ, Wu YN, Wu XY, Lai JP, Sun H. Synthesis and application of novel N, Si-carbon dots for the ratiometric fluorescent monitoring of the antibiotic balofloxacin in tablets and serum. RSC Adv 2022; 12:29585-29594. [PMID: 36320748 PMCID: PMC9574644 DOI: 10.1039/d2ra02932d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
A ratiometric fluorescent probe with blue-emission fluorescence based on N, Si-doped carbon dots (N, Si-CDs) for the detection of balofloxacin (BLFX) was synthesized by simple one-pot hydrothermal carbonization using methotrexate and 3-aminopropyltriethoxysilane (APTES) as carbon materials. The obtained N, Si-CDs showed dual-emission band fluorescence characterization at 374 nm and 466 nm. Furthermore, the synthesized N, Si-CD probe exhibited evidence of ratiometric fluorescence emission characteristics (F 466/F 374) toward BLFX along with a decrease in fluorescence intensity at 374 nm and an increase in fluorescence intensity at 466 nm. Based on this probe, a highly sensitive and fast detection method for the analysis of BLFX has been established with a linear range of 1-60 μM and a low detection limit of 0.1874 μM, as well as a rapid response time of 5.0 s. The developed assay has also been successfully applied for the detection of BLFX in tablets and rat serum.
Collapse
Affiliation(s)
- Jia-Yu Zeng
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Yu-Qi Liang
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Yan-Ni Wu
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Xiao-Yi Wu
- School of Chemistry, South China Normal University Guangzhou 510006 China
- College of Environmental Science & Engineering, Guangzhou University Guangzhou 510006 China
| | - Jia-Ping Lai
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Hui Sun
- College of Environmental Science & Engineering, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
31
|
Yue X, Wu C, Zhou Z, Fu L, Bai Y. Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF. Foods 2022; 11:foods11193138. [PMID: 36230213 PMCID: PMC9562874 DOI: 10.3390/foods11193138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Rapid, facile, and accurate detection of antibiotic residues is vital for practical applications. Herein, we designed a sensitive, visual, and rapid analytical method for sensitive detection of ciprofloxacin and chloramphenicol based on a nanosized rod-shaped Europium metal organic framework (Eu-MOF). The fluorescent Eu-MOF was firstly synthesized by a simple synthetic route at room temperature, which displays a red emission. The mechanisms of detecting ciprofloxacin and chloramphenicol were confirmed to be the inner filter effect (IFE) and photoinduced electron transfer (PET). Under the optimized experimental conditions, the detection limits of the developed method for ciprofloxacin and chloramphenicol detection were 0.0136 and 3.16 μM, respectively. Moreover, the sensor was effectively applied for quantitative determination of ciprofloxacin and chloramphenicol milk samples with satisfactory recoveries of 94.5-102% and 97-110%, respectively. This work developed a new method for rapid detection of ciprofloxacin and chloramphenicol residues. In addition, the established method has potential practical application value for on-site safety regulation on antibiotic residues in animal-derived food.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Chaoyun Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zijun Zhou
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou 450047, China
| | - Long Fu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
32
|
A multi-responsive luminescent sensor based on a Cd(II) coordination polymer with turn-on sensing toward Al3+ and Cr3+ as well as ratiometric response to norfloxacin. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Jin X, Zhao L, Zhang X, Wang Z, Hao M, Li Y. Ligand as Buffer for Improving Chemical Stability of Coordination Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42267-42276. [PMID: 36075001 DOI: 10.1021/acsami.2c14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical stability is one of the key concerns in coordination polymers (CPs). However, technologies to protect CPs against acidic or alkaline aqueous environments have yet to be implemented. Herein we demonstrate an approach for improving the pH stability by utilizing the ligand salt as buffering site to modify the unsaturated coordination sites of CPs. For the selective one-dimensional CP Eu-d-DBTA (d-H2DBTA = d-O,O'-dibenzoyltartaric acid) with a pH stability range of 6-8, the introduction of the ligand salt Na-d-DBTA extends the pH stability interval from 3 to 11. Crystallographic structure data reveal the formation of a Eu/Na-d-DBTA dynamic structure with Na-d-DBTA buffer sites on the Eu-O cluster of the Eu-d-DBTA skeleton. Benefiting from the dynamic single-crystal-to-single-crystal transformation, the buffer sites protect the skeleton from the impact of the acidic or alkaline aqueous environment. In addition, Eu/Na-d-DBTA produces stable photoluminescence properties and selective responses toward l-tryptophan (l-Trp) and further toward l-lysine (l-Lys) over the whole buffer capacity range of 3-11. Noticeably, other Ln/Na-d-DBTA CPs and star metal-organic frameworks also exhibit pH stability improvement when the ligand-as-buffer technology is used, which is significant for developing advanced inorganic-organic hybrid materials with superior functionality.
Collapse
Affiliation(s)
- Xiaomeng Jin
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Lina Zhao
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xiaojun Zhang
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Zicheng Wang
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Ming Hao
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yuxin Li
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
34
|
Li Q, Li D, Wu ZQ, Shi K, Liu TH, Yin HY, Cai XB, Fan ZL, Zhu W, Xue DX. RhB-Embedded Zirconium-Biquinoline-Based MOF Composite for Highly Sensitive Probing Cr(VI) and Photochemical Removal of CrO 42-, Cr 2O 72-, and MO. Inorg Chem 2022; 61:15213-15224. [PMID: 36083838 DOI: 10.1021/acs.inorgchem.2c02459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How to accurately detect and efficiently sweep Cr(VI) from contaminated water has come into focus. Zirconium-based metal-organic frameworks (MOFs) play vital roles in water environmental chemistry due to excellent hydrolysis-resistant stability. However, as photochemical probes and photocatalysts, poor performances in detection sensitivity, selectivity, and photosensitiveness limit sole Zr-MOFs' applications. So, it is urgent to quest valid strategies to break through the dilemmas. Embedding luminous dyes into MOFs has been considered one of the most feasible avenues. Herein, a dual-emissive RhB@Zr-MOF with orange-yellow fluorescence has been assembled by in situ-encapsulating rhodamine B (RhB) into a zirconium-biquinoline-based MOF. Actually, within RhB@Zr-MOF, the aggregation fluorescence quenching (ACQ) effect of RhB molecules was effectively avoided. Notably, RhB@Zr-MOF exhibits a rapid fluorescence quenching response toward Cr(VI) ions with high selectivity, sensitivity, and anti-interference abilities. More interestingly, unlike the most widely reported fluorescence resonance energy transfer (FRET) between MOFs and encapsulated guest modules, photoinduced electron transfer from RhB to Zr-MOF has been confirmed by modeling the ground state and excited states of RhB@Zr-MOF using density functional theory (DFT) and time-dependent DFT (TD-DFT). The effective electron transfer makes RhB@Zr-MOF more sensitive in probing Cr2O72- and CrO42- ions with ultralow detection limit (DL) values of 6.27 and 5.26 ppb, respectively. Prominently, the detection sensitivity based on DL values has been increased about 6 and 9 times, respectively, compared with pristine Zr-MOF. Moreover, rather negative CB and positive VB potentials make RhB@Zr-MOF have excellent photochemical scavenging ability toward Cr(VI) and MO.
Collapse
Affiliation(s)
- Qing Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Dan Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Zhi-Qiang Wu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Ke Shi
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Tian-Hui Liu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Huan-Yu Yin
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Xin-Bin Cai
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Zeng-Lu Fan
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Wei Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shanxi Normal University, Xi'an 710062, Shaanxi, P. R. China
| |
Collapse
|
35
|
Huang S, Zhou P, Hu Y, Li G, Xia L. Triphenylbenzene functionalized polyhedral oligomeric silsesquioxane fluorescence sensor for the selective analysis of trace nitrofurazone in aquatic product and cosmetics. Anal Chim Acta 2022; 1225:340249. [PMID: 36038243 DOI: 10.1016/j.aca.2022.340249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Nitrofurazone (NFZ) is carcinogenic and mutagenic to human in long-term ingestion, and it is prohibited to be added in food. In this work, a novel triphenylbenzene (TPB) functionalized fluorescent hybrid porous polymers (POSS@TPB) was constructed by using polyhedral oligomeric silsesquioxane (POSS) as the rigid group and TPB as the core unit of high fluorescence. The morphology and physicochemical properties of POSS@TPB were characterized in detail. Moreover, the synergistic effect of inner filter effect and photoinduced electron transfer is verified by experimental and simulation results. After condition optimization, a NFZ analysis method based on POSS@TPB probe was established with a linear range of 0.4-16.5 mg/L and a detection limit of 0.13 mg/L. In addition, the fluorescent probe has good stability, anti-interference and considerable reusability. At the same time, the selective analysis of trace NFZ in aquatic product and cosmetics was carried out with satisfied recoveries of 87%-110.6% and relative standard deviation less than 4.1%. And the results were verified by high-performance liquid chromatography method. Overall, this fluorescence sensor has excellent performance in NFZ analysis, which provides a broad application prospect for the repeatable and selective residue NFZ analysis in aquatic product and cosmetics.
Collapse
Affiliation(s)
- Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peipei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Shi CC, Zhao L, Jia-Jia X, Lu L, Singh A, Prakash O, Kumar A. New Three-dimensional Supramolecular Cd(II)-Coordination Polymer as a Luminescent Sensor for Sulfamethazine Detection. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Tang Y, Zheng M, Xue W, Huang H, Zhang G. Combined Skeleton and Spatial Rigidification of AIEgens in 2D Covalent Organic Frameworks for Boosted Fluorescence Emission and Sensing of Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37853-37864. [PMID: 35948042 DOI: 10.1021/acsami.2c11052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AIEgens show relatively weak fluorescence performance owing to the existence of π-π interlayer accumulation, molecular layer planarization, and intramolecular rotation in aggregation-induced emission (AIE) molecules, which limit its application scope. Herein, we put forward a combined skeleton and spatial rigidification method to boost the fluorescence emission efficiency of AIEgens. As a proof-of-concept experiment, two highly fluorescent covalent organic frameworks (COFs) were designed and constructed by the Knoevenagel condensation reaction. The experimental results show that the combined skeleton and spatial rigidification endowed excellent fluorescence emission for the resulting F-COF-2 by destruction of the π-π interlayer accumulation, interference of the molecular layer planarization, and restriction of the intramolecular rotation of the AIEgen unit. F-COF-2 displayed highly sensitive and selective NFT and NZF detection. Particularly, the Ksv value and limit of detection of F-COF-2 toward NFT were estimated to be 9.12 × 105 M-1 and 3.35 ppb, respectively, which surpassed all the reported crystalline porous fluorescent materials. The mechanism study proved that its outstanding fluorescence detection property was ascribed to the formation of a nonfluorescent complex induced by hydrogen bond interactions and electron transfer between F-COF-2 and NFT and NZF. This work not only proposes a combined skeleton and spatial rigidification strategy to improve the fluorescence efficiency of AIE molecules but also develops a sensor with high fluorescence efficiency, high chemical stability, and highly efficient detection of antibiotics.
Collapse
Affiliation(s)
- Yuanzhe Tang
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Mingze Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
38
|
Fan M, Zhao L, Jin X, Sun W, Qi W, Li Y. Efficient Tb3+-to-Eu3+ energy transfer for colorimetric luminescence sensing. Anal Chim Acta 2022; 1221:340026. [DOI: 10.1016/j.aca.2022.340026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
|
39
|
Qin G, Kong Y, Gan T, Ni Y. Ultrathin 2D Eu 3+@Zn-MOF Nanosheets: A Functional Nanoplatform for Highly Selective, Sensitive, and Visualized Detection of Organochlorine Pesticides in a Water Environment. Inorg Chem 2022; 61:8966-8975. [PMID: 35652414 DOI: 10.1021/acs.inorgchem.2c01604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facile and rapid detection of residual organic pesticides on the fruits and vegetables has recently drawn increased attention in the food safety field. Herein, a surfactant-assisted solvothermal route with subsequent post-modification was designed for the preparation of Eu3+-functionated Zn-BDC ultrathin nanosheets (labeled as Eu3+@Zn-MOF-NS, BDC: 1,4-benzenedicarboxylate) with the thickness of 5 nm. The as-obtained Eu3+@Zn-MOF-NS could be homogeneously dispersed in aqueous systems to form a highly-stable collosol. Under the UV excitation of 325 nm, the as-obtained Eu3+@Zn-MOF-NS displayed red photoluminescence emission of Eu3+ ions, which could be notably quenched by an organochlorine pesticide, 2,6-dichloro-4-nitroaniline (DCNA), without interferences from ions, organic small molecules, and other pesticides. The detection limit and Ksv were 0.17 μM (35 ppb) and 3.2 × 105 M-1 in the water system, respectively. Moreover, the present 2D Eu3+@Zn-MOF sensor was also employed for the detection of DCNA in Chaohu Lake water and tap water and in apple, cabbage, and pakchoi samples with the relative standard deviation (RSD) ranging from 4.74 to 9.77%. Further investigations revealed that the competitive absorption between DCNA and the as-obtained Eu3+@Zn-MOF-NS resulted in the fluorescence quenching of the probe.
Collapse
Affiliation(s)
- Guoxu Qin
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR China.,College of Chemistry and Materials Engineering, Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Chaohu University, Bantang Road, Chaohu 238024, PR China
| | - Yaqiong Kong
- College of Chemistry and Materials Engineering, Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Chaohu University, Bantang Road, Chaohu 238024, PR China
| | - Tianjue Gan
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR China
| |
Collapse
|
40
|
Gold Nanocluster-Based Fluorometric Banoxantrone Assay Enabled by Photoinduced Electron Transfer. NANOMATERIALS 2022; 12:nano12111861. [PMID: 35683717 PMCID: PMC9182391 DOI: 10.3390/nano12111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Monitoring the blood concentration of banoxantrone (AQ4N) is important to evaluate the therapeutic efficacy and side effects of this new anticancer prodrug during its clinical applications. Herein, we report a fluorescence method for AQ4N detection through the modulation of the molecule-like photoinduced electron transfer (PET) behavior of gold nanoclusters (AuNCs). AQ4N can electrostatically bind to the surface of carboxylated chitosan (CC) and dithiothreitol (DTT) co-stabilized AuNCs and quench their fluorescence via a Coulomb interaction-accelerated PET process. Under optimized experimental conditions, the linear range of AQ4N is from 25 to 200 nM and the limit of detection is as low as 5 nM. In addition, this assay is confirmed to be reliable based on its successful use in AQ4N determination in mouse plasma samples. This work offers an effective strategy for AQ4N sensing based on fluorescent AuNCs and widens the application of AuNCs in clinical diagnosis and pharmaceutical analysis.
Collapse
|
41
|
A multi-functional Tb-organic network featuring high selectivity fluorescent sensing for Fe3+, Cr2O72−, tetracycline and 2,4,6-trinitrophenol in aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Wang X, Liu C, Wang M, Zhou X, You Y, Xiao H. A selective fluorescence turn-on sensing coordination polymer for antibiotic aztreonam. Chem Commun (Camb) 2022; 58:4667-4670. [PMID: 35319041 DOI: 10.1039/d2cc00007e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reports about the detection of antibiotic aztreonam (ATM) are very rare. Herein, a fluorescent "turn-on" sensing coordination polymer 1 for ATM is described. The good linear relationship between the luminescence intensity and ATM concentration (0-0.135 mM) gave the slope of 20 380 M-1 and detection limit of 4.44 × 10-7 M. This work is of great significance, not only because 1 is a sensing material for ATM with excellent selectivity, sensitivity, anti-interference ability and recoverability, but also because it expands the catalogue of antibiotics detection.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Cheng Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Ming Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Xinhui Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Yujian You
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Hongping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
43
|
Sun Y, Dramou P, Song Z, Zheng L, Zhang X, Ni X, He H. Lanthanide Metal Doped Organic Gel as Ratiometric Fluorescence Probe for Selective Monitoring of Ciprofloxacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Water-induced luminescence improvement in a lanthanide β-diketone complex for monitoring water purity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Wang CY, Wang CC, Zhang XW, Ren XY, Yu B, Wang P, Zhao ZX, Fu H. A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.095] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Zhou ZD, Wang CY, Zhu GS, Du B, Yu BY, Wang CC. Water-stable europium(III) and terbium(III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Qu Z, Wu D, Jin J, Yang GP, Wang YY. Fabrication of a series of isostructural water-stable lanthanide metal-organic frameworks: Tunable luminescence, sensing for antibiotics and magnetic properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Feng X, Shang Y, Zhang K, Hong M, Li J, Xu H, Wang L, Li Z. In situ ligand-induced Ln-MOFs based on a chromophore moiety: white light emission and turn-on detection of trace antibiotics. CrystEngComm 2022. [DOI: 10.1039/d2ce00613h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Series novel 3D Ln-MOFs containing both carboxyphenyl and pyridinyl moieties have been constructed. Tb-MOF fluorescence turn-on sensor of levofloxacin solution with highly sensitive and excellent selective was achieved through d-PET approach.
Collapse
Affiliation(s)
- Xun Feng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
| | - Yapei Shang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ka Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Manzhou Hong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Junfeng Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
| | - Hongdi Xu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
| | - Liya Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473601, P. R. China
| | - Zhongjun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
49
|
He QQ, Yao SL, Zheng TF, Xu H, Liu SJ, Chen JL, Li N, Wen HR. A multi-responsive luminescent sensor based on a stable Eu(iii) metal–organic framework for sensing Fe3+, MnO4−, and Cr2O72− in aqueous solutions. CrystEngComm 2022. [DOI: 10.1039/d1ce01503f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A stable benzothiadiazole-based Eu(iii) metal–organic framework with cco topology has been successfully constructed, and represents the multifunctional fluorescence sensor toward Fe3+, MnO4− and Cr2O72− in aqueous solutions.
Collapse
Affiliation(s)
- Qi-Qi He
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Shu-Li Yao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P.R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
50
|
Bai Y, Zhang ML, Wang BT, Ren YX, Zhao YC, Yang H, Yang X. Four MOFs with isomeric ligands as fluorescent probes for highly selective, sensitive and stable detection of antibiotics in water. CrystEngComm 2022. [DOI: 10.1039/d1ce01261d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four complexes showed excellent discriminative probes for cefixime (CEF) and tetracycline (TEC) based on their sensitive fluorescence quenching. The PET and IFE effects resulted in high sensitivity and selectivity for the detection of CEF and TEC.
Collapse
Affiliation(s)
- Ye Bai
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Mei-li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Bo-Tao Wang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Yu-Chao Zhao
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Hua Yang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Xiaogang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|