1
|
Qin W, Xing T, Ma J, Tang B, Chen W. Decoration with electronegative 2D materials based on chemical transition layers on CFR-PEEK implants for promoting osteogenesis. J Mech Behav Biomed Mater 2024; 152:106436. [PMID: 38325168 DOI: 10.1016/j.jmbbm.2024.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Due to the unique lamellar structures, physicochemical and biological properties, electronegative two-dimensional (2D) materials have been explored for surface modification of carbon fibers reinforced polyetheretherketone (CFR-PEEK) composite. Deposition of electronegative 2D materials based on a porous surface created by concentrated H2SO4 has been studied to promote osteogenesis of CFR-PEEK. Generally, a porous layer will be pre-built on CFR-PEEK through severe corrosion of concentrated sulfuric acid to help the loading of 2D materials. However, the severe corrosion will greatly reduce surface mechanical strength, especially wear resistance and hardness, which increases the risk of collapse or even peeling of the bioactive coating by external force. Herein, instead of the severe corrosion, a mild corrosion by concentrated HNO3 was applied to modify the surface of CFR-PEEK to pre-create a dense transition layer for the further surface decoration of electronegative 2D materials (graphene oxide (GO) and black phosphorus (BP), representatively). The results indicated that hardness and wear resistance of the dense transition layer were markedly higher than those of the porous layer. Although GO and BP can be both loaded on these two transition layers, -SO3H on the porous transition layer showed moderate cytotoxicity, while -NO2 on the dense transition layer showed good cytocompatibility. The dense transition layer displayed higher mineralized deposition in vitro and new bone formation rate in vivo than the porous transition layer, moreover, GO and BP coatings improved osteogenesis. This work offers inspirations for the construction of electronegative 2D material coating on CFR-PEEK based on chemical transition layers.
Collapse
Affiliation(s)
- Wen Qin
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tong Xing
- Engineering Research Center of Heavy Mechanical, Ministry of Education, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Jing Ma
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Tang
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China.
| |
Collapse
|
2
|
Zhang X, Li Q, Li L, Ouyang J, Wang T, Chen J, Hu X, Ao Y, Qin D, Zhang L, Xue J, Cheng J, Tao W. Bioinspired Mild Photothermal Effect-Reinforced Multifunctional Fiber Scaffolds Promote Bone Regeneration. ACS NANO 2023; 17:6466-6479. [PMID: 36996420 DOI: 10.1021/acsnano.2c11486] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bone fractures are often companied with poor bone healing and high rates of infection. Early recruitment of mesenchymal stem cells (MSCs) is critical for initiating efficient bone repair, and mild thermal stimulation can accelerate the recovery of chronic diseases. Here, a bioinspired, staged photothermal effect-reinforced multifunctional scaffold was fabricated for bone repair. Uniaxially aligned electrospun polycaprolactone nanofibers were doped with black phosphorus nanosheets (BP NSs) to endow the scaffold with excellent near-infrared (NIR) responsive capability. Apt19S was then decorated on the surface of the scaffold to selectively recruit MSCs toward the injured site. Afterward, microparticles of phase change materials loaded with antibacterial drugs were also deposited on the surface of the scaffold, which could undergo a solid-to-liquid phase transition above 39 °C, triggering the release of payload to eliminate bacteria and prevent infection. Under NIR irradiation, photothermal-mediated up-regulation of heat shock proteins and accelerated biodegradation of BP NSs could promote the osteogenic differentiation of MSCs and biomineralization. Overall, this strategy shows the ability of bacteria elimination, MSCs recruitment, and bone regeneration promotion with the assistance of photothermal effect in vitro and in vivo, which emphasizes the design of a bioinspired scaffold and its potential for a mild photothermal effect in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaodi Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qi Li
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Longfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junjie Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin Cheng
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Wang D, Peng Y, Li Y, Kpegah JKSK, Chen S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front Mol Biosci 2023; 9:1105540. [PMID: 36660426 PMCID: PMC9846365 DOI: 10.3389/fmolb.2022.1105540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma is the malignant tumor with the highest incidence rate among primary bone tumors and with a high mortality rate. The anti-osteosarcoma materials are the cross field between material science and medicine, having a wide range of application prospects. Among them, biological materials, such as compounds from black phosphorous, magnesium, zinc, copper, silver, etc., becoming highly valued in the biological materials field as well as in orthopedics due to their good biocompatibility, similar mechanical properties with biological bones, good biodegradation effect, and active antibacterial and anti-tumor effects. This article gives a comprehensive review of the research progress of anti-osteosarcoma biomaterials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland,*Correspondence: Shijie Chen,
| | | | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China,*Correspondence: Shijie Chen,
| |
Collapse
|
4
|
Nene A, Geng S, Zhou W, Yu XF, Luo H, Ramakrishna S. Black Phosphorous Aptamer-based Platform for Biomarker Detection. Curr Med Chem 2023; 30:935-952. [PMID: 35220933 DOI: 10.2174/0929867329666220225110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shengyong Geng
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Hongrong Luo
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, 117576, Singapore
| |
Collapse
|
5
|
Idumah CI. Phosphorene polymeric nanocomposites for biomedical applications: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
6
|
Jiang Z, Ding Y, Lovell JF, Zhang Y. Design and application of organic contrast agents for molecular imaging in the second near infrared (NIR-II) window. PHOTOACOUSTICS 2022; 28:100426. [PMID: 36419744 PMCID: PMC9676394 DOI: 10.1016/j.pacs.2022.100426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Optical imaging in the second near-infrared (NIR-II) window has attracted interest in recent years because of the merits of reduced light scattering, minimal autofluorescence from biological tissues and deeper penetration depth in this wavelength range. In this review, we summarize NIR-II organic contrast agents reported in the past decade for photoacoustic and fluorescence imaging including members of the cyanine family, D-A-D structure dyes, phthalocyanines and semiconducting polymers. Improved imaging contrast and higher resolution could be favorably achieved by rational design of NIR-II fluorophores by tuning their properties including molar extinction coefficient, fluorescence quantum yield, emission wavelength and others. A wide variety of applications using NIR-II dyes has been realized including imaging of tumors, lymphatics, brains, intestines and others. Emerging applications such as targeted imaging and activable imaging with improved resolution and sensitivity have been demonstrated by innovative chemical modification of NIR-II dyes. Looking forward, rational design of improved NIR-II dyes for advanced bioimaging is likely to remain an area of interest for next-generation potential approaches to disease diagnosis.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| | - Yuanmeng Ding
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| |
Collapse
|
7
|
Li Z, Song J, Yang H. Emerging low-dimensional black phosphorus: from physical-optical properties to biomedical applications. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Soman S, Kulkarni S, Pandey A, Dhas N, Subramanian S, Mukherjee A, Mutalik S. 2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. BIOSENSORS 2022; 12:1009. [PMID: 36421127 PMCID: PMC9688887 DOI: 10.3390/bios12111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As per global cancer statistics of 2020, female breast cancer is the most commonly diagnosed cancer and also the foremost cause of cancer death in women. Traditional treatments include a number of negative effects, making it necessary to investigate novel smart drug delivery methods and identify new therapeutic approaches. Efforts for developing novel strategies for breast cancer therapy are being devised worldwide by various research groups. Currently, two-dimensional black phosphorus nanosheets (BPNSs) have attracted considerable attention and are best suited for theranostic nanomedicine. Particularly, their characteristics, including drug loading efficacy, biocompatibility, optical, thermal, electrical, and phototherapeutic characteristics, support their growing demand as a potential substitute for graphene-based nanomaterials in biomedical applications. In this review, we have explained different platforms of BP nanomaterials for breast cancer management, their structures, functionalization approaches, and general methods of synthesis. Various characteristics of BP nanomaterials that make them suitable for cancer therapy and diagnosis, such as large surface area, nontoxicity, solubility, biodegradability, and excellent near-infrared (NIR) absorption capability, are discussed in the later sections. Next, we summarize targeting approaches using various strategies for effective therapy with BP nanoplatforms. Then, we describe applications of BP nanomaterials for breast cancer treatment, which include drug delivery, codelivery of drugs, photodynamic therapy, photothermal therapy, combined therapy, gene therapy, immunotherapy, and multidrug resistance reversal strategy. Finally, the present challenges and future aspects of BP nanomaterials are discussed.
Collapse
Affiliation(s)
- Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
9
|
Wu M, Li X, Mu X, Zhang X, Wang H, Zhang XD. Multimodal molecular imaging in the second near-infrared window. Nanomedicine (Lond) 2022; 17:1585-1606. [PMID: 36476011 DOI: 10.2217/nnm-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near-infrared-II (NIR-II) fluorescence imaging has rapidly developed for the noninvasive investigation of physiological and pathological activities in living organisms with high spatiotemporal resolution. However, the penetration depth of fluorescence restricts its ability to provide deep anatomical information. Scientists integrate NIR-II fluorescence imaging with other imaging modes (such as photoacoustic and magnetic resonance imaging) to create multimodal imaging that can acquire detailed anatomical and quantitative information with deeper penetration by using multifunctional probes. This review offers a comprehensive picture of NIR-II-based dual/multimodal imaging probes and highlights advances in bioimaging and therapy. In addition, seminal studies and trends in multimodal imaging probes activated by NIR-II laser are summarized and several key points regarding future clinical translation are elucidated.
Collapse
Affiliation(s)
- Menglin Wu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Physics & Tianjin Key Laboratory of Low Dimensional Materials Physics & Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
10
|
Lee G, Lee JH, Choi W, Kim C, Hahn SK. Hyaluronate-Black Phosphorus-Upconversion Nanoparticle Complex for Non-invasive Theranosis of Skin Cancer. Biomacromolecules 2022; 23:3602-3611. [PMID: 35930811 DOI: 10.1021/acs.biomac.2c00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the wide investigation on black phosphorus (BP) for biophotonic applications, the finite depth of light penetration has limited further development of BP-based photomedicines. Here, we developed a hyaluronate-BP-upconversion nanoparticle (HA-BP-UCNP) complex for near-infrared (NIR) light-mediated multimodal theranosis of skin cancer with photoacoustic (PA) bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). In contrast to the conventional BP-based skin cancer theranosis, the HA-BP-UCNP complex could be non-invasively delivered into the tumor tissue to induce the cancer cell apoptosis upon NIR light irradiation. The PA imaging of BP successfully visualized the non-invasive transdermal delivery of the HA-BP-UCNP complex into the mice skin. HA in the complex facilitated the transdermal delivery of BP into the tumor tissue under the skin. Upon 980 nm NIR light irradiation, the UCNP converted the light to UV-blue light to generate reactive oxygen species by sensitizing BP in the HA-BP-UCNP complex for PDT. Remarkably, 808 nm NIR irradiation with PTT triggered the apoptosis of tumor cells. Taken together, we could confirm the feasibility of the HA-BP-UCNP complex for NIR light-mediated multimodal theranosis of skin cancers.
Collapse
Affiliation(s)
- Gibum Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Korea
| | - Jung Ho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Korea
| | - Wonseok Choi
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
11
|
Liang H, Zhou L, Chen P, Zheng J, Huang Y, Liang J, Zhong J, Huang Y, Yu M, Guan BO. Optical Microfiber with a Gold Nanorods-Black Phosphorous Nanointerface: An Ultrasensitive Biosensor and Nanotherapy Platform. Anal Chem 2022; 94:8058-8065. [PMID: 35611971 DOI: 10.1021/acs.analchem.2c01499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detection and therapy of cancers in the early stage significantly alleviate the associated dangers. Optical devices offer new opportunities for these early measures. However, the clinical translation of the existing methods is severely hindered by their relatively low sensitivity or unclear physiological metabolism. Here, an optical microfiber sensor with a drug loading gold nanorod-black phosphorous nanointerface, as an ultrasensitive biosensor and nanotherapy platform, is developed to meet the early-stage requirement. With interface sensitization and functionalization of the hybrid nanointerface, the microfiber sensor presents an ultrahigh sensing performance, achieving the selective detection of the HER2 biomarker with limits of detection of 0.66 aM in buffer solution and 0.77 aM in 10% serum. It can also distinguish breast cancer cells from other cells in the early stage. Additionally, enabled by the interface, the optical microfiber is able to realize cellular nanotherapy, including photothermal/chemotherapy with pump laser coupling after diagnosis, and evaluate therapy results in real time. The immobilization of the interface on the optical microfiber surface prevents the damage to normal cells induced by nanomaterial enrichment, making the device more efficient and intelligent. This study opens up a new avenue for the development of smart optical platforms for sensitive biosensing and precision therapy.
Collapse
Affiliation(s)
- He Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Luyan Zhou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Jiaying Zheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Jiaxuan Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Junyang Zhong
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yugang Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingguang Yu
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| |
Collapse
|
12
|
Zhang W, Shen Z, Wu Y, Zhang W, Zhang T, Yu BY, Zheng X, Tian J. Renal-clearable and biodegradable black phosphorus quantum dots for photoacoustic imaging of kidney dysfunction. Anal Chim Acta 2022; 1204:339737. [PMID: 35397900 DOI: 10.1016/j.aca.2022.339737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
The kidney is a vital organ and susceptible to various diseases. Photoacoustic (PA) imaging provides a powerful technique for studying kidney dysfunction, for which many smart photoacoustic imaging agents have been developed. But the complete clearance of the introduced contrast agents after imaging remains to be challenging, leading to long-term toxicity concerns. In this study, we synthesized black phosphorous quantum dots (BPQDs) with ultra-small size (1.74 ± 0.23 nm after surface modification) and strong PA signal for imaging kidney dysfunction. Importantly, the renal-clearance property and biodegradability of the developed BPQDs help circumvent the long-term toxicity issue for in vivo studies. Based on these BPQDs, both acute kidney injury and chronic kidney disease were successfully detected in the living mice by PA imaging, with higher detection sensitivity than the clinical serum indices examination method. This BPQDs-based PA imaging method should have a promising potential for the early diagnosis of kidney dysfunction in clinic.
Collapse
Affiliation(s)
- Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhuoxia Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenze Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
13
|
Bu Y, Zhang M, Fu J, Yang X, Liu S. Black phosphorous quantum dots for signal-on cathodic photoelectrochemical aptasensor monoitoring amyloid β peptide. Anal Chim Acta 2022; 1189:339200. [PMID: 34815042 DOI: 10.1016/j.aca.2021.339200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
In this paper, a quantitative cathodic photoelectrochemical aptasensor is described by using black phosphorous quantum dots (BPQDs) as photoactive material and assisted by heme as electron acceptor for sensing of amyloid β peptide (Aβ). Specifically, BPQDs were synthesized by solvothermal method and characterized by various techniques. The as-prepared BPQDs were assembled on the transparent indium tin oxide electrode, and the positively charged poly-l-lysine (PLL) was then absorbed onto BPQDs via electronic interaction. Subsequently, the aptamer as the specific recognition element for Aβ oligomer was introduced on the BPQDs-PLL modified electrode. After bound with heme to form Aβ-heme complex, Aβ oligomer was simultaneously captured by the aptamer on the electrode, resulting in an enhanced photocurrent response. Under the optimized conditions, the present PEC sensor reveals a good linear response to Aβ peptide ranging from 1.0 fM to 100 nM with a detection limit of 0.87 fM. The present signal-on cathodic PEC bioassay possesses the potential to create a new paradigm in amplified PEC assays that could provide outstanding performance for bioanalysis.
Collapse
Affiliation(s)
- Yuwei Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Mengjie Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Junliang Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
14
|
Inorganic Nanomaterial for Biomedical Imaging of Brain Diseases. Molecules 2021; 26:molecules26237340. [PMID: 34885919 PMCID: PMC8658999 DOI: 10.3390/molecules26237340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
In the past few decades, brain diseases have taken a heavy toll on human health and social systems. Magnetic resonance imaging (MRI), photoacoustic imaging (PA), computed tomography (CT), and other imaging modes play important roles in disease prevention and treatment. However, the disadvantages of traditional imaging mode, such as long imaging time and large noise, limit the effective diagnosis of diseases, and reduce the precision treatment of diseases. The ever-growing applications of inorganic nanomaterials in biomedicine provide an exciting way to develop novel imaging systems. Moreover, these nanomaterials with special physicochemical characteristics can be modified by surface modification or combined with functional materials to improve targeting in different diseases of the brain to achieve accurate imaging of disease regions. This article reviews the potential applications of different types of inorganic nanomaterials in vivo imaging and in vitro detection of different brain disease models in recent years. In addition, the future trends, opportunities, and disadvantages of inorganic nanomaterials in the application of brain diseases are also discussed. Additionally, recommendations for improving the sensitivity and accuracy of inorganic nanomaterials in screening/diagnosis of brain diseases.
Collapse
|
15
|
Ren F, Jiang Z, Han M, Zhang H, Yun B, Zhu H, Li Z. NIR‐II Fluorescence imaging for cerebrovascular diseases. VIEW 2021. [DOI: 10.1002/viw.20200128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Feng Ren
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| |
Collapse
|
16
|
Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D Nanomaterials for Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:276-302. [PMID: 34970073 PMCID: PMC8713997 DOI: 10.1016/j.mattod.2021.04.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) nanomaterials are an emerging class of biomaterials with remarkable potential for biomedical applications. The planar topography of these nanomaterials confers unique physical, chemical, electronic and optical properties, making them attractive candidates for therapeutic delivery, biosensing, bioimaging, regenerative medicine, and additive manufacturing strategies. The high surface-to-volume ratio of 2D nanomaterials promotes enhanced interactions with biomolecules and cells. A range of 2D nanomaterials, including transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), layered silicates (nanoclays), 2D metal carbides and nitrides (MXenes), metal-organic framework (MOFs), covalent organic frameworks (COFs) and polymer nanosheets have been investigated for their potential in biomedical applications. Here, we will critically evaluate recent advances of 2D nanomaterial strategies in biomedical engineering and discuss emerging approaches and current limitations associated with these nanomaterials. Due to their unique physical, chemical, and biological properties, this new class of nanomaterials has the potential to become a platform technology in regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Aparna Murali
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Giriraj Lokhande
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kaivalya A. Deo
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
17
|
Ge X, Su L, Yang L, Fu Q, Li Q, Zhang X, Liao N, Yang H, Song J. NIR-II Fluorescent Biodegradable Nanoprobes for Precise Acute Kidney/Liver Injury Imaging and Therapy. Anal Chem 2021; 93:13893-13903. [PMID: 34609146 DOI: 10.1021/acs.analchem.1c02742] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NIR-II fluorescent nanoprobes based on inorganic materials, including rare-earth-doped nanoparticles, single-walled carbon nanotubes, CdS quantum dots (QDs), gold nanoclusters, etc., have gained growing interest in bioimaging applications. However, these nanoprobes are usually not biodegradable and lack therapeutic functions. Herein, we developed novel NIR-II fluorescence (FL) imaging and therapeutic nanoprobes based on black phosphorus QDs (BPQDs), which exhibited excellent biodegradability and high tunability of size-dependent optical properties. By adjusting the size of nanoparticles, BPQDs can specifically accumulate in the kidney or liver. Importantly, a low dosage of BPQDs can effectively protect tissues from reactive oxygen species (ROS)-mediated damage in acute kidney and liver injury, which was real-time monitored by responsive NIR-II fluorescence imaging. Overall, we developed novel NIR-II emitting and therapeutic BPQDs with excellent biodegradability vivo, providing a promising candidate for NIR-II FL imaging and ROS scavenging.
Collapse
Affiliation(s)
- Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Naishun Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| |
Collapse
|
18
|
Zhang Z, Li S, Qiao D, Hu N, Gu Y, Deng Q, Wang S. Black Phosphorus Nanosheet Encapsulated by Zeolitic Imidazole Framework-8 for Tumor Multimodal Treatments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43855-43867. [PMID: 34494809 DOI: 10.1021/acsami.1c04001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black phosphorus (BP) nanosheet is easily oxidized by oxygen and water under ambient environment, thus, reliable BP passivation techniques for biomedical applications is urgently needed. A simple and applicable passivation strategy for biomedical applications was established by encapsulating BP nanosheet into zeolitic imidazole framework-8 (ZIF-8). The resulted BP nanosheet in ZIF-8 (BP@ZIF-8) shows not only satisfied chemical stability in both water and phosphate buffered saline (PBS), but also excellent biocompatibility. Notably, BP nanosheet endows the prepared BP@ZIF-8 with prominent photothermal conversion efficiency (31.90%). Besides passivation BP, ZIF-8 provides the BP@ZIF-8 with high drug loading amount (1353.3 mg g-1). Moreover, the loaded drug can be controlled release by pH stimuli. Both in vitro and in vivo researches verified the resulted BP@ZIF-8 an ideal candidate for tumor multimodal treatments.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sige Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Qiao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Nan Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Gu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiliang Deng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Huang M, Gu Z, Zhang J, Zhang D, Zhang H, Yang Z, Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J Mater Chem B 2021; 9:5195-5220. [PMID: 34128039 DOI: 10.1039/d1tb00410g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioimaging and biosensing have garnered interest in early cancer diagnosis due to the ability of gaining in-depth insights into cellular functions and providing a wide range of diagnostic parameters. Emerging 2D materials of multielement MXenes and monoelement black phosphorous nanosheets (BPNSs) with unique intrinsic physicochemical properties such as a tunable bandgap and layer-dependent fluorescence, high carrier mobility and transport anisotropy, efficient fluorescence quenching capability, desirable light absorption and thermoelastic properties, and excellent biocompatibility and biosafety properties provide promising nano-platforms for bioimaging and biosensing applications. In view of the growing attention on the rising stars of the post-graphene age in the progress of bioimaging and biosensing, and their common feature characteristics as well as complementarity for constructing complexes, the main objective of this review is to reveal the recent advances in the design of MXene or BPNS based nanoplatforms in the field of bioimaging and biosensing. The preparation and surface functionalization methods, biosafety, and other important aspects of bioimaging and biosensing applications of MXenes and BPNSs have been assessed systematically, along with highlighting the main challenges in further biomedical application. The review not only focuses on the advancements in 2D materials for use in bioimaging and biosensing but also assesses the possibility of their future potential in bioapplications.
Collapse
Affiliation(s)
- Meina Huang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. and South China Normal University, Shanwei 516625, China
| | - Zhenyu Gu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jianguo Zhang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dan Zhang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen 518060, China
| | - Zhigang Yang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Junle Qu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
20
|
Liu C, Shin J, Son S, Choe Y, Farokhzad N, Tang Z, Xiao Y, Kong N, Xie T, Kim JS, Tao W. Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chem Soc Rev 2021; 50:2260-2279. [PMID: 33367452 DOI: 10.1039/d0cs01175d] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pnictogens (the non-metal phosphorus, metalloids arsenic and antimony, and metal bismuth) possess diverse chemical characteristics that support the formation of extended molecular structures. As witnessed by the centuries-old (and ongoing) clinical utilities, pnictogen-based compounds have secured their places in history as "magic bullet" therapeutic drugs in medicinal contexts. Moreover, with the development of recent metalloproteomics and bio-coordination chemistry, the pnictogen-based drugs functionally binding to proteins/enzymes in biological systems have been underlaid for "drug repurposing" with promising opportunities. Furthermore, advances in the modern materials science and nonotechnology have stimulated a revolution in other newly discovered forms of pnictogens-phosphorene, arsenene, antimonene, and bismuthine (layered pnictogens). Based on their favorable optoelectronic properties, layered pnictogens have shown dramatic superiority as emerging photonic nanomedicines for the treatment of various diseases. This tutorial review outlines the history and mechanism of action of ancient pnictogen-based drugs (e.g., arsenical compounds in traditional Chinese medicine) and their repurposing into modern therapeutics. Then, the revolutionary use of emerging layered pnictogens as photonic nanomedicines, alongside assessments of their in vivo biosafety, is discussed. Finally, the challenges to further development of pnictogens are set forth and insights for further exploration of their appealing properties are offered. This tutorial review may also provide some deep insights into the fields of integrated traditional Chinese and Western medicines from the perspective of materials science and nanotechnology.
Collapse
Affiliation(s)
- Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Youmi Choe
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Pandey A, Nikam AN, Padya BS, Kulkarni S, Fernandes G, Shreya AB, García MC, Caro C, Páez-Muñoz JM, Dhas N, García-Martín ML, Mehta T, Mutalik S. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Liu X, Gaihre B, George MN, Li Y, Tilton M, Yaszemski MJ, Lu L. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci 2021; 9:2768-2803. [PMID: 33620047 PMCID: PMC9009269 DOI: 10.1039/d0bm01972k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorene, also known as black phosphorus (BP), is a two-dimensional (2D) material that has gained significant attention in several areas of current research. Its unique properties such as outstanding surface activity, an adjustable bandgap width, favorable on/off current ratios, infrared-light responsiveness, good biocompatibility, and fast biodegradation differentiate this material from other two-dimensional materials. The application of BP in the biomedical field has been rapidly emerging over the past few years. This article aimed to provide a comprehensive review of the recent progress on the unique properties and extensive medical applications for BP in bone, nerve, skin, kidney, cancer, and biosensing related treatment. The details of applications of BP in these fields were summarized and discussed.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Wan S, Zhang B, Li S, He B, Pu Y. Combination of PEG-decorated black phosphorus nanosheets and immunoadjuvant for photoimmunotherapy of melanoma. J Mater Chem B 2021; 8:2805-2813. [PMID: 32163088 DOI: 10.1039/d0tb00434k] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoimmunotherapy, which combines local photothermal therapy (PTT) with immunological stimulation, is a promising modality for cancer treatment. Herein, we have reported a photothermal-immunotherapy of melanoma using pegylated black phosphorus nanosheets (BP-PEG NSs) and imiquimod (R837) as the photothermal conversion agent and the immunoadjuvant, respectively. The photothermal stability of BP NSs was remarkably enhanced after the modification of poly(ethylene glycol) (PEG) by electrostatic interactions. The in situ generation of tumor-associated antigens by PTT elicited a strong immune response in the presence of R837, achieving a photoimmunotherapy of B16 melanoma. This photoimmunotherapy stimulated a stronger immune response both in vitro and in vivo than monotherapy, inducing a much greater release of cytokines such as IL-6, IL-12, and TNF-α. In vivo antitumor studies in B16 tumor-bearing mice demonstrated that photoimmunotherapy showed the best tumor inhibition effects. Our study suggested that BP-PEG NS-based PTT primed with an immunoadjuvant can be used for synergistic photoimmunotherapy of melanomas.
Collapse
Affiliation(s)
- Shiyu Wan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Boya Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Sai Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Bin He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuji Pu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
24
|
Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B 2021; 8:4778-4812. [PMID: 32226981 DOI: 10.1039/d0tb00182a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper chalcogenides have a simple general formula, variable atomic ratios, and complicated crystal structures, which lead to their wealth of optical, electrical, and magnetic properties with great potential for wide applications ranging from energy conversion to the biomedical field. Herein, we summarize the recent advances in (1) the synthesis of size- and morphology tunable nanostructures by different methods; (2) surface modification and functionalization for different purposes; and (3) bioapplications for diagnosis and treatment of tumors by different imaging and therapy methods, as well as antibacterial applications. We also briefly discuss the future directions and challenges of copper chalcogenide nanoparticles in the biomedical field.
Collapse
Affiliation(s)
- Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Jiaxin Yuan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| |
Collapse
|
25
|
Qian H, Cheng Q, Tian Y, Dang H, Teng C, Yan L. An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy. J Mater Chem B 2021; 9:2688-2696. [PMID: 33667292 DOI: 10.1039/d1tb00018g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the hydrophobicity of the cyanine dye and the huge conjugated plane, the cyanine dye is prone to H-aggregation in aqueous solution, and the ultraviolet absorption is blue-shifted. Here, a hydrophilic quaternary stereo-specific cyanine (HQS-Cy) dye has been synthesized and polypeptide based nanoparticles have been prepared, which improve the water solubility of the cyanine in two aspects. First, at the molecular level, the sulfonic acid group increases the water solubility of the dye molecule while the dimethyl-ammonium functional group repels the molecule through the charge-charge interaction, destroying the planar characteristics of the cyanine structure, increasing the molecular distance between the dye molecules, and preventing the accumulation of cyanine. Secondly, at the nano-micelle level, the use of amphiphilic polypeptide blocks to encapsulate the dye increases the water solubility of the dye while also increasing its biocompatibility. The HQS-Cy@P NPs prepared by the above methods exhibit the maximum absorption at 985 nm and maximum fluorescence emission at 1050 nm in aqueous solution. HQS-Cy@P exhibits good photothermal stability and significant photothermal conversion efficiency of about 35.5%, and both in vitro and in vivo studies revealed that it is an efficient system for NIR-II imaging-guided photothermal therapy of cancer.
Collapse
Affiliation(s)
- Hongyun Qian
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Hefei, 230026, China.
| | | | | | | | | | | |
Collapse
|
26
|
Zhang R, He X, Jiang JM, Li PP, Wang HY, Li L, Yang JX, Kong L. A computational and experimental investigation of donor-acceptor BODIPY based near-infrared fluorophore for in vivo imaging. Bioorg Chem 2021; 110:104789. [PMID: 33714760 DOI: 10.1016/j.bioorg.2021.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/28/2021] [Indexed: 12/27/2022]
Abstract
TD-DFT quantum calculation was performed to predict and/or illustrate the electronic transition, the related absorption and emission maxima of some pyrrole-difluoroboron derivatives with different electron donor-acceptor unit or π-conjugated degree. Upon the calculated results, a new near infrared (NIR) fluorophore (abbreviated as TPBD-BP) was designed and fabricated through linking triphenylamine and pyrrole-difluoroboron units to benzothiadiazole (BTD) backbone. The fluorescence of TPBD-BP in solid state centered at 932 nm, which was 985 nm for TPBD-BP nanoparticles (TPBD-BP dots) encapsulated in PEG-6000. The fluorescence of TPBD-BP in both solid state and dots exhibited off-peak tail emission to NIR-II region (extended to 1300 nm). The TPBD-BP dots showed excellent water solubility, biocompatibility and aggregation induced emission (AIE), which was suitable to be applied in vivo imaging. NIR-II emission signal of TPBD-BP dots can be observed in the reproductive organ of normal nude mice after tail vein injection. This attractive combination of computational and experimental investigation would help to develop new-typed small-molecular NIR fluorophores.
Collapse
Affiliation(s)
- Rui Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Xuan He
- Institutes of Physical Science and Information Technology, Anhui University, PR China
| | - Jia-Min Jiang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Pan-Pan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Hai-Yan Wang
- Institutes of Physical Science and Information Technology, Anhui University, PR China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Jia-Xiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China.
| |
Collapse
|
27
|
Pandey A, Nikam AN, Fernandes G, Kulkarni S, Padya BS, Prassl R, Das S, Joseph A, Deshmukh PK, Patil PO, Mutalik S. Black Phosphorus as Multifaceted Advanced Material Nanoplatforms for Potential Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E13. [PMID: 33374716 PMCID: PMC7822462 DOI: 10.3390/nano11010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Black phosphorus is one of the emerging members of two-dimensional (2D) materials which has recently entered the biomedical field. Its anisotropic properties and infrared bandgap have enabled researchers to discover its applicability in several fields including optoelectronics, 3D printing, bioimaging, and others. Characterization techniques such as Raman spectroscopy have revealed the structural information of Black phosphorus (BP) along with its fundamental properties, such as the behavior of its photons and electrons. The present review provides an overview of synthetic approaches and properties of BP, in addition to a detailed discussion about various types of surface modifications available for overcoming the stability-related drawbacks and for imparting targeting ability to synthesized nanoplatforms. The review further gives an overview of multiple characterization techniques such as spectroscopic, thermal, optical, and electron microscopic techniques for providing an insight into its fundamental properties. These characterization techniques are not only important for the analysis of the synthesized BP but also play a vital role in assessing the doping as well as the structural integrity of BP-based nanocomposites. The potential role of BP and BP-based nanocomposites for biomedical applications specifically, in the fields of drug delivery, 3D printing, and wound dressing, have been discussed in detail to provide an insight into the multifunctional role of BP-based nanoplatforms for the management of various diseases, including cancer therapy. The review further sheds light on the role of BP-based 2D platforms such as BP nanosheets along with BP-based 0D platforms-i.e., BP quantum dots in the field of therapy and bioimaging of cancer using techniques such as photoacoustic imaging and fluorescence imaging. Although the review inculcates the multimodal therapeutic as well as imaging role of BP, there is still research going on in this field which will help in the development of BP-based theranostic platforms not only for cancer therapy, but various other diseases.
Collapse
Affiliation(s)
- Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ajinkya N. Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ruth Prassl
- Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria;
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Prashant K. Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, Maharashtra, India;
| | - Pravin O. Patil
- Department of Pharmaceutical Chemistry, H R Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist Dhule 425405, Maharashtra, India;
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| |
Collapse
|
28
|
Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: Strategies and recent advances. Acta Biomater 2020; 118:1-17. [PMID: 33038527 DOI: 10.1016/j.actbio.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Black phosphorus-based nanomaterials (BPNMs), an emerging member of two-dimensional (2D) nanomaterials, possess excellent physicochemical properties and hold great potential for application in advanced nanomedicines. However, the bare BPNMs easily decrease their biomedical activities due to their degradability and in vivo interactions with biological macromolecules such as plasma proteins, largely restricting their biomedical application. A variety of surface modifications, via chemical, physical or biological approaches, have been developed for BPNMs to avoid these limitations and achieve stable, long-lasting and safe therapeutic effects, thus enlighten the development of the multifunctional BPNMs for more practical application in the field of biomedicine. The present review summarizes the recent advances in the surface modification of BPNMs and the resultant expansion of their biomedical applications. Focus is put on the strategy and method of modification while the effects incurred on the behavior and potential toxicity of BPNMs are also included. The future and challenge of the surface modification of the therapeutic BPNMs are finally discussed.
Collapse
Affiliation(s)
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
29
|
Huang X, Zhou Y, Woo CM, Pan Y, Nie L, Lai P. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. FRONTIERS OF OPTOELECTRONICS 2020; 13:327-351. [PMID: 36641565 PMCID: PMC9743864 DOI: 10.1007/s12200-020-1084-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
As an outstanding two-dimensional material, black phosphorene, has attracted significant attention in the biomedicine field due to its large surface area, strong optical absorption, distinct bioactivity, excellent biocompatibility, and high biodegradability. In this review, the preparation and properties of black phosphorene are summarized first. Thereafter, black phosphorene-based multifunctional platforms employed for the diagnosis and treatment of diseases, including cancer, bone injuries, brain diseases, progressive oxidative diseases, and kidney injury, are reviewed in detail. This review provides a better understanding of the exciting properties of black phosphorene, such as its high drug-loading efficiency, photothermal conversion capability, high 1O2 generation efficiency, and high electrical conductivity, as well as how these properties can be exploited in biomedicine. Finally, the research perspectives of black phosphorene are discussed.
Collapse
Affiliation(s)
- Xiazi Huang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yingying Zhou
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chi Man Woo
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Puxiang Lai
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China.
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
30
|
Li Q, Ding Q, Li Y, Zeng X, Liu Y, Lu S, Zhou H, Wang X, Wu J, Meng X, Deng Z, Xiao Y. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem Commun (Camb) 2020; 56:3289-3292. [PMID: 32073036 DOI: 10.1039/c9cc09865h] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Near-infrared fluorescence imaging in the 1000-1700 nm-wavelength window (NIR-II) has exhibited great potential for deep-tissue bioimaging due to its diminished auto-fluorescence, suppressed photo-scattering, deep penetration, and high spatial and temporal resolutions. Various kinds of inorganic nanomaterials have been extensively developed for NIR-IIa (1300-1400 nm) and NIR-IIb (1500-1700 nm) bioimaging. However, the development of small-molecule NIR-IIa and NIR-IIb fluorophores is still in its infancy. Herein, we designed and synthesized a novel NIR-II organic aggregation-induced emission (AIE) fluorophore (HQL2) with a fluorescence tail extending into the NIR-IIa and NIR-IIb region based on our previous reported skeleton Q4. The encapsulated NIR-II AIE nanoparticles (HQL2 dots) exhibited water solubility and biocompatibility, and high brightness for NIR-IIa and NIR-IIb vascular imaging in vivo, a first for NIR-II AIE dots.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. and College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Tibet University, Lasa, 850000, China
| | - Qihang Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yang Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiaodong Zeng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yishen Liu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Siyu Lu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Hui Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiaofei Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Junzhu Wu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. and College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Tibet University, Lasa, 850000, China
| |
Collapse
|
31
|
Zhang H, Zeng X, Li Z. Copper-Chalcogenide-Based Multimodal Nanotheranostics. ACS APPLIED BIO MATERIALS 2020; 3:6529-6537. [DOI: 10.1021/acsabm.0c00937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| |
Collapse
|
32
|
Ding J, Qu G, Chu PK, Yu X. Black phosphorus: Versatile two‐dimensional materials in cancer therapies. VIEW 2020. [DOI: 10.1002/viw.20200043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jie Ding
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for EcoEnvironmental Sciences Chinese Academy of Sciences Beijing China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for EcoEnvironmental Sciences Chinese Academy of Sciences Beijing China
- Institute of Environment and Health Jianghan University Wuhan China
- Institute of Environment and Health Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Paul K. Chu
- Department of Physics City University of Hong Kong Kowloon Hong Kong
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong
| | - Xue‐Feng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- Institute of Environment and Health Jianghan University Wuhan China
| |
Collapse
|
33
|
Zhao L, He X, Huang Y, Zhang S, Han H, Xu L, Wang X, Song D, Ma P, Sun Y. A novel near-infrared fluorescent probe for intracellular detection of cysteine. Anal Bioanal Chem 2020; 412:7211-7217. [DOI: 10.1007/s00216-020-02853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/30/2023]
|
34
|
Jing L, Yang C, Zhang P, Zeng J, Li Z, Gao M. Nanoparticles weaponized with built‐in functions for imaging‐guided cancer therapy. VIEW 2020. [DOI: 10.1002/viw2.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of Sciences Bei Yi Jie 2, Zhong Guan Cun Beijing 100190 P. R. China
| | - Chen Yang
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of Sciences Bei Yi Jie 2, Zhong Guan Cun Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of Sciences Bei Yi Jie 2, Zhong Guan Cun Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 P. R. China
| | - Mingyuan Gao
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of Sciences Bei Yi Jie 2, Zhong Guan Cun Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
35
|
Kong N, Ji X, Wang J, Sun X, Chen G, Fan T, Liang W, Zhang H, Xie A, Farokhzad OC, Tao W. ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. NANO LETTERS 2020; 20:3943-3955. [PMID: 32243175 DOI: 10.1021/acs.nanolett.0c01098] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Black phosphorus (BP)-based nanomaterials have distinguished advantages and potential applications in various biomedical fields. However, their biological effects in physiological systems remain largely unexplored. Here, we systematically revealed a reactive oxygen species (ROS)-mediated mechanism for the selective killing of cancer cells by BP-based nanosheets. The treatment with BP-based materials can induce higher levels of ROS in cancer cells than in normal cells, leading to significant changes in the cytoskeleton, cell cycle arrest, DNA damage, and apoptosis in tumor cell lines. We revealed that the decreased superoxide dismutase activity by lipid peroxides could be an essential mechanism of the selectively higher ROS generation induced by BP-based nanosheets in cancer cells. In addition, the selective killing effect only occurred within a certain dosage range (named "SK range" in this study). Once exceeding the SK range, BP-based materials could also induce a high ROS production in normal tissues, leading to detectable DNA damage and pathological characteristics in normal organs and raising safety concerns. These findings not only shed light on a new mechanism for the selective killing of cancer cells by BP-based materials but also provide deep insights into the safe use of BP-based therapies.
Collapse
Affiliation(s)
- Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiuna Sun
- Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guoqiao Chen
- Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Weiyuan Liang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Anyong Xie
- Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Yao D, Wang Y, Zou R, Bian K, Liu P, Shen S, Yang W, Zhang B, Wang D. Molecular Engineered Squaraine Nanoprobe for NIR-II/Photoacoustic Imaging and Photothermal Therapy of Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4276-4284. [PMID: 31896256 DOI: 10.1021/acsami.9b20147] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various squaraine dyes have been developed for biological imaging. Nevertheless, squaraine dyes with emission in the second window (NIR-II, 1000-1700 nm) have few reports largely due to the short of a simple and universal design strategy. In this contribution, molecular engineering strategy is explored to develop squaraine dyes with NIR-II emission. First, NIR-I squaraine dye SQ2 is constructed by the ethyl-grafted 1,8-naphtholactam as donor units and square acid as acceptor unit in a donor-acceptor-donor (D-A-D) structure. To red-shift the fluorescence emission into NIR-II window, malonitrile, as a forceful electron-withdrawing group, is introduced to strengthen square acid acceptor. As a result, the fluorescence spectrum of acceptor-engineered squaraine dye SQ1 exhibits a significant red-shift into NIR-II window. To translate NIR-II fluorophores SQ1 into effective theranostic agents, fibronectin-targeting SQ1 nanoprobe was constructed and showed excellent NIR-II imaging performance in angiography and tumor imaging, including lung metastatic foci in deep tissue. Furthermore, SQ1 nanoprobe can be used for photoacoustic imaging and photothermal ablation of tumors. This research demonstrates that the donor-acceptor engineering strategy is feasible and effective to develop NIR-II squaraine dyes.
Collapse
Affiliation(s)
- Defan Yao
- Department of Radiology, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , 200092 Shanghai , China
- State Key Laboratory of Molecular Engineering of Polymers , Fudan University , 200433 Shanghai , China
| | - Yanshu Wang
- Department of Radiology, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , 200092 Shanghai , China
| | - Rongfeng Zou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , KTH Royal Institute of Technology, AlbaNova University Center , 10691 Stockholm , Sweden
| | - Kexin Bian
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Pei Liu
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Shuzhan Shen
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Weitao Yang
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Bingbo Zhang
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , 200092 Shanghai , China
| |
Collapse
|
37
|
Thurakkal S, Zhang X. Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902359. [PMID: 31993294 PMCID: PMC6974947 DOI: 10.1002/advs.201902359] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/10/2019] [Indexed: 05/25/2023]
Abstract
Owing to their tunable direct bandgap, high charge carrier mobility, and unique in-plane anisotropic structure, black phosphorus nanosheets (BPNSs) have emerged as one of the most important candidates among the 2D materials beyond graphene. However, the poor ambient stability of black phosphorus limits its practical application, due to the chemical degradation of phosphorus atoms to phosphorus oxides in the presence of oxygen and/or water. Chemical functionalization is demonstrated as an efficient approach to enhance the ambient stability of BPNSs. Herein, various covalent strategies including radical addition, nitrene addition, nucleophilic substitution, and metal coordination are summarized. In addition, efficient noncovalent functionalization methods such as van der Waals interactions, electrostatic interactions, and cation-π interactions are described in detail. Furthermore, the preparations, characterization, and diverse applications of functionalized BPNSs in various fields are recapped. The challenges faced and future directions for the chemical functionalization of BPNSs are also highlighted.
Collapse
Affiliation(s)
- Shameel Thurakkal
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| | - Xiaoyan Zhang
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| |
Collapse
|
38
|
Ding L, Ren F, Liu Z, Jiang Z, Yun B, Sun Q, Li Z. Size-Dependent Photothermal Conversion and Photoluminescence of Theranostic NaNdF4 Nanoparticles under Excitation of Different-Wavelength Lasers. Bioconjug Chem 2019; 31:340-351. [DOI: 10.1021/acs.bioconjchem.9b00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lihua Ding
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
39
|
Wang Z, Zhao J, Tang W, Hu L, Chen X, Su Y, Zou C, Wang J, Lu WW, Zhen W, Zhang R, Yang D, Peng S. Multifunctional Nanoengineered Hydrogels Consisting of Black Phosphorus Nanosheets Upregulate Bone Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901560. [PMID: 31423735 DOI: 10.1002/smll.201901560] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/01/2019] [Indexed: 05/16/2023]
Abstract
Tissue-engineered hydrogels have received extensive attention as their mechanical properties, chemical compositions, and biological signals can be dynamically modified for mimicking extracellular matrices (ECM). Herein, the synthesis of novel double network (DN) hydrogels with tunable mechanical properties using combinatorial screening methods is reported. Furthermore, nanoengineered (NE) hydrogels are constructed by addition of ultrathin 2D black phosphorus (BP) nanosheets to the DN hydrogels with multiple functions for mimicking the ECM microenvironment to induce tissue regeneration. Notably, it is found that the BP nanosheets exhibit intrinsic properties for induced CaP crystal particle formation and therefore improve the mineralization ability of NE hydrogels. Finally, in vitro and in vivo data demonstrate that the BP nanosheets, mineralized CaP crystal nanoparticles, and excellent mechanical properties provide a favorable ECM microenvironment to mediate greater osteogenic cell differentiation and bone regeneration. Consequently, the combination of bioactive chemical materials and excellent mechanical stimuli of NE hydrogels inspire novel engineering strategies for bone-tissue regeneration.
Collapse
Affiliation(s)
- Zhenming Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jin Zhao
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
| | - Wanze Tang
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
| | - Liqiu Hu
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
| | - Xin Chen
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
| | - Yiping Su
- School of Environment Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang Zou
- The Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 519020, China
| | - Jianhong Wang
- The Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 519020, China
| | - William W Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, China
| | - Wanxin Zhen
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
| | - Ronghua Zhang
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dazhi Yang
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
| | - Songlin Peng
- Department of Spine Surgery and Institute for Orthopaedic Research, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
- The Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 519020, China
| |
Collapse
|
40
|
Wang S, Shao J, Li Z, Ren Q, Yu XF, Liu S. Black Phosphorus-Based Multimodal Nanoagent: Showing Targeted Combinatory Therapeutics against Cancer Metastasis. NANO LETTERS 2019; 19:5587-5594. [PMID: 31260628 DOI: 10.1021/acs.nanolett.9b02127] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In breast cancer chemophotothermal therapy, it is a great challenge for the development of multifunctional nanoagents for precision targeting and the effective treatment of tumors, especially for metastasis. Herein, we successfully design and synthesize a multifunctional black phosphorus (BP)-based nanoagent, BP/DTX@PLGA, to address this challenge. In this composite nanoagent, BP quantum dots (BPQDs) are loaded into poly(lactic-co-glycolic acid) (PLGA) with additional conjugation of a chemotherapeutic agent, docetaxel (DTX). The in vivo distribution results demonstrate that BP/DTX@PLGA shows striking tropism for targeting both primary tumors and lung metastatic tumors. Moreover, BP/DTX@PLGA exhibits outstanding controllable chemophotothermal combinatory therapeutics, which dramatically improves the efficacy of photothermal tumor ablation when combined with near-light irradiation. Mechanistically, accelerated DTX release from the nanocomplex upon heating and thermal treatment per se synergistically incurs apoptosis-dependent cell death, resulting in the elimination of lung metastasis. Meanwhile, in vitro and in vivo results further confirm that BP/DTX@PLGA possesses good biocompatibility. This study provides a promising BP-based multimodal nanoagent to constrain cancer metastasis.
Collapse
Affiliation(s)
- Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jundong Shao
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Zhibin Li
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xue-Feng Yu
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
41
|
Liu Z, Ren F, Zhang H, Yuan Q, Jiang Z, Liu H, Sun Q, Li Z. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma. Biomaterials 2019; 219:119364. [PMID: 31352311 DOI: 10.1016/j.biomaterials.2019.119364] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 01/06/2023]
Abstract
Rare-earth nanoparticles (RE NPs) with narrow long wavelength emissions have been recently investigated for their potential application for fluorescence imaging in the second near-infrared window (NIR-II). Previously these RE NPs have a very limited application in the diagnosis and treatment of deep-seated tumors such as brain tumors, due to their weak fluorescence in the range of 1300-1700 nm. Herein, we report a significant enhancement of more than 10 times regular emission of NaNdF4 nanoparticles at 1340 nm wavelength by coating them with an inert layer of NaLuF4, followed by sensitizing with a near-infrared dye (IR-808). We deliver these highly bright nanoparticles into the brain by using focused ultrasound to temporarily open the blood-brain barrier (BBB), and then detect the orthotopic glioblastoma by fluorescence imaging at 1340 nm. The images obtained from long wavelength fluorescence (i.e. 1340 nm) exhibited better resolution and contrast compared to the short wavelength fluorescence (i.e. 1060 nm). Our study not only provides insights for enhancing often overlooked emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of deep-seated tumors, but also demonstrates great potential of focused ultrasound based technology in delivering nanotheranostic agents.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Qiang Yuan
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China.
| |
Collapse
|