1
|
Luo C, Wan K, Wang J, Li B, Yang D, Ming P, Zhang C. A review of ordered PtCo 3 catalyst with higher oxygen reduction reaction activity in proton exchange membrane fuel cells. J Colloid Interface Sci 2025; 679:165-190. [PMID: 39447461 DOI: 10.1016/j.jcis.2024.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
This review is devoted to the potential advantages of ordered alloy catalysts in proton exchange membrane fuel cells (PEMFCs), specifically focusing on the development of the low Pt content, high activity, and durability ordered PtCo3 catalyst. Due to the sluggish oxygen reduction reaction (ORR) kinetics and poor durability, the overall performance of the fuel cell is affected, and its application and promotion are limited. To address this issue, researchers have explored various synthetic strategies, such as element doping, morphology adjusting, structure controlling, ordering and support/metal interaction enhancement. This article extensively discussed the Pt related ORR catalysts and follows an in-depth analysis of ordered PtCo3. The introduction briefly discusses the direction of development of fuel cell catalysts and frontier progress, including theoretical mechanism, practical preparation, and Pt-containing electrode structures, etc. The subsequent chapter focuses on the Pt-Co catalyst, the evolution process of Pt alloy to Pt-Co alloy and the improvement scheme are introduced. The next chapter describes the properties of PtCo3. Although the ordered PtCo3 catalyst has a wide range of applicability due to low cost and high activity catalyst. However, besides the common agglomeration and sintering problems of Pt-Co alloy, its commercial application still faces unique problems of oversized crystal size, phase segregation, ordering transformation and transition metal dissolution. Therefore, in Chapter 4, this overview provides some possible improvement methods for three specific functions: crystal refinement, enhancing the effect of support and active substances, and anti-dissolution.
Collapse
Affiliation(s)
- Chuanqi Luo
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Kechuang Wan
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Jue Wang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Bing Li
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Daijun Yang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Pingwen Ming
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Cunman Zhang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| |
Collapse
|
2
|
Cui Y, Chen Y, Cao Z, Xu L, He J, Zhu Z, Lian L, Luo X, Yang Z, Chen M. Oxidation of Toluene over the Pt-Embedded Mesoporous CeO 2 Hollow Nanospheres with Advanced Catalytic Performances. Inorg Chem 2024; 63:19972-19990. [PMID: 39377731 DOI: 10.1021/acs.inorgchem.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this study, the novel Pt-embedded mesoporous CeO2 hollow nanospheres (Pt-MS-CeO2-H) with varying Pt contents (0.5-3.0 wt %) were facilely prepared. The Pt nanoparticles were one-pot embedded within the mesoporous shell of Pt-MS-CeO2-H and assisted with the reduction Ostwald ripening process. The traditional preparation methods often face challenges, such as the uneven distribution or aggregation of nanoparticles, as well as difficulty in maintaining high catalytic activity at low Pt content. Compared with the traditional supported Pt/MS-CeO2 catalyst, the embedding strategy facilitated precise control over the position, distribution, and uniformity of Pt nanoparticles within the CeO2 mesoporous shell. Additionally, the encapsulation process of Pt nanoparticles played a pivotal role in generating oxygen vacancies and activating surface chemical adsorption of oxygen. Resultantly, the toluene oxidation performances of 1Pt-MS-CeO2-H catalyst showed much lower T90 (171 °C) than 1Pt/MS-CeO2 (311 °C). To elucidate the underlying reasons, in situ diffuse reflectance infrared Fourier transform spectroscopy of toluene oxidation was employed to identify the reaction intermediates and pathways over these catalysts. In summary, the Pt-embedded mesoporous CeO2 hollow nanosphere catalysts were considered as potential candidates when designing high-performance toluene catalytic oxidation catalysts.
Collapse
Affiliation(s)
- Yan Cui
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210004, China
| | - Yusheng Chen
- Academy of Environmental Planning and Design, Co. Ltd. Nanjing University, Nanjing 210024, China
| | - Zhen Cao
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Jing He
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Zehui Zhu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Linshui Lian
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Xue Luo
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Zhenya Yang
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210004, China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
| |
Collapse
|
3
|
Song S, Hu J, Wang C, Luo M, Wang X, Zhai F, Zheng J. Pt 3(CoNi) Ternary Intermetallic Nanoparticles Immobilized on N-Doped Carbon Derived from Zeolitic Imidazolate Frameworks for Oxygen Reduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4775. [PMID: 39410345 PMCID: PMC11477947 DOI: 10.3390/ma17194775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.
Collapse
Affiliation(s)
- Shiqi Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junhua Hu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chupeng Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingsheng Luo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxia Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengxia Zhai
- Sushui Energy Technology (Shanghai) Co., Ltd., Shanghai 200444, China
| | - Jianyong Zheng
- Institute of Artificial Intelligence, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
4
|
Jiang T, Im HS, Seo D, Dou Y, Park S, Lim SY, Shao J, Zhang W. Zeolitic Imidazolate Framework-Derived Pt-Co in Nanofibrous Networks as Stable Oxygen Reduction Electrocatalysts with Low Pt Loading. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5803-5812. [PMID: 38240677 DOI: 10.1021/acsami.3c15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Proton-exchange membrane fuel cell technology is a key component in the future zero-carbon energy system, generating power from carbon-free fuels, such as green hydrogen. However, the high Pt loading in conventional fuel cell electrodes to maintain electrocatalytic activity and durability, especially on the cathode for oxygen reduction, is the Achilles heel for the worldwide deployment of fuel cell technologies. To minimize Pt consumption for oxygen reduction, we synthesized Pt-Co-based electrocatalysts with meticulous structuring from micrometer to the atomic scale based on reaction pathways. The resulting Pt-Co-based electrocatalysts contain only 1.9 wt% Pt, which is 20 times lower than the conventional Pt-C catalysts for fuel cells. By utilizing electrospinning and in situ synthesis, we anchored three-dimensionally structured zeolitic imidazolate frameworks on continuously connected nanofibrous electrospun mats. The Pt-Co@Pt-free nanowire (PC@PFN) electrocatalysts contain Pt-Co nanoparticles (NPs) and non-Pt elements, Co-containing sites comprising NPs, nanoclusters, and N-coordinated Co single atoms. Despite the ultralow Pt loading in PC@PFN, the mass activity exceeds the U.S. Department of Energy 2025 target by 2.8 times and retains 85.5% of the initial activity after 80,000 durability test cycles, possibly owing to synergistic reaction pathways between Pt and non-Pt sites.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Han Seo Im
- Department of Chemistry, College of Science, Kyung Hee University, Seoul 02447, Korea
| | - Daye Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yibo Dou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Sunghak Park
- Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sung Yul Lim
- Department of Chemistry, College of Science, Kyung Hee University, Seoul 02447, Korea
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, P. R. China
| | - Wenjing Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
5
|
Wang J, Pan F, Chen W, Li B, Yang D, Ming P, Wei X, Zhang C. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Manna N, Singh M, Kurungot S. Microporous 3D-Structured Hierarchically Entangled Graphene-Supported Pt 3Co Alloy Catalyst for PEMFC Application with Process-Friendly Features. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267475 DOI: 10.1021/acsami.3c03372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To improve the oxygen reduction reaction (ORR) performance in a proton-exchange membrane fuel cell (PEMFC) cathode with respect to mass activity and durability, a suitable electrocatalyst design strategy is essentially needed. Here, we have prepared a sub-three nm-sized platinum (Pt)-cobalt (Co) alloy (Pt3Co)-supported N-doped microporous 3D graphene (Pt3Co/pNEGF) by using the polyol synthesis method. A microwave-assisted synthesis method was employed to prepare the catalyst based on the 3D porous carbon support with a large pore volume and dense micro-/mesoporous surfaces. The ORR performance of Pt3Co/pNEGF closely matches with the state-of-the-art commercial Pt/C catalyst in 0.1 M HClO4, with a small overpotential of 10 mV. The 3D microporous structure of the N-doped graphene significantly improves the mass transport of the reactant and thus the overall ORR performance. As a result of the lower loading of Pt in Pt3Co/pNEGF as compared to that in Pt/C, the alloy catalyst achieved 1.5 times higher mass activity than Pt/C. After 10,000 cycles, the difference in the electrochemically active surface area (ECSA) and half-wave potential (E1/2) of Pt3Co/pNEGF is found to be 5 m2 gPt-1 (ΔECSA) and 24 mV (ΔE1/2), whereas, for Pt/C, these values are 9 m2 gPt-1 and 32 mV, respectively. Finally, in a realistic perspective, single-cell testing of a membrane electrode assembly (MEA) was made by sandwiching the Pt3Co/pNEGF-coated gas diffusion layers as the cathode displayed a maximum power density of 800 mW cm-2 under H2-O2 feed conditions with a clear indication of helping the system in the mass-transfer region (i.e., the high current dragging condition). The nature of the I-V polarization shows a progressively lower slope in this region of the polarization plot compared to a similar system made from its Pt/C counterpart and a significantly improved performance throughout the polarization region in the case of the system made from the Pt3Co/NEGF catalyst (without the microwave treatment) counterpart. These results validate the better process friendliness of Pt3Co/pNEGF as a PEMFC electrode-specific catalyst owing to its unique texture with 3D architecture and well-defined porosity with better structural endurance.
Collapse
Affiliation(s)
- Narugopal Manna
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mayank Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
8
|
A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Weber P, Weber DJ, Dosche C, Oezaslan M. Highly Durable Pt-Based Core–Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Daniel J. Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Carsten Dosche
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Mehtap Oezaslan
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
10
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Foucher AC, Marcella N, Lee JD, Rosen DJ, Tappero R, Murray CB, Frenkel AI, Stach EA. Structural and Valence State Modification of Cobalt in CoPt Nanocatalysts in Redox Conditions. ACS NANO 2021; 15:20619-20632. [PMID: 34780150 DOI: 10.1021/acsnano.1c09450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Platinum is the primary catalyst for many chemical reactions in the field of heterogeneous catalysis. However, platinum is both expensive and rare. Therefore, it is advantageous to combine Pt with another metal to reduce cost while also enhancing stability. To that end, Pt is often combined with Co to form Co-Pt nanocrystals. However, dynamical restructuring effects that occur during reaction in Co-Pt ensembles can impact catalytic properties. In this study, model Co2Pt3 nanoparticles supported on carbon were characterized during a redox cycle with two in situ approaches, namely, X-ray absorption spectroscopy (XAS) and scanning transmission electron microscopy (STEM) using a multimodal microreactor. The sample was exposed to temperatures up to 500 °C under H2, and then to O2 at 300 °C. Irreversible segregation of Co in the Co2Pt3 particles was seen during redox cycling, and substantial changes of the oxidation state of Co were observed. After H2 treatment, a fraction of Co could not be fully reduced and incorporated into a mixed Co-Pt phase. Reoxidation of the sample increased Co segregation, and the segregated material had a different valence state than in the fresh, oxidized sample. This in situ study describes dynamical restructuring effects in CoPt nanocatalysts at the atomic scale that are crucial to understand in order to improve the design of catalysts used in major chemical processes.
Collapse
Affiliation(s)
- Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ryan Tappero
- Photon Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Yang CL, Wang LN, Yin P, Liu J, Chen MX, Yan QQ, Wang ZS, Xu SL, Chu SQ, Cui C, Ju H, Zhu J, Lin Y, Shui J, Liang HW. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021; 374:459-464. [PMID: 34672731 DOI: 10.1126/science.abj9980] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cheng-Long Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Na Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Peng Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jieyuan Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ming-Xi Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiang-Qiang Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Shu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-Qi Chu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanxin Ju
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
van der Hoeven JES, Jelic J, Olthof LA, Totarella G, van Dijk-Moes RJA, Krafft JM, Louis C, Studt F, van Blaaderen A, de Jongh PE. Unlocking synergy in bimetallic catalysts by core-shell design. NATURE MATERIALS 2021; 20:1216-1220. [PMID: 33958769 DOI: 10.1038/s41563-021-00996-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Extending the toolbox from mono- to bimetallic catalysts is key in realizing efficient chemical processes1. Traditionally, the performance of bimetallic catalysts featuring one active and one selective metal is optimized by varying the metal composition1-3, often resulting in a compromise between the catalytic properties of the two metals4-6. Here we show that by designing the atomic distribution of bimetallic Au-Pd nanocatalysts, we obtain a synergistic catalytic performance in the industrially relevant selective hydrogenation of butadiene. Our single-crystalline Au-core Pd-shell nanorods were up to 50 times more active than their alloyed and monometallic counterparts, while retaining high selectivity. We find a shell-thickness-dependent catalytic activity, indicating that not only the nature of the surface but also several subsurface layers play a crucial role in the catalytic performance, and rationalize this finding using density functional theory calculations. Our results open up an alternative avenue for the structural design of bimetallic catalysts.
Collapse
Affiliation(s)
- Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Jelena Jelic
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Liselotte A Olthof
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Giorgio Totarella
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Relinde J A van Dijk-Moes
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Jean-Marc Krafft
- Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, Paris, France
| | - Catherine Louis
- Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, Paris, France
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Cao J, Cao H, Wang F, Zhu H. Fully ordered L10-PtCoAu electrocatalyst derived from PtAu@CoO precursor with enhanced performance for oxygen reduction reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Strain and ligand effects in Pt-Ni alloys studied by valence-to-core X-ray emission spectroscopy. Sci Rep 2021; 11:13698. [PMID: 34211031 PMCID: PMC8249455 DOI: 10.1038/s41598-021-93068-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Experimental detection of the Pt 5d densities of states in the valence band is conducted on a series of Pt-Ni alloys by high energy resolution valence-to-core X-ray emission spectroscopy (VTC-XES) at the Pt L3-edge. VTC-XES measurements reveal that the Pt d-band centroid shifts away from the Fermi level upon dilution, accompanied by concentration-dependent Pt d-band width. The competition between the strain effect and ligand effect is observed experimentally for the first time. It is found that the d-band widths in Pt3Ni and PtNi are broader than that of Pt metal due to compressive strain which overcompensates the effect of dilution, while it is narrower in PtNi3 where the ligand effect dominates. VTC-XES is demonstrated to be a powerful tool to study the Pt d-band contribution to the valence band of Pt-based bimetallic. The implication for the enhanced activity of Pt-Ni catalysts in oxygen reduction reaction is discussed.
Collapse
|
17
|
Xu Q, Zhao L, Ma Y, Yuan R, Liu M, Xue Z, Li H, Zhang J, Qiu X. Substituents and the induced partial charge effects on cobalt porphyrins catalytic oxygen reduction reactions in acidic medium. J Colloid Interface Sci 2021; 597:269-277. [PMID: 33872883 DOI: 10.1016/j.jcis.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Charge states at the catalytic interface can intensely alter the charge transfer mechanism and thus the oxygen reduction performance. Two symmetric cobalt porphyrins with electron deficient 2,1,3-benzothiadiazole (BTD) and electron-donating propeller-like triphenylamine (TPA) derivatives have been designed firstly, to rationally generate intramolecular partial charges, and secondly, to utilize the more exposed molecular orbitals on TPA for enhancing the charge transfer kinetics. The catalytic performance of the two electrocatalysts was examined for oxygen reduction reactions (ORR) in acidic electrolyte. It was found that BCP1/C with two BTD groups showed greater reduction potential but less limiting current density as compared to BCP2/C bearing BTD-TPA units. The reduced potential of BCP2/C was proposed to the introduction of the electron-donating ability of TPA, which may decrease the adsorption affinity of oxygen to the cobalt center. Both dipole-induced partial charge effect and the more exposed cation orbitals of the 3D structural TPA were proposed to contribute to the increased response current of BCP2/C. In addition, BCP2/C attained more than 80% of H2O2 generation in acidic solution, which may also relate to the structural effect. These findings may provide new insight into the structural design of organic electrocatalysts and deep understanding on the interfacial charge transfer mechanism for ORR.
Collapse
Affiliation(s)
- Qingxiang Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuhan Ma
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rui Yuan
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Maosong Liu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaoli Xue
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianming Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xinping Qiu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
18
|
Gómez Herranz A, Germán E, Alonso JA, López MJ. Interaction of hydrogen with palladium–copper nanoalloys. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02737-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Kim S, Kwag J, Machello C, Kang S, Heo J, Reboul CF, Kang D, Kang S, Shim S, Park SJ, Kim BH, Hyeon T, Ercius P, Elmlund H, Park J. Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. NANO LETTERS 2021; 21:1175-1183. [PMID: 33416334 DOI: 10.1021/acs.nanolett.0c04873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Active sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN (CN_) for individual surface atoms of sub-3 nm Pt nanocrystals. Our results reveal that the synthesized Pt nanocrystals are enclosed by islands of atoms with nonuniform shapes that lead to complex surface structures, including a high ratio of low-coordination surface atoms, reduced domain size of low-index facets, and various types of exposed high-index facets. 3D maps of CN_ are directly correlated to catalytic activities assigned to individual surface atoms with distinct local coordination structures, which explains the origin of high catalytic performance of small Pt nanocrystals in important reactions such as oxygen reduction reactions and CO electro-oxidation.
Collapse
Affiliation(s)
- Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jimin Kwag
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
21
|
Li D, Gong Y, Li G, Lyu X, Dai Z, Wang Q. Three-step method with self-sacrificial Co to prepare a uniform 5 nm-scale Pt catalyst for the oxygen reduction reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj01780b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Simple and rapid preparation method for a highly dispersed and small-sized CoPt catalyst.
Collapse
Affiliation(s)
- Donggang Li
- School of Metallurgy
- Northeastern University
- Shenyang 110004
- P. R. China
| | - Yanlong Gong
- School of Metallurgy
- Northeastern University
- Shenyang 110004
- P. R. China
| | - Gen Li
- School of Materials Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Xiao Lyu
- School of Materials Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Zhenqing Dai
- College of Sciences
- Northeastern University
- Shenyang 110004
- P. R. China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials
- Northeastern University
- Shenyang 110004
- P. R. China
| |
Collapse
|
22
|
Bak J, Heo Y, Yun TG, Chung SY. Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS NANO 2020; 14:14323-14354. [PMID: 33151068 DOI: 10.1021/acsnano.0c06411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As chemical reactions and charge-transfer simultaneously occur on the catalyst surface during electrocatalysis, numerous studies have been carried out to attain an in-depth understanding on the correlation among the surface structure and composition, the electrical transport, and the overall catalytic activity. Compared with other catalysis reactions, a relatively larger activation barrier for oxygen evolution/reduction reactions (OER/ORR), where multiple electron transfers are involved, is noted. Many works over the past decade thus have been focused on the atomic-scale control of the surface structure and the precise identification of surface composition change in catalyst materials to achieve better conversion efficiency. In particular, recent advances in various analytical tools have enabled noteworthy findings of unexpected catalytic features at atomic resolution, providing significant insights toward reducing the activation barriers and subsequently improving the catalytic performance. In addition to summarizing important surface issues, including lattice defects, related to the OER and ORR in this Review, we present the current status and discuss future perspectives of oxide- and alloy-based catalysts in terms of atomic-scale observation and manipulation.
Collapse
Affiliation(s)
- Jumi Bak
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yoon Heo
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
23
|
Luo Q, Wang S, Zhu Y, Tang S, Du Y. Structurally ordered Pt 3Co for oxygen reduction reaction prepared using polyvinylpyrrolidone as auxiliary dispersant. NANOTECHNOLOGY 2020; 31:455605. [PMID: 32746441 DOI: 10.1088/1361-6528/ababc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Structurally ordered Pt3Co/C nanoparticles (NPs) were obtained via a spray paint drying method with an annealing treatment. The addition of a suitable dose of polyvinylpyrrolidone resulted in a narrow size distribution of the Pt3Co/C-600-1 NPs, an average particle size of ca. 4.6 nm, which may be due to the enhanced dispersion in aqueous solution resulting from the carbon support. The sample denoted as Pt3Co/C-600-1 NPs performs high activity for oxygen reduction reaction with the mass activity (MA) ca. 3 times higher than that of a commercial Pt/C catalyst at 0.9 V. Accelerated durability tests (ADTs) showed that Pt3Co/C-600-1 NPs exhibit superior stability with a minimal loss of 17.5% in MA at 0.9 V after 5000 cycles, while Pt/C catalysts show loss of 44.4%. This simple two-step strategy provides an effective way to prepare Pt-based catalysts for industrial application.
Collapse
Affiliation(s)
- Qingyu Luo
- Jiangsu Key Laboratory for Nanotechnology, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Zhang J, Li C, Zhang M, Zhang J, Wu X, Li X, Lü W. Cobalt and nitrogen codoped carbon nanotubes derived from a graphitic C 3N 4 template as an electrocatalyst for the oxygen reduction reaction. NANOSCALE ADVANCES 2020; 2:3963-3971. [PMID: 36132801 PMCID: PMC9419829 DOI: 10.1039/d0na00502a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 05/16/2023]
Abstract
Sluggish oxygen reduction reaction kinetics have been a main obstacle for commercial application of fuel cells. To replace Pt-based noble metal electrocatalysts, it is crucial to develop economical materials as electrocatalysts. Herein, we provide a strategy to prepare Co and N codoped carbon nanotubes for efficient oxygen reduction reaction. The composites are synthesized by hydrothermal reaction followed by calcination at 900 °C. Graphitic carbon nitride is used as a template and nitrogen source, and citric acid and cobalt nitrate hexahydrate are used as carbon and cobalt sources, respectively. Due to the synergistic effect of Co and N codoping and increased specific surface area, the resulting Co and N codoped carbon nanotubes exhibit excellent catalytic performance. The present results provide experimental support for further development of electrocatalysts.
Collapse
Affiliation(s)
- Jichang Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Chenxia Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 China +86-431-85716577 +86-431-85716577
| | - Ming Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Jianqi Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Xi Wu
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 China +86-431-85716577 +86-431-85716577
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 China +86-431-85716577 +86-431-85716577
| |
Collapse
|